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On the connection between two quasilinear elliptic problems with source terms of order 0 or 1

We establish a precise connection between two elliptic quasilinear problems with Dirichlet data in a bounded domain of R N . The first one, of the form

involves a source gradient term with natural growth, where β is nonnegative, λ > 0, f (x) ≧ 0, and α is a nonnegative measure. The second one, of the form

presents a source term of order 0, where g is nondecreasing, and µ is a nonnegative measure. Here β and g can present an asymptote. The correlation gives new results of existence, nonexistence, regularity and multiplicity of the solutions for the two problems, without or with measures. New informations on the extremal solutions are given when g is superlinear.

Introduction

Let Ω be a smooth bounded domain in R N (N ≧ 2) and 1 < p ≦ N . In this paper we compare two quasilinear Dirichlet problems.

The first one presents a source gradient term with a natural growth:

-∆ p u = β(u) |∇u| p + λf (x) in Ω, u = 0 on ∂Ω, (PUλ) 
where β ∈ C 0 ([0, L)), L ≦ ∞, and β is nonnegative, β ≡ 0.

(1.1)

and λ > 0 is a given real, and f ∈ L 1 (Ω), f ≧ 0 a.e. in Ω.

The function β can have an asymptote at point L, and is not supposed to be increasing. For some results we suppose that f belongs to suitable spaces L r (Ω), r > 1.

The second problem involves a source term of order 0, with the same λ and f :

-∆ p v = λf (x)(1 + g(v)) p-1 in Ω, v = 0 on ∂Ω. (PVλ) 
where g ∈ C 1 ([0, Λ)), Λ ≦ ∞, g(0) = 0 and g is nondecreasing, g ≡ 0.

(

Here also g can have an asymptote. In some cases where Λ = ∞,we make a growth condition on g of the form

M Q = lim sup τ -→∞ g(τ ) p-1 τ Q < ∞ (1.3)
for some Q > 0, and setting p * = N p/(N -p), discuss according to the position of Q with respect to p -1 and

Q 1 = N (p -1) N -p , Q * = p * -1 = N (p -1) + p N -p , (Q 1 = Q * = ∞ if p = N ).
Problem (PUλ) has been studied by many authors. Among them, let us mention the results of [START_REF] Boccardo | Résultats d'existence pour certains problèmes elliptiques quasilinéaires[END_REF], [START_REF] Boccardo | Bounded and unbounded solutions for a class of quasi-linear elliptic problems with a quadratic gradient term[END_REF] for the case p = 2, [START_REF] Ferone | Quasilinear problems having aquadratic growth in the gradient: an existence result when the source term is small[END_REF], [START_REF] Ferone | Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small[END_REF] for general quasilinear operators, when β is defined on R, not necessarily positive, but bounded. Problem (PUλ) has been studied in [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF] for p = 2 and more general β, defined on [0, ∞), such that lim t→∞ β(t) > 0, see also many references therein. For general p > 1, the problem has been investigated in [START_REF] Porretta | Nonlinear equations with natural growth terms and measure data[END_REF] in the absorption case where β(t) ≦ 0 with measure data, and in [START_REF] Porretta | Nonlinear elliptic equations having a gradient term with natural growth[END_REF] with a signed β, with strong growth assumptions on |β|.

