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Optimal convergence analysis for the eXtended Finite Element

Method

Serge Nicaise 1, Yves Renard 2, Elie Chahine 3

Abstract

We establish some optimal a priori error estimate on some variants of the eXtended
Finite Element Method (Xfem), namely the Xfem with a cut-off function and the stan-
dard Xfem with a fixed enrichment area. The results are established for the Lamé
system (homogeneous isotropic elasticity) and the Laplace problem. The convergence
of the numerical stress intensity factors is also investigated. We show some numerical
experiments which corroborate the theoretical results.

Keywords: extended finite element method, error estimates, stress intensity factors.

1 Introduction

Inspired by the Pufem [26], the Xfem (extended finite element method) was introduced by
Moës et al. in 1999 [28, 27] for plane linear isotropic elasticity problems (Lamé system) in
cracked domains. The main advantage of this method is the ability to take into account
the discontinuity across the crack and the asymptotic displacement at the crack tip by
addition of special functions into the finite element space. It allows the use of a mesh which
is independent of the geometry of the crack. This avoids the remeshing operations when
the crack propagates and the corresponding re-interpolation operations which can cause
numerical instabilities. In the original method, the asymptotic displacement is incorporated
into the finite element space multiplied by the shape function of a background Lagrange
finite element method. However, we deal also with a variant, introduced in [12], where
the asymptotic displacement is multiplied by a cut-off function. This variant is similar to
the classical singular enrichment method introduced in 1973 by Strang and Fix [32] but it
additionally preserves the independence of the mesh to the geometry of the crack which is
indeed the essential contribution of Xfem.

Another classical method to take into account a singular behavior of the solution is the
dual singular function method introduced by M. Dobrowolski et al. in [5] (see also [19, 10])
or a more recent variant the singular complement method introduced by P. Ciarlet Jr. et
al. in [17] (for a L-shape domain, see [29]). These methods require the use of dual singular
functions which can be difficult to obtain in some situations (even for the Lamé system)
or quite impossible to obtain when just the asymptotic behavior is known (for non-linear
elasticity [2] or Mindlin plate model for instance).

The Xfem strategy can be adapted to various situations. See among many other refer-
ences [3, 6, 7, 8, 23, 25, 36, 37, 35, 38]. In particular, a fictitious domain method can be
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derived from the principle of Xfem (see [24, 4]) and it is possible to adapt some strategies
when the asymptotic behavior is unknnown or only partially known (see [11, 13, 14]).

In the present paper, we improve the results given in [12] concerning the variant which
uses a cut-off function. We also give some additional error estimates concerning the stress
intensity factors and the standard Xfem. The theoretical results are established for both the
Lamé system and the Laplace problem. Some numerical tests that illustrate and confirm
the theoretical results are presented.

2 The model problems

The analysis will be performed on a cracked domain Ω ⊂ R
2 for two model problems: The

Laplace equation and the Lamé system. The crack ΓC is assumed to be straight. In both
cases, the boundary ∂Ω of Ω is partitioned into ΓD, ΓN and ΓC (see Fig. 1). A Dirichlet
condition is prescribed on ΓD, a Neumann one on ΓN while on the crack ΓC we consider
an homogeneous Neumann condition.

Figure 1: The cracked domain Ω.

The weak formulation of the (scalar) Laplace equation on this domain reads as follows:





Find u ∈ V such that a(u, v) = l(v) ∀v ∈ V,

a(u, v) =

∫

Ω
∇u · ∇vdx,

l(v) =

∫

Ω
fvdx +

∫

ΓN

gv dΓ,

V = {v ∈ H1(Ω); v = 0 on ΓD}.

(1)

While the one of the Lamé (vectorial) system (linear elasticity problem on this domain for
an isotropic material) is:





Find u ∈ V such that a(u, v) = l(v) ∀v ∈ V,

a(u, v) =

∫

Ω
σ(u) : ε(v) dx,

l(v) =

∫

Ω
f · vdx +

∫

ΓN

g · v dΓ,

σ(u) = λtr(ε(u))I + 2µε(u),

V = {v ∈ H1(Ω; R2); v = 0 on ΓD},

(2)

where σ(u) denotes the stress tensor, ε(u) = 1
2(∇u + ∇u

T
) is the linearized strain tensor,
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f and g are some external load densities on Ω and ΓN respectively, and λ > 0, µ > 0 are
the Lamé coefficients.

In both cases, we suppose Ω, f and g smooth enough for the solution u of Problem (1)
or (2) to be written as a sum of a singular part us and a regular part u − us (see [22, 21])
satisfying:

u − us ∈ H2(Ω; Rd), (3)

with
d = 1 and us = K

L
u

L
, (4)

for the solution to the Laplace equation (1), and

d = 2 and us = K
I
u

I
+ K

II
u

II
, (5)

for the solution to the Lamé system (2). The scalars K
L
, K

I
and K

II
are the so-called stress

intensity factors and the functions u
L
, u

I
and u

II
are given in polar coordinates relatively

to the crack tip (Fig. 2) by:

u
L
(r, θ) =

√
r sin

θ

2
, (6)

u
I
(r, θ) =

1

E

√
r

2π
(1 + ν)

(
cos θ

2(δ − cos θ)

sin θ
2(δ − cos θ)

)
, (7)

u
II

(r, θ) =
1

E

√
r

2π
(1 + ν)

(
sin θ

2(δ + 2 + cos θ)

cos θ
2(δ − 2 + cos θ)

)
, (8)

where ν =
λ

λ + 2µ
denotes the Poisson ratio, E =

4µ(λ + µ)

λ + 2µ
the Young modulus and

δ = 3 − 4ν (plane stress approximation). Note that u
L
, u

I
and u

II
belong to H3/2−η(Ω)

for any η > 0 (see [22]) which limits the order of the convergence rate of a classical finite
element method to O(h1/2) where h is the mesh parameter.