Problem (PVλ) is also the object of a very rich litterature for Λ = ∞, especially when g is superlinear, and convex, p = 2, and f ∈ L ∞ (Ω). Here a main question is to give the range of λ for which there exists at least one variational solution v ∈ W 1,p 0 (Ω), or for which there exists a minimal bounded solution, and to get regularity properties of the limit of these solutions, called extremal solutions. For p = 2, the case of the exponential g(v) = e v -1 or of a power g(v) = v q has been studied first, see [START_REF] Crandall | Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems[END_REF], [START_REF] Mignot | Sur une classe de problèmes non linéaires avec nonlinéarité positive, croissante, convexe[END_REF], and the general case was investigated in [START_REF] Brezis | Blow-up for u t -∆u = g(u) revisited[END_REF], [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF]. The regularity L ∞ (Ω) of the extremal solutions is also intensively discussed in many works, see [START_REF] Cabre | Extremal solutions and instantaneous complete blow-up for elliptic and parabolic problems[END_REF] and references therein. Extensions to general p, are given in [START_REF] Garcia Azorero | Some results about the existence of a second positive solution in a quasilinear critical problem[END_REF], [START_REF] Azorero | Quasilinear problems with exponential growth in the reaction term[END_REF], [START_REF] Ferrero | On the solutions of quasilinear elliptic equations with a polynomial-type reaction term[END_REF], [START_REF] Cabre | Extremal solutions and instantaneous complete blow-up for elliptic and parabolic problems[END_REF] and [START_REF] Cabre | Semi-stable and extremal solutions of reaction equations involving the p-Laplacian[END_REF], [START_REF] Cabre | Regularity of radial minimizers of rection equations involving the p-Laplacian[END_REF]. A second question is the existence of a second solution when g is subcritical with respect to the Sobolev exponent. It has been obtained for power-type nonlinearities of type concave-convex, see [START_REF] Ambrosetti | Combined effects of concave and convex nonlinearity in some elliptic problems[END_REF], [START_REF] Azorero | Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations[END_REF], and [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF] for general convex function g and p = 2, and some results are given in [START_REF] Ferrero | On the solutions of quasilinear elliptic equations with a polynomial-type reaction term[END_REF] for a power and p > 1.

It is well known that a suitable change of variables problem (PUλ) leads formally to problem (PVλ), at least when L = ∞. Suppose for example that β is a constant, that we can fix to p -1 :

-∆ p u = (p -1) |∇u| p + λf (x) in Ω, u = 0 on ∂Ω.

(1.4)

Setting v = e u -1 leads formally to the problem

-∆ p v = λf (x)(1 + v) p-1 in Ω, v = 0 on ∂Ω. (1.5) 
and we can return from v to u by u = ln(1 + v). However an example, due to [START_REF] Ferone | Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small[END_REF], shows that the correspondence is more complex: assuming f = 0 and Ω = B(0, 1), p < N, equation 1.4 admits the solution u 0 ≡ 0, corresponding to v 0 ≡ 0; but it has also an infinity of solutions:

u m (x) = ln (1 -m) -1 (|x| -(N -p)/(p-1) -m ), (1.6) defined for any m ∈ (0, 1), and v m = e um -1 satisfies

-∆ p v m = K m,N δ 0 in D ′ (Ω) ,
where δ 0 is the Dirac mass concentrated at 0, and K m,N > 0, thus v m ∈ W 1,p 0 (Ω). Observe that u m ∈ W 1,p 0 (Ω) and it solves problem (1.4) in D ′ (Ω). Indeed the logarithmic singularity at 0 is not seen in D ′ (Ω) .

In the case of a general β, the change of unknown in (PUλ) v(x) = Ψ(u(x)) = u(x) 0 e γ(θ)/(p-1) dθ, where γ(t)

= t 0 β(θ)dθ, (1.7) 
leads formally to problem (PVλ), where Λ = Ψ(L) and g is given by g(v) = e γ(Ψ -1 (v))/(p-1) -1 = 1 p -1 v 0 β(Ψ(s))ds.

(1.8)

It is apparently less used the converse correspondence, even in the case p = 2 : for any function g satisfying (1.2), the change of unknown

u(x) = H(v(x)) = v(x) 0 ds 1 + g(s)
(1.9) leads formally to problem (PUλ), where β satisfies (1.1) with L = H(Λ); indeed H = Ψ -1 . And β is linked to g by relation (1.8), in other words

β(u) = (p -1)g ′ (v) = (p -1)g ′ (Ψ(u)).
(1.10)

As a consequence, β is nondecreasing if and only if g is convex. Also the interval [0, L) of definition of β is finite if and only if 1/(1 + g) ∈ L 1 (0, Λ) . Some particular β correspond to well known equations in v, where the main interesting ones are

-∆ p v = λf e v , -∆ p v = λf (1 + v) Q , Q > p -1,
where β has an asymptote, or

-∆ p v = λf (1 + v) Q , Q < p -1, -∆ p v = λf (1 + v)(1 + ln(1 + v)) p-1 ,
where β is defined on [0, ∞) .

Our aim is to precise the connection between problems (PUλ) and problem (PVλ), with possible measure data. As we see below, it allows to obtain new existence or nonexistence or multiplicity results, not only for problem (PUλ) but also for problem (PVλ).