.

θ

r

crack tip

ΓC

.

Figure 2: Polar coordinates respectively to the crack tip Ω.

3 Xfem with a cut-off function

The Xfem variant which uses a cut-off function was proposed in [12]. The principle of the
standard Xfem (see [28, 27]) is to consider a mesh independent of the crack geometry. An
Heaveaside type function is used to represent the discontinuity across the straight crack:

H(x) =

{
+1 if (x − x∗) · n ≥ 0,

−1 elsewhere,
(9)
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where x∗ denotes the crack tip and n is a given normal to the crack. Moreover, the
nonsmooth functions u

L
, u

I
and u

II
are integrated to the discrete space to take into account

the asymptotic behavior at the crack tip.

The crack tip triangle
(non enriched by H)

Non-enriched
triangles

Triangles partially
enriched by H

Triangles totally
enriched by H

Heaviside enrichment

Figure 3: Enrichment strategy.

We consider an affine Lagrange finite element method defined on a regular triangula-
tion Th (in the sense of the Ciarlet [16]) of the non-cracked domain Ω, h being the mesh
parameter i.e. the largest diameter of the elements of Th. The piecewise P1 basis functions
are denoted ϕi. In this section, We consider the variant of Xfem proposed in [12] for which
a whole area around the crack tip is enriched by using a cut-off function denoted χ. The
approximation of the Laplace equation reads as





Find uh ∈ V h such that a(uh, vh) = l(vh) ∀vh ∈ V h,

a(uh, vh) =

∫

Ω
∇uh · ∇vhdx,

l(vh) =

∫

Ω
fvhdx +

∫

ΓN

gvh dΓ,

V h =



vh =

∑

i∈I

aiϕi +
∑

i∈IH

biHϕi + K
L,h

χu
L
; ai, bi,KL,h

∈ R



 .

(10)

where I is the set of node indices of the P1 finite element method, IH is the sub-set of
node indices whose corresponding shape functions have their supports completely cut by
the crack and χ is a W 2,∞(Ω) cut-off function verifying for fixed 0 < r0 < r1





χ(r) = 1 if r < r0,
0 < χ(r) < 1 if r0 < r < r1,
χ(r) = 0 if r1 < r.

(11)

Concerning now the Lamé system, we consider two different ways to incorporate the asymp-
totic displacement. The first one is directly based on a vectorial enrichment with u

I
and
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u
II

:





Find uh ∈ V h such that a(uh, vh) = l(vh) ∀vh ∈ V h,

a(uh, vh) =

∫

Ω
σ(uh) : ε(vh) dx,

l(vh) =

∫

Ω
f · vhdx +

∫

ΓN

g · vh dΓ,

σ(uh) = λtrε(uh)I + 2µε(uh),

V h =



vh =

∑

i∈I

aiϕi +
∑

i∈IH

biHϕi + K
I,h

χu
I
+ K

II,h
χu

II
; ai, bi ∈ R

2,K
I,h

,K
II,h

∈ R



 .

(12)
The second one corresponds to a more classical Xfem approximation with a scalar enriche-
ment of each component:





Find uh ∈ V h such that a(uh, vh) = l(vh) ∀vh ∈ V h,

a(uh, vh) =

∫

Ω
σ(uh) : ε(vh) dx,

l(vh) =

∫

Ω
f · vhdx +

∫

ΓN

g · vh dΓ,

σ(uh) = λtrε(uh)I + 2µε(uh),

V h =



vh =

∑

i∈I

aiϕi +
∑

i∈IH

biHϕi +

4∑

j=1

cjFjχ; ai, bi, cj ∈ R
2



 ,

(13)

where the set of functions {Fj(x)}1≤j≤4 is defined by

{Fj(x)}1≤j≤4 = {
√

r sin
θ

2
,
√

r cos
θ

2
,
√

r sin
θ

2
cos θ,

√
r cos

θ

2
cos θ }. (14)

Note that the nonsmooth functions u
I

and u
II

can be decomposed on this set of functions.

4 Optimal Error estimate for the Xfem with a cut-off func-

tion

We use the notation a . b to signify that there exists a constant C > 0 independent of the
mesh parameter and of the solution such that a ≤ Cb. For a non negative real number s
let Hs(D) denote the standard Sobolev space of order s in D of norm (resp. semi-norm)
denoted by ‖ · ‖s,D (resp. | · |s,D), see for instance [1].

The aim of this section is to establish the following result which is the optimal version
of Theorem 1 in [12]:

Theorem 1 Assume that the displacement field u, solution to Problem (1) (resp. Problem
(2)), satisfies Condition (3). Then, the following estimate holds

‖u − uh‖1,Ω . h‖u − χus‖2,Ω, (15)

where uh is the solution to Problem (10) (resp. to Problem (12) or to Problem (13)), us is
the singular part of u (see (3)) and χ is the W 2,∞(Ω) cut-off function introduced before.