In Section 2, we recall the notions of renormalized or reachable solutions, of problem

-∆ p U = µ in Ω, U = 0 on ∂Ω,
when µ is a measure in Ω. We give new regularity results when µ = F ∈ L m (Ω) for some m > 1, see Lemma 2.13, or local estimates when F ∈ L 1 loc (Ω), see Lemma 2.16, or when F depends on U, see Proposition 2.14.

In Section 3 we prove the following correlation theorem between u and v. We denote by M b (Ω) the set of bounded Radon measures, M s (Ω) the subset of measures concentrated on a set of pcapacity 0, called singular; and M + b (Ω) and M + s (Ω) are the subsets on nonnegative ones.

Theorem 1.1 (i) Let g be any function satisfying (1.2). Let v be any renormalized solution of problem

-∆ p v = λf (x)(1 + g(v)) p-1 + µ s in Ω, v = 0 on ∂Ω, (1.11) 
such that 0 ≦ v(x) < Λ a.e. in Ω, where µ s ∈ M + s (Ω). Then there exists α s ∈ M + s (Ω) , such that u = H(v) is a renormalized solution of problem -∆ p u = β(u) |∇u| p + λf (x) + α s in Ω, u = 0 on ∂Ω, (1.12)

Moreover if µ s = 0, then α s = 0. If Λ < ∞, then µ s = α s = 0 and u, v ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) . If L < ∞ = Λ, then α s = 0 and u ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) . If L = ∞ = Λ and g is unbounded, then α s = 0; if g is bounded, then α s = (1 + g(∞)) 1-p µ s .

(ii) Let β be any function satisfying (1.1). Let u be any renormalized solution of problem (1.12), such that 0 ≦ u(x) < L a.e. in Ω, where α s ∈ M + s (Ω). Then there exists µ ∈ M + (Ω), such that v = Ψ(u) is a reachable solution of problem

-∆ p v = λf (x)(1 + g(v)) p-1 + µ in Ω, v = 0 on ∂Ω; (1.13)
hence the equation holds in D ′ (Ω)) and more precisely, for any h ∈ W 1,∞ (R) such that h ′ has a compact support, and any ϕ ∈ D(Ω),

Ω |∇v| p-2 ∇v.∇(h(v)ϕ)dx = Ω h(v)ϕλf (x)(1 + g(v)) p-1 dx + h(∞) Ω ϕdµ. (1.14) 
Moreover if L < ∞, then α s = 0 and u ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) . If Λ < ∞, then α s = µ = 0 and u, v ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) . If L = ∞ and β ∈ L 1 ((0, ∞)), then α s = 0; if β ∈ L 1 ((0, ∞)), then µ = e γ(∞) α s is singular, and v is a renormalized solution. If p = 2, or p = N, then in any case µ is singular.

This theorem precises and extends the results of [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF]Theorems 4.2 and 4.3] where p = 2 and β is defined on [0, ∞) and bounded from below near ∞. The proofs are different, based on the equations satisfied by the truncations of u and v. The fact that α s = 0 whenever β ∈ L 1 ((0, ∞)) also improves some results of [START_REF] Porretta | Nonlinear equations with natural growth terms and measure data[END_REF]. In all the sequel we assume f ≡ 0.

In Section 4 we study the case β constant, which means g linear. The existence is linked to an eigenvalue problem with the weight f, -∆ p w = λf (x) |w| p-2 w in Ω, w = 0 on ∂Ω, (1.15) hence to the first eigenvalue

λ 1 (f ) = inf ( Ω |∇w| p dx)/( Ω f |w| p dx) : w ∈ W 1,p 0 (Ω)\ {0} . (1.16)
Theorem 1.2 Assume that β(u) ≡ p -1, or equivalently g(v) = v.

(i) If 0 < λ < λ 1 (f ) there exists a unique solution v 0 ∈ W 1,p 0 (Ω) to (1.5), and then a unique solution u 0 ∈ W 1,p 0 (Ω) to (1.4) such that e u 0 -

1 ∈ W 1,p 0 (Ω). If f ∈ L N/p (Ω), then u 0 , v 0 ∈ L k (Ω) for any k > 1. If f ∈ L r (Ω), r > N/p, then u 0 and v 0 ∈ L ∞ (Ω). Moreover, if f ∈ L r (Ω), r > N/p, then for any measure µ s ∈ M + s (Ω), there exists a renormalized solution v s of -∆ p v s = λf (x)(1 + v s ) p-1 + µ s in Ω, v s = 0 on ∂Ω; (1.17)
thus there exists an infinity of solutions (1.5) and (1.17) admit no renormalized solution.