The outline of the proof globally follows the one of Theorem 1 in [12]. Some sub-optimal
intermediary results are here replaced by optimal ones.
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We recall the definition of the adapted interpolation operator Πh. The interpolation
error estimates are then computed locally over every different type of triangles: triangles
totally enriched by the Heaveaside function, triangles partially enriched by the Heaviside
function and the triangle containing the crack-tip.

Figure 4: Domain decomposition.

The domain Ω is divided into Ω1 and Ω2 according to the crack and a straight extension
of the crack (Fig.4) such that the value of H is (−1)k on Ωk, k = 1, 2. Let us denote
ur = u−χus, and uk

r the restriction of ur to Ωk, k ∈ {1, 2}. Then, there exists in H2(Ω; Rd)
an extension ũk

r of uk
r on Ω such that (see [1])

‖ũ1
r‖2,Ω . ‖u1

r‖2,Ω1
, (16)

‖ũ2
r‖2,Ω . ‖u2

r‖2,Ω2
. (17)

Definition 1 (from [12]) Given a displacement field u satisfying (3) and two extensions
ũ1

r and ũ2
r respectively of u1 and u2 in H2(Ω; Rd), we define Πhu as the element of V h such

that
Πhu =

∑

i∈I

aiϕi +
∑

i∈IH

biHϕi + χus, (18)

where ai, bi are given as follows (xi denotes the node associated to ϕi):

if i ∈ {I \ IH} then ai = ur(xi),

if i ∈ IH and xi ∈ Ωk then (k ∈ {1, 2}, l 6= k)

{
ai = 1

2

(
uk

r (xi) + ũl
r(xi)

)
,

bi = 1
2

(
uk

r (xi) − ũl
r(xi)

)
(−1)k.

(19)

From this definition, the following result holds:

Lemma 1 (from [12]) The function Πhu satisfies
(i) Πhu = Ihur + χus over a triangle non-enriched by H,
(ii) Πhu|K∩Ωk

= Ihũk
r + χus over a triangle K totally enriched by H,

where Ih denotes the classical interpolation operator for the associated finite element method.

Figure 5: (a) Totally enriched triangle and (b) partially enriched triangle (Fig.3).
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For K a subset of Ω, we denote hK = diam(K) = maxx1,x2∈K |x1 − x2| and ρK =
{sup(diam(B)); B ball of R

2, B ⊂ K}. The following lemma, established in [12], derives
simply from the classical interpolation of the extensions of u1

r and u2
r .

Lemma 2 (from [12]) Let T H
h be the set of triangles totally enriched by H (Fig.3) and

σK = hKρ−1
K . For all K in T H

h , and for all u satisfying (3) we have the estimates

‖u − Πhu‖1,K∩Ω1
. hKσK‖ũ1

r‖2,K , (20)

and
‖u − Πhu‖1,K∩Ω2

. hKσK‖ũ2
r‖2,K . (21)

The optimal convergence is of course obtained for non enriched triangles. It remains to
treat the partially enriched triangles and the triangle containing the crack tip. We will now
detailled the optimal intermediary results which are original in this paper.

Let us start with the Laplace equation and recall that in that case u1
r and u2

r satisfy

∂nu1
r = ∂nu2

r = 0 on ΓC . (22)

Since the extension ũ1
r and ũ2

r are H2(Ω) extension, they also satisfy the Neumann boundary
condition on ΓC , namely

∂nũ1
r = ∂nũ2

r = 0 on ΓC . (23)

We now give the main technical result.

Lemma 3 Assume that x1 ∈ Ω1 is a node belonging to a triangle K containing the crack
tip. Then

|u1
r(x1) − ũ2

r(x1)| . hK |ũ1
r − ũ2

r |2,B(0,hK). (24)

Proof: For shortness write v = ũ1
r − ũ2

r. Using a Taylor expansion, we have

v(x1) =

∫ 1

0
(x

(1)
1 ∂1v(tx1) + x

(2)
1 ∂2v(tx1)) dt,

where x1 = (x
(1)
1 , x

(2)
1 ). Without loss of generality and modulo an orthonormal change of

coordinates we assume that the position of the crack tip is (0, 0) and the crack ΓC is a
part of (R−, 0). By setting v(1) = ∂1v and v(2) = ∂2v, and making the change of variable
s = tx1, the above identity is equivalent to

v(x1) =

∫

e
(n2v

(1)(s) − n1v
(2)(s)) ds, (25)

where e is the edge joining the crack tip and x1 and n = (n1, n2) is (one of) the normal
vector to e. Denote by C the truncated sector determined by e and the crack:

C = {(r cos θ, r sin θ) : 0 < r < h1 θ0 < θ < π},

when x1 = (h1 cos θ0, h1 sin θ0), see Fig. 6. Now setting e2 = {(h1 cos θ, h1 sin θ) : θ0 < θ <
π}, by Green’s formula we remark that

∫

C
∂1v

(2) dx =

∫

∂C
n1v

(2) ds =

∫

e
n1v

(2) ds +

∫

e2

n1v
(2) ds,

because n1 = 0 on ΓC . Hence
∫

e
n1v

(2) ds =

∫

C
∂1v

(2) dx −
∫

e2

n1v
(2) ds. (26)

7



The first term of this right-hand side will be estimated by a simple Cauchy-Schwarz in-
equality. For the second term by a scaling argument, we show that

∫

e2

|v(2)| ds . h1‖∇v(2)‖B(0,h1). (27)

.