u s = ln(1 + v s ) ∈ W 1,p 0 (Ω) of (1.4), less regular than u 0 . (ii) If λ > λ 1 (f ) ≧ 0, or λ = λ 1 (f ) > 0 and f ∈ L N/p (Ω), p < N, then (1.4),
In Section 5 we study the existence of solutions of the problem (PVλ) for general g without measures. It is easy to show that the set of λ for which there exists a solution in W 1,p 0 (Ω) is an interval [0, λ * ) and the set of λ for which there exists a minimal solution

v λ ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) such that v λ L ∞ (Ω) < Λ is an interval [0, λ b ) .
The first important question is to know if λ b = λ * . One of the main results of this article is the extension of the well-known result of [START_REF] Brezis | Blow-up for u t -∆u = g(u) revisited[END_REF] relative to the case p = 2, improving also a result of [START_REF] Cabre | Semi-stable and extremal solutions of reaction equations involving the p-Laplacian[END_REF] for p > 1.

Theorem 1.3 Assume that g satisfies (1.2) and g is convex near Λ, and f ∈ L r (Ω) , r > N/p. There exists a real λ * > 0 such that if λ ∈ (0, λ * ) there exists a minimal bounded solution v λ such v λ L ∞ (Ω) < Λ.

if λ > λ * there exists no renormalized solution. In particular it holds λ b = λ * .

Thus for λ > λ * , not only there cannot exist variational solutions but also there cannot exist renormalized solutions, which is new for p = 2. It is noteworthy that the proof uses problem (PUλ) and is based on Theorem 1.1. A more general result is given at Theorem 5.8.

When Λ = ∞ and λ b < ∞, a second question is the regularity of the extremal function defined by v * = lim λրλ b v λ . Is it a solution of the limit problem, and in what sense? Is it variational, is it bounded? Under convexity assumptions we extend some results of [START_REF] Nedev | Regularity of the extremal solution of semilinear elliptic equations[END_REF] , [START_REF] Sanchon | Regularity of the extremal solutions of some Nonlinear elliptic problems[END_REF] and [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF]:

Theorem 1.4 Assume that g satisfies (1.2) with Λ = ∞ and lim t-→∞ g(t)/t = ∞, and g is convex near ∞; and f ∈ L r (Ω) , r > N/p. Then the extremal function v * = lim λրλ * v λ is a renormalized solution of (PVλ * ). Moreover (i) If N < p(1 + p ′ )/(1 + p ′ /r), then v * ∈ W 1,p 0 (Ω). If N < pp ′ /(1 + 1/(p -1)r), then v * ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) . (ii) If (1.3) holds with Q < Q 1 , and f ∈ L r (Ω) with Qr ′ < Q 1 , or if (1.3) holds with Q < Q * , and f ∈ L r (Ω) with (Q + 1)r ′ < p * . , then v * ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) .
The proof follows from Theorem 5.25, Propositions 5.27, 5.31 and 5.33. Without assumption of convexity on g, we obtain local results, see Theorem 5.17, based on regularity results of [START_REF] Bidaut-Véron | Nonexistence results and estimates for some nonlinear elliptic problems[END_REF] and Harnack inequality.

When Λ = ∞ another question is the multiplicity of the variational solutions when g is subcritical with respect to the Sobolev exponent. We prove the existence of at least two variational solutions in the following cases: Theorem 1.5 Suppose that g is defined on [0, ∞) , and lim t-→∞ g(t)/t = ∞, and that growth condition (1.3) holds with Q < Q * , and f ∈ L r (Ω) with (Q + 1)r ′ < p * . Then (i) if g is convex near ∞, there exists λ 0 > 0 such that for any λ < λ 0 , there exists at least two solutions v ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) of (PVλ). (ii) If p = 2 and g is convex, or if g satisfies the Ambrosetti-Rabinowitz condition (5.15) and f ∈ L ∞ (Ω), then for any λ ∈ [0, λ * ) there exists at least two solutions

v ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) of (PVλ).
This result is new even for p = 2, improving results of [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF] where the constraints on g are stronger, and simplifying the proofs. In case p > 1 and g is of power-type, it solves the conjecture of [START_REF] Ferrero | On the solutions of quasilinear elliptic equations with a polynomial-type reaction term[END_REF] that λ 0 = λ * .

In Section 6 we study the existence for problem (PVλ) with measures, which requires a stronger growth assumption: (1.3) with Q < Q 1 : Theorem 1.6 Suppose that g is defined on [0, ∞) , and f ∈ L r (Ω) with r > N/p. Let µ ∈ M + b (Ω) be arbitrary.

(i) Assume (1.3) with Q = p -1 and M p-1 λ < λ 1 (f ), or with Q < p -1 and Qr ′ < Q 1 . Then problem -∆ p v = λf (x)(1 + g(v)) p-1 + µ in Ω, v = 0 on ∂Ω, admits a renormalized solution. (ii) Assume (1.3) with Q ∈ (p -1, Q 1 ) and Qr ′ < Q 1 .
The same result is true if λ and |µ| (Ω) are small enough.

More generally we give existence results for problems where the unknown U may be signed, of the form

-∆ p U = λh(x, U ) + µ in Ω, U = 0 on ∂Ω, where µ ∈ M b (Ω), and |h(x, U )| ≦ f (x)(1 + |U | Q ),
precising and improving the results announced in [START_REF] Grenon | Existence results for semilinear elliptic equations with small measure data[END_REF], see Theorem 6.2.

In Section 7, we return to problem (PUλ) for general β, and give existence, regularity, uniqueness or multiplicity results using Theorem 1.1 and the results of Sections 5 and 6.

We also analyse the meaning of the growth assumptions (1.3) for the function g in terms of β. It was conjectured that if β satisfying (1.1) with L = ∞, and is nondecreasing with lim t-→∞ β (t) = ∞, the function g satisfies the growth condition (1.3) for any Q > p -1. We show that the conjecture is not true, and give sufficient conditions implying (1.3).

Finally we give some extensions where the function f can also depend on u, or for problems with different powers of the gradient term.

Notions of solutions 2.1 Renormalized solutions

We refer to [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF] for the main definitions, properties of regularity and existence of renormalized solutions. For any measure µ ∈ M b (Ω) the positive part and the negative part of µ are denoted by µ + and µ -. The measure µ admits a unique decomposition

µ = µ 0 + µ s , with µ 0 ∈ M 0 (Ω) and µ s = µ + s -µ - s ∈ M s (Ω), (2.1) 
where M 0 (Ω) is the subset of measures such that µ(B) = 0 for every Borel set B ⊆ Ω with cap p (B, Ω) = 0. If µ ≧ 0, then µ 0 ≧ 0 and µ s ≧ 0. And any measure µ ∈ M b (Ω) belongs to M 0 (Ω) if and only if it belongs to L 1 (Ω) + W -1,p ′ (Ω).

For any k > 0 and s ∈ R, we define the truncation

T k (s) = max(-k, min(k, s)).
If U is measurable and finite a.e. in Ω, and T k (U ) belongs to W 1,p 0 (Ω) for every k > 0; we can define the gradient ∇U a.e. in Ω by

∇T k (U ) = ∇U.χ {|U |≦k} for any k > 0.
Then U has a unique cap p -quasi continuous representative; in the sequel U will be identified to this representant. Next we recall two definitions of renormalized solutions among four equivalent ones given in [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]. The second one is mainly interesting, because it makes explicit the equation solved by the truncations T k (U ) in the sense of distributions.

Definition 2.1 Let µ = µ 0 + µ + s -µ - s ∈ M b (Ω). A function U is a renormalized solution of problem -∆ p U = µ in Ω, U = 0 on ∂Ω. (2.2)
if U is measurable and finite a.e. in Ω, such that T k (U ) belongs to W 1,p 0 (Ω) for any k > 0, and |∇U | p-1 ∈L τ (Ω), for any τ ∈ [1, N/(N -1)) , and one of the two (equivalent) conditions holds:

(i) For any h ∈ W 1,∞ (R) such that h ′ has a compact support, and any ϕ ∈ W 1,s (Ω) for some s > N, such that h(U )ϕ ∈ W 1,p 0 (Ω),