Ω1

Ω2

C
ee2

D

x1
e3

Γ̃C

θ = π

ΓC θ = −π

.

Figure 6: The truncated sector C.

Indeed by construction v(2) satisfies

v(2) = 0 on ΓC .

Therefore the change of variable x = h1x̂ maps B(0, h1) to the unit ball. By setting
v̂(2)(x̂) = v(2)(x), we deduce that

∫

e2

|v(2)| ds ≤
∫

∂B(0,h1)
|v(2)| ds

= h1

∫

∂B(0,1)
|v̂(2)| dŝ

. h1

(∫

B(0,1)
|∇v̂(2)|2 dx̂

) 1

2

.

This last estimate follows from the property

v̂(2)(x̂) = 0 on {(x1, 0) : −1 < x1 < 0},

and the compact embedding of H1(B(0, 1)) into L2(B(0, 1)). Coming back to B(0, h1), we
obtain (27).

Using the estimate (27) into (26) and Cauchy-Schwarz inequality, we have shown that

|
∫

e
n1v

(2) ds| . h1‖∇v(2)‖B(0,h1). (28)

Let us now pass to the estimate of
∫
e n2v

(1)(s) ds: Denote by D the truncated sector
determined by e and the extended crack:

D = {(r cos θ, r sin θ) : 0 < r < h1 0 < θ < θ0},

when we recall that x1 = (h1 cos θ0, h1 sin θ0) (see Fig. 6). As before setting e3 =
{(h1 cos θ, h1 sin θ) : 0 < θ < θ0}, we remark that

∫

D
∂2v

(1) dx =

∫

∂D
n2v

(1) ds =

∫

e
n2v

(1) ds +

∫

e3

n2v
(1) ds,
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because v(1) = 0 on Γ̃C = {(x1, 0) : x1 > 0}, the extension of the crack ΓC to x1 > 0. Hence
∫

e
n2v

(1) ds =

∫

D
∂2v

(1) dx −
∫

e3

n2v
(1) ds. (29)

It suffices to estimate the second term of this right-hand side. Again using a scaling argu-
ment, we show that ∫

e3

|v(1)| ds . h1‖∇v(1)‖B(0,h1). (30)

Indeed by construction v(1) satisfies

v(1) = 0 on Γ̃C .

Therefore the same scaling arguments as before lead to (30).
Using the estimate (30) into (29) and Cauchy-Schwarz inequality, we have shown that

|
∫

e
n2v

(1) ds| . h1‖∇v(1)‖B(0,h1). (31)

The estimates (28) and (31) into the identity (25) lead to the estimate (24) because
h1 ≤ hK . �

Let us go on with the Lamé system and recall that in that case u1
r and u2

r satisfy

σ(u1
r) · n = σ(u2

r) · n = 0 on ΓC . (32)

Since the extension ũ1
r and ũ2

r belong to H2(Ω; R2), they also satisfy the traction free
boundary condition on ΓC , namely

σ(ũ1
r) · n = σ(ũ2

r) · n = 0 on ΓC . (33)

Lemma 4 Assume that x1 ∈ Ω1 is a node belonging to a triangle K containing the crack
tip. Then the estimate (24) holds.

Proof: The proof starts as before with the identity (25).
We notice that by (33) and since n = (0, 1)⊤ on ΓC , v = ũ1

r − ũ2
r satisfies

λ(∂1v1 + ∂2v2) + µ(∂1v2 + ∂2v1) = 0 on ΓC , (34)

(λ + 2µ)∂2v2 + λ∂1v1 = 0 on ΓC , (35)

where v1, v2 are the two components of v, i.e., v = (v1, v2)
⊤. Note that by construction, we

also have v = 0 on Γ̃C and therefore

∂1v1 = ∂1v2 = 0 on Γ̃C . (36)

Since v(1) still satisfies
v(1) = 0 on Γ̃C ,

the arguments of the previous lemma show that (31) is valid.
For the estimate of the term involving v(1), since n1 = 0 on ΓC , as before the identity

(26) holds. To estimate the second term of the right-hand side of (26), we again use a
scaling argument: The change of variable x = h1x̂ maps B(0, h1) to the unit ball and by
setting ŵ(x̂) = ∇v(x), where

∇v =

(
∂1v1 ∂2v1

∂1v2 ∂2v2

)
,

9



we deduce that
∫

e2

|v(2)| ds ≤
∫

∂B(0,h1)
|v(2)| ds

≤
∫

∂B(0,h1)
|∇v| ds

≤ h1

∫

∂B(0,1)
|ŵ| ds.

Now we notice that the conditions (34), (35) and (36) satisfied by v lead to

λ(ŵ11 + ŵ22) + µ(ŵ21 + ŵ12) = 0 on {(x1, 0) : −1 < x1 < 0}, (37)

(λ + 2µ)ŵ22 + λŵ11 = 0 on {(x1, 0) : −1 < x1 < 0}, (38)

ŵ11 = ŵ12 = 0 on {(x1, 0) : 0 < x1 < 1}. (39)

Hence the compact embedding of H1(B(0, 1)) into L2(B(0, 1)) and a contradiction argument
lead to

∫

∂B(0,1)
|ŵ| ds . ‖w‖1,B(0,1) . |w|1,B(0,1).

This last estimate holds since otherwise we would find a vector field v ∈ H1(B(0, 1))2×2

satisfying (37) to (39) such that

|w|1,B(0,1) = 0 and ‖w‖0,B(0,1) = 1.

Such a matrix field does not exist because w would be a constant matrix and by (37) to
(39), it would be zero.

This estimate leads to (27) and we conclude as in the previous Lemma. �

These lemmas allow to treat the non-optimal cases from [12] as follows:

Corollary 1 Let K be a triangle partially enriched and let K∗ = K \ ΓC. Then

‖u − Πhu‖1,K∗ . hK(|ũ1
r |2,B(0,2hK) + |ũ2

r |2,B(0,2hK )). (40)

Proof: It is sufficient to estimate ‖ur − Πhur‖1,K∗ since the singular part of u − Πhu
vanishes. We treat the situation of Fig. 5 (b). Other situations can be treated similarly.
We have

Πhur = u1
r(x1)ϕ1 + u2

r(x2)ϕ2 + ũ2
r(x3)ϕ3 on K2 = K ∩ Ω2,

or equivalently

Πhur = ũ2
r(x1)ϕ1 + u2

r(x2)ϕ2 + ũ2
r(x3)ϕ3 + (u1

r(x1) − ũ2
r(x1))ϕ1 on K2

= Πhũ2
r + (u1

r(x1) − ũ2
r(x1))ϕ1 on K2.

By the triangular inequality, we may write

‖ur − Πhur‖1,K2
≤ ‖u2

r − Πhũ2
r‖1,K2

+ |u1
r(x1) − ũ2

r(x1)|‖ϕ1‖1,K2

. ‖ũ2
r − Πhũ2

r‖1,K + |u1
r(x1) − ũ2

r(x1)|.

By a standard interpolation error estimate and Lemma 3 (or 4), we conclude that

‖ur − Πhur‖1,K2
. hK(|ũ2

r |2,K + |ũ1
r − ũ2

r|2,B(0,hK )).
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For the part on K1 = K ∩ Ω1, we remark that

Πhur = u1
r(x1)ϕ1 + u2

r(x2)ϕ2 + u1
r(x3)ϕ3 on K1

= Πhũ1
r + (ũ1

r(x1) − u2
r(x1))ϕ2 on K2.

And we conclude as before because ũ1
r − u2

r satisfies the same conditions than u1
r − ũ2

r on
ΓC and Γ̃C . �

Corollary 2 Let K be the triangle containing the crack tip. Then

‖u − Πhu‖1,K∗ . hK(|ũ1
r |2,B(0,hK) + |ũ2

r |2,B(0,hK)). (41)

Proof: In this case we have

Πhur = u1
r(x1)ϕ1 + u2

r(x2)ϕ2 + u2
r(x3)ϕ3 on K.

Without loss of generality, we may assume that K has one vertex x1 in Ω1 and the two
other ones x2, x3 in Ω2. In this case on K1 = K ∩ Ω1, we have

‖ur − Πhur‖1,K1
≤ ‖u1

r − Πhũ1
r‖1,K1

+ |u1
r(x2) − ũ1

r(x2)|‖ϕ2‖1,K1
+ |u1

r(x3) − ũ1
r(x3)|‖ϕ3‖1,K1

. |ũ1
r − Πhũ1

r|1,K + ‖u1
r(x2) − ũ1

r(x2)‖ + |u1
r(x3) − ũ1

r(x3)|.

We then conclude as in the previous Corollary. The estimate on K2 = K ∩ Ω2 is treated
similarly. �

As in [12], these two Corollaries and Lemma 2 lead to the global error estimate of
Theorem 1. This analysis is corroborated by the numerical tests also presented in [12]. We
reproduce on Fig. 8 the convergence curves obtained in this paper for the approximation
(13).

These numerical tests were done on a non-cracked domain defined by Ω = [−0.5; 0.5] ×
[−0.5; 0.5] and the crack was the line segment ΓC = [−0.5; 0] × {0}. The cut-off function
χ ∈ C2(Ω) was defined such that

{
χ(r) = 1 if r < r0 = 0.01,
χ(r) = 0 if r > r1 = 0.49,

(42)

and χ was identical to a fifth degree polynomial for r0 ≤ r ≤ r1.
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Figure 7: The reference solution, a mixed mode (from [12]).

The exact solution was a combination of a regular solution to the elasticity problem,
the mode I and the mode II analytical solutions and a higher order mode (for the deformed
configuration, see Fig. 7 with the Von Mises stress). Fig. 8 shows a comparisons of the
convergence curves of the non-enriched classical method, the standard Xfem and the cut-off
strategy. The optimal rate is obtained for both the cut-off enrichment and the standard
Xfem with a fixed enrichment area.
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Figure 8: H1 error with respect to the number of cells in each direction (ns) for a mixed
mode and different enrichment strategies of a P1 elements (from [12]).