Ω |∇U | p-2 ∇U.∇(h(U )ϕ)dx = Ω h(U )ϕdµ 0 + h(∞) Ω ϕdµ + s -h(-∞) Ω ϕdµ - s . (2.3) (ii) For any k > 0, there exist α k , β k ∈ M 0 (Ω) ∩ M + b (Ω)
, concentrated on the sets {U = k} and {U = -k} respectively, converging in the narrow topology to µ + s , µ - s such that for any

ψ ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω), Ω |∇T k (U )| p-2 ∇T k (U ).∇ψdx = {|U |<k} ψdµ 0 + Ω ψdα k - Ω ψdβ k . (2.4)
that means, equivalently

-∆ p (T k (U )) = µ 0,k + α k -β k in D ′ (Ω) (2.5)
where µ 0,k = µ 0 {|U |<k} is the restriction of µ 0 to the set {|U | < k}.

Corresponding notions of local renormalized solutions are studied in [START_REF] Bidaut-Véron | Removable singularities and existence for a quasilinear equation[END_REF]. The following properties are well-known in case p < N, see [START_REF] Benilan | An L 1 theory of existence uniqueness of nonlinear elliptic equations[END_REF], [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF] and more delicate in case p = N, see [START_REF] Dolzmann | Uniqueness and maximal regularity for nonlinear elliptic systems of n-Laplace type with measure valued right hand side[END_REF] and [START_REF] Kilpeläinen | Maximal regularity via reverse Hölder inequalities for elliptic systems of n-Laplace type involving measures[END_REF], where they require more regularity on the domain, namely, R N \Ω is geometrically dense:

K N (Ω) = inf r -N |B(x, r)\Ω| : x ∈ R N \Ω, r > 0 > 0.
Proposition 2.2 Let 1 < p ≦ N, and µ ∈ M b (Ω). Let U be a renormalized solution of problem (2.2). If p < N, then for every k > 0, 1) .

|{|U | ≧ k}| ≦ C(N, p)k -(p-1)N/(N -p) (|µ| (Ω)) N/(N -p) , |{|∇U | ≧ k}| ≦ C(N, p)k -N (p-1)/(N -1) (|µ| (Ω)) N/(N -
If p = N, then U ∈ BM O, and

|{|∇U | ≧ k}| ≦ C(N, K N (Ω))k -N (|µ| (Ω)) N/(N -1) .
Remark 2.3 As a consequence, if p < N, then for any σ ∈ (0, N/(N -p) and τ ∈ (0, N/(N -1)) ,

( Ω |U | (p-1)σ dx) 1/σ ≦ C(N, p, σ) |Ω| 1/σ-(N -p)/N |µ| (Ω), (2.6) 
(

Ω |∇U | (p-1)τ dx) 1/τ ≦ C(N, p, τ ) |Ω| 1/τ -(N -1)/N |µ| (Ω), (2.7) 
If p = N, then σ > 0 is arbitrary, and the constant also depends on K Ω . If p > 2 -1/N, then U ∈ W 1,q 0 (Ω) for every q < (p -1)N/(N -1).

Remark 2.4 Uniqueness of the solutions of (2.2) is still an open problem, when p = 2, N and µ ∈ M 0 (Ω); see the recent results of [START_REF] Trudinger | Quasilinear elliptic equations with signed measure data[END_REF], [START_REF] Maeda | Renormalized solutions o Dirichlet problems for quasilinear elliptic equations with general measure data[END_REF].

Otherwise, let U ∈ W 1,p 0 (Ω), such that -∆ p U = µ in D ′ (Ω) . Then µ ∈ W -1,p ′ (Ω), hence µ ∈ M 0 (Ω), and U is an renormalized solution of (2.2).

Remark 2.5 Let U be any renormalized solution of (2.2), where µ is given by (2.1).

(i) If U ≧ 0 a.e. in Ω, then the singular part µ s ≧ 0, see [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]Definition 2.21]. This was also called Inverse Maximum Principle" in [START_REF] Petita | New properties of p-Laplacian measure[END_REF]. More generally, if u ≧ A a.e. in Ω for some real A, there still holds µ s ≧ 0. Indeed u -A is a local renormalized solution, and it follows from [9, Theorem 2.2].