Fig. 9 and 10 present some new numerical tests on the comparison between strategies
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(12) and (13) (i.e. between a scalar and a vectorial enrichment) for the same experimental
situation. The discrete space corresponding to the scalar enrichment (13) strictly includes
the one for the vectorial enrichment (12). However, the gain in H1(Ω) norm for the error is
rather small (Fig. 9). Consequently, the vectorial enrichment appears to be a better choice
since the number of additional degrees of freedom is lower and the condition number of the
linear system obtained is better (Fig. 10).
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Figure 9: H1 error with respect to the number of cells in each direction (ns). Comparison
of strategies (12) and (13).
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Figure 10: Condition number of the linear system. Comparison of strategies (12) and (13).
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5 Error estimate on the stress intensity factor

In this section, we show an error estimate between the exact stress intensity factors and
the approximated ones. Let us start with the Laplace equation. Recall that we write

u = ur + K
L
χu

L
,

and that our Galerkin solution uh ∈ Vh solution to (12) admits the splitting

uh = urh + K
L,h

χu
L
,

where urh ∈ Sh, the space Sh being defined by

Sh =



vh =

∑

i∈I

aiϕi +
∑

i∈IH

biHϕi; ai, bi ∈ R



 ,

so that our approximation space Vh is spanned by Sh plus the singular function χu
L
.

Adapting the arguments from Theorem 9.1 of [9] we have the next error estimate:

Theorem 2 Assume that the triangulation is quasi-uniform in the sense that

h . hK ∀K ∈ Th .

Then we have
|K

L
− K

L,h
| . h

1

2 . (43)

Proof: As in Theorem 9.1 of [9], we have

K
L
− K

L,h
= − a((I − Gh)ur, (I − Gh)(χuL))

a((I − Gh)(χu
L
), (I − Gh)(χu

L
))

,

where Ghu is the Galerkin approximation of u on Sh, namely Ghu ∈ Sh is the unique
solution of

a(Ghu, vh) = a(u, vh) ∀vh ∈ Sh.

By Cauchy-Schwarz’s inequality, we deduce that

|K
L
− K

L,h
| ≤ ‖(I − Gh)ur‖1,Ω

‖(I − Gh)(χu
L
)‖1,Ω

, (44)

Since ur belongs to H2(Ω) by Theorem 1, we have

‖(I − Gh)ur‖1,Ω . h|ur|2,Ω, (45)

and it remains to estimate from below the denominator of (44). For that purpose, we need
to adapt the arguments from Lemma 7.1 of [9] because here the triangulation is not aligned
with the crack. The main point is to find a small truncated cone Cρ included into the
triangle K containing the crack tip with ρ equivalent to h. Let us denote by xi, i = 1, 2, 3
the three nodes of K. First we remark that by a scaling argument we have

max
i=1,2,3

|xi| ≥
ρK√

2
max

i=1,2,3
|x̂i − Ô|,

where |xi| is the Euclidean norm of xi, Ô is the pull back of the crack tip O by the affine
transformation FK that sends the standard reference element K̂ to K. Simple calculations
show that

max
i=1,2,3

|x̂i − Ô| ≥ 1

4
,

14



and therefore since the triangulation is regular we have

max
i=1,2,3

|xi| & hK .

We now fix j ∈ {1, 2, 3} such that

|xj| = max
i=1,2,3

|xi| & hK .

Let e1 and e2 be the two edges of K having xj as vertex and denote by γℓ, ℓ = 1, 2, the angle
between eℓ and the segment joining xj to O. Without loss of generality we may assume
that γ1 ≥ γ2, and therefore

γ1 ≥ α0

2
,

where α0 ∈ (0, π
3 ) is the minimal angle of all triangles of Th (equivalent to the regularity

of the mesh thanks to Zlamal’s result [39]).

.

O

K

l

xjγ1

m

β
α K1

e1

e2

ΓC

ρ

.

Figure 11: Sub-triangle K1.

We now consider the sub-triangle K1 of K of vertices O,xj,m, where m is the mid-point
of the edge e1. Denote that α and β the angle of K1 at O and m respectively (see Fig. 11).
Now if 2l is the length of the edge e1, by the sinus formula, we notice that

sin α

sin β
=

l

|xj |
∼ 1.

This property and the fact that

2α0 ≤α + β = π − γ1 ≤ π − α0

2
,

leads to the existence of a minimal angle α1 > 0 (independent of h) such that

α > α1.

Denoting by ρ the distance from O to m, again by the sinus formula, we have

ρ =
sin γ1

sinα
l ∼ hK ,

due to the previous property and the fact that α ≤ α + β ≤ π − α0

2 .
We now denote by θO the angle of the half-line containing the segment joining O to xj

and consider the truncated cone:

Cρ = {(r cos θ, r sin θ) : 0 < r < ρ θO < θ < θO + α1}.
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By construction, Cρ is included into K, and degenerates only in the radial direction. Indeed,
by setting C = {(s cos θ, s sin θ) : 0 < s < 1 0 < θ < α1} we can introduce the change of
variables

F : C → Cρ : (s, ω) → (ρs, θO + ω).

Then for every wh ∈ V h we see that

‖χu
L
− wh‖1,Ω ≥ ‖u

L
− wh‖1,Cρ & |u

L
◦ F − wh ◦ F |1,C .