(ii

) If U ∈ L ∞ (Ω), then U = T U L ∞ (Ω) (U ) ∈ W 1,p 0 (Ω), thus µ s = 0 and µ = µ 0 ∈ M 0 (Ω) ∩ W -1,p ′ (Ω). As a consequence, if L < ∞, any solution u of (PUλ) is in W 1,p 0 (Ω); if Λ < ∞, any solution of (PVλ) is in W 1,p 0 (Ω).
Many of our proofs are based on convergence results of [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]. Let us recall their main theorem:

Theorem 2.6 ([25]) Let µ = µ 0 + µ + s -µ - s , with µ 0 = F -div g ∈ M 0 (Ω), µ + s , µ - s ∈ M + s (Ω). Let µ n = F n -div g n + ρ n -η n , with F n ∈ L 1 (Ω), g n ∈ (L p ′ (Ω)) N , ρ n , η n ∈ M + b (Ω).
Assume that (F n ) converges to F weakly in L 1 (Ω), (g n ) converges to g strongly in (L p ′ (Ω)) N and (div g n ) is bounded in M b (Ω), and (ρ n ) converges to µ + s and (η n ) converges to µ - s in the narrow topology. Let U n be a renormalized solution of

-∆ p U n = µ n in Ω, U n = 0 on ∂Ω.
Then there exists a subsequence (U ν ) converging a.e. in Ω to a renormalized solution U of problem

-∆ p U = µ in Ω, U = 0 on ∂Ω.
And (T k (U ν )) converges to T k (U ) strongly in W 1,p 0 (Ω).

Reachable solutions

A weaker notion of solution will be used in the sequel, developped in [24, Theorems 1.1 and 1.2]:

Definition 2.7 Let µ ∈ M b (Ω). A function U is a reachable solution of problem (2.
2) if it satisfies one of the (equivalent) conditions: (i) There exists ϕ n ∈ D(Ω) and U n ∈ W 1,p 0 (Ω), such that -∆ p U n = ϕ n in W -1,p ′ (Ω), such that (ϕ n ) converges to µ weakly* in M b (Ω), and (U n ) converges to U a.e. in Ω.

(ii) U is measurable and finite a.e. in Ω, such that T k (U ) belongs to W 1,p 0 (Ω) for any k > 0, and there exists M > 0 such that Ω |∇T k (U )| p dx ≦ M (k + 1) for any k > 0, and |∇U | p-1 ∈L 1 (Ω), and

-∆ p U = µ in D ′ (Ω) .
(2.8)

(iii) U is measurable and finite a.e., such that T k (U ) belongs to W 1,p 0 (Ω) for any k > 0, and there exists µ 0 ∈ M 0 (Ω) and µ 1 , µ 2 ∈ M + b (Ω), such that µ = µ 0 + µ 1 -µ 2 and for any h ∈ W 1,∞ (R) such that h ′ has a compact support, and any ϕ ∈ D(Ω),

Ω |∇U | p-2 ∇U.∇(h(U )ϕ)dx = Ω h(U )ϕdµ 0 + h(∞) Ω ϕdµ 1 -h(-∞) Ω ϕdµ 2 .
(2.9) 

Remark
-∆ p (T k (U )) = µ 0,k = µ 0 {|U |<k} +α k -β k in D ′ (Ω).
Obviously, any renormalized solution is a reachable solution. The notions coincide for p = 2 and p = N.

2.3 Second member in L 1 (Ω).

In the sequel we often deal with the case where the second member is in L 1 (Ω). Then the notion of renormalized solution coincides with the notions of reachable solution, and entropy solution introduced in [START_REF] Benilan | An L 1 theory of existence uniqueness of nonlinear elliptic equations[END_REF], and SOLA solution given in [START_REF] Dall'aglio | Approximate solutions with L 1 data. Application to the H-convergence of parabolic quasi-linear equations[END_REF], see also [START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF].

Definition 2.9 We call W (Ω) the space of functions U such that there exists F ∈ L 1 (Ω) such that U is a renormalized solution of problem

-∆ p U = F in Ω, U = 0 on ∂Ω.
Then U is unique, we set U = G(F ).

(2.10)

In the same way we call W loc (Ω) the space of fuctions U such that there exists

F ∈ L 1 loc (Ω) such that U is a local renormalized solution of equation -∆ p U = F in Ω.
Remark 2.10 From uniqueness, the Comparison Principle holds:

If

U 1 and U 2 ∈ W(Ω) and -∆ p U 1 ≧ -∆ p U 2 a.e. in Ω, then U 1 ≧ U 2 a.e. in Ω