Since wh ◦ F belongs to P1(C), we deduce that

‖χu
L
− wh‖1,Ω & |(I − P )(u

L
◦ F )|1,C ,

where P is the projection on P1(C) with respect to the inner product of H1(C)/P0(C).
Since

u
L
(r, θ) = r

1

2 sin
θ

2
,

we have

u
L
◦ F (s, ω) = ρ

1

2 s
1

2 sin(
θO + ω

2
)

= ρ
1

2 (sin
θO

2
SD(s, ω) + cos

θO

2
SN (s, ω)),

where we have set

SN (s, ω) = s
1

2 sin
ω

2
and SD(s, ω) = s

1

2 cos
ω

2
.

With these notations, we have

(I − P )(u
L
◦ F ) = ρ

1

2 (sin
θO

2
(I − P )SD + cos

θO

2
(I − P )SN ),

and therefore

‖χu
L
− wh‖1,Ω & ρ

1

2 | sin θO

2
(I − P )SD + cos

θO

2
(I − P )SN |1,C .

If we can show that

| sin θO

2
(I − P )SD + cos

θO

2
(I − P )SN |1,C & 1, (46)

then
‖χu

L
− wh‖1,Ω & ρ

1

2 & h
1

2 . (47)

This estimate with (45) in (44) then lead to the conclusion.
It remains to prove (46). For that purpose, we introduce the function g from [−π

2 , π
2 ]

into R defined by
g(γ) = | sin γ(I − P )SD + cos γ(I − P )SN |21,C .

We first notice that g(γ) > 0 for all γ ∈ [−π
2 , π

2 ] simply because sin γSD + cos γSN is not a
polynomial. Moreover, g is clearly continuous. Therefore

min
γ∈[−π

2
, π
2
]
g(γ) = g(γ0) > 0,

for some γ0 ∈ [−π
2 , π

2 ]. The main point is that this minimum is now independent of θO and
therefore the estimate (46) is proved, and the Theorem follows. �
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In the same manner for the Lamé system approximated by (12) we recall that

u = ur + K
I
χu

I
+ K

II
χu

II
,

and that our Galerkin solution uh ∈ Vh admits the splitting

uh = urh + K
I,h

χu
I
+ K

II,h
χu

II

where urh ∈ (Sh)2.
As before, we can prove the

Theorem 3 Assume that the triangulation is quasi-uniform in the sense that

h . hK ∀K ∈ Th .

Then we have
|K

I
− K

I,h
| + |K

II
− K

II,h
| . h

1

2 . (48)

Proof: Following [9], we introduce

V h
I = (Sh)2 ⊕ Span {χu

II
} and V h

II = (Sh)2 ⊕ Span {χu
I
},

and denote by GI,hu and GII,hu the Galerkin approximation of u on V h
I and V h

II respectively.
By Theorem 9.1 of [9] we know that

K
I
− K

I,h
= − a((I − GI,h)ur, (I − GI,h)(χu

I
))

a((I − GI,h)(χu
I
), (I − GI,h)(χu

I
))

,

K
II

− K
II,h

= − a((I − GII,h)ur, (I − GII,h)(χu
II

))

a((I − GII,h)(χu
II

), (I − GII,h)(χu
II

))
.

Therefore by Cauchy-Schwarz’s and Korn’s inequalities, we have

|K
I
− K

I,h
| .

‖(I − GI,h)ur‖1,Ω

‖(I − GI,h)(χu
I
)‖1,Ω

,

|K
II

− K
II,h

| .
‖(I − GI,h)ur‖1,Ω

‖(I − GI,h)(χu
II

)‖1,Ω
.

The remainder of the proof is the same as the one of the previous Theorem. �
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Figure 12: Numerical convergence of stress intensity factors with respect to the mesh pa-
rameter h.

Let us now present some numerical experiments obtained on the Lamé system with the
same reference solution as the one on Fig. 7. The implementation of the discrete problem
(12) uses Getfem++, the freely available C++ finite element library developed by our team
(see [30]). The two stress intensity factors have the same value. The approximation of the
stress intensity factor given by K

I,h
and K

II,h
in (12) is presented on Fig. 12. Different

values of the radiuses r0 and r1 corresponding to the definition of the cut-off function (11) are
tested in order to show the crucial influence of the shape of the cut-off function. The optimal
rate of convergence is reached in the two cases (r0, r1) = (0.01, 0.4) and (r0, r1) = (0.01, 0.2).
The sharper is the cut-off function, the worst is the approximation of the stress intensity
factors. In the case (r0, r1) = (0.2, 0.4), the optimal rate of convergence is not reached in
the range of values of h studied.

This convergence rate is lower than the one obtained by J-integral and interaction
integral (see [18, 28] for the principle and [33, 34, 25] for some numerical tests). Such
methods require a postprocessing but are superconvergent, for instance in [25] the order of
convergence numerically observed for a P1 finite element method is close to O(h2). However,
the advantage of the coefficients K

I,h
and K

II,h
of (12) is that they are directly given by

the approximation without any postprocessing. Moreover, there is no particular difficulty
when the crack tip is near a boundary of the domain.

6 Optimal error estimate for the standard Xfem

We give now an a priori error estimate for the standard Xfem with a fixed enrichment area.
In the original method proposed in [28] the enrichment with the asymptotic displacement at
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the crack tip is done only on the element containing the crack tip. The rate of convergence
of this method is the same than the one without the enrichment (i.e. O(

√
h), see [31, 25])

since the area of enrichment tends to vanish when the mesh parameter decreases. Of course,
this rate of convergence is not difficult to establish. Instead, we prove here an optimal error
estimate for the strategy introduced independently in [25] and [3] and called “Xfem with a
fixed enrichment area” in the first reference and “Xfem with geometrical enrichment” in the
second one and consisting in an enrichment area for the asymptotic displacement whose
size is independent of the mesh parameter. The approximation of the Laplace equation
with this method reads as





Find uh ∈ V h such that a(uh, vh) = l(vh) ∀vh ∈ V h,

a(uh, vh) =

∫

Ω
∇uh.∇vhdx,

l(vh) =

∫

Ω
fvhdx +

∫

ΓN

gvh dΓ,

V h =



vh =

∑

i∈I

aiϕi +
∑

i∈IH

biHϕi +
∑

i∈IF

ciϕiF1; ai, bi, ci ∈ R



 ,

(49)

and the one of the Lamé system is:





Find uh ∈ V h such that a(uh, vh) = l(vh) ∀vh ∈ V h,

a(uh, vh) =

∫

Ω
σ(uh) : ε(vh) dx,

l(vh) =

∫

Ω
f.vhdx +

∫

ΓN

g.vh dΓ,

σ(uh) = λtrε(uh)I + 2µε(uh),

V h =



vh =

∑

i∈I

aiϕi +
∑

i∈IH

biHϕi +
∑

i∈IF

4∑

j=1

ci,jϕiFj ; ai, bi, ci,j ∈ R
2



 .

(50)

where IF is the set of finite element nodes which are inside a disk centered on the crack
tip and of a fixed radius r2 independent of the mesh parameter. Let us prove now the
optimality of this method.

Theorem 4 Assume that the displacement field u, solution to Problem (1) (resp. Problem
(2)) , satisfies Condition (3). Then, the following estimate holds

‖u − uh‖1,Ω . h(‖u − us‖2,Ω + ‖us‖1,Ω + ‖us‖2,Ω\B(x∗,
r2
2

)), (51)

where uh is the solution to Problem (49) (resp. to Problem (50)).

Proof: Let χ be a W 2,∞ cut-off function satisfying (11) such that r1 < r2 and r0 >
r2

2
.

Let
χh = Ihχ,

be the interpolate of χ on the P1 finite element method. Using the notation of Section 4,
the following interpolation operator

Πh
Su = Ihur + χhus,
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clearly satisfies Πh
Su ∈ V h for V h defined by (49) (resp. by (50)) at least for h sufficiently

small since r1 < r2. Then,

‖Πhu − Πh
Su‖1,Ω = ‖(χ − χh)us‖1,Ω

≤ ‖(χ − χh)‖W 1,∞‖us‖1,Ω

. h‖χ‖W 2,∞‖us‖1,Ω,

using a classical error estimate on the interpolation of χ with a P1 finite element method
(see for instance [20]). Thus, using the estimates established in section 4, one has

‖u − Πh
Su‖1,Ω ≤ ‖u − Πhu‖1,Ω + ‖Πhu − Πh

Su‖1,Ω

. h‖u − χus‖2,Ω + h‖us‖1,Ω

. h(‖u − us‖2,Ω + ‖1 − χ‖W 2,∞‖us‖1,Ω + ‖us‖2,Ω\B(x∗,
r2
2

))

Which ends the proof thanks to Céa’s lemma. �

Note that this optimal convergence was observed in the numerical results presented on
Fig. 8. An interpretation of the proof of Theorem 4 is that the standard Xfem is probably
more optimal than the Xfem with a cut-off function because the cut-off function used in the
proof is arbitrary. As a consequence, the error bound of the standard Xfem is less than the
infimum taken on all the W 2,∞ cut-off functions satisfying (11). This is also corroborated
with the result on Fig. 8. Of course, the standard Xfem is more expensive than the Xfem
with a cut-off function since the number of enrichment degrees of freedom can be greatly
higher.

Concluding remarks

In this paper we have obtained new advances in the analysis of Xfem methods. First, in
contrast with [12] we provide optimal a priori error estimates. We also provide an a priori
error estimate on the standard Xfem with fixed enrichment area which shows the optimality
of this method. As far as we know, this is the first result of this kind for this method. An
error estimate on the estimation of the stress intensity factors computed by the variant
which uses a cut-off function is also established. We prove that the convergence order is
O(h1/2) which is confirmed by numerical experiments. This order is rather low compared to
the one obtained with the J-integral (see [18, 33, 34, 28, 25]). However, it permits to have
a first estimate without post-treatment of the solution. The numerical experiments show
that the quality of the approximated stress intensity factors are very sensitive to the shape
of the cut-off function. This suggest to investigate in the future the variant with a pointwise
matching [25] or an integral matching [15, 11] which avoid the use of a cut-off function.
Another interesting perspective is the generalization to 3D cracks where the computation
of the stress intensity factors is more complex. It should be interesting to see if a variant
with an integral matching or a cut-off function could be successfully adapted.
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[26] J.M. Melenk and I. Babuška. The partition of unity finite element method: Basic
theory and applications. Comput. Meths. Appl. Mech. Engrg., 139:289–314, 1996.
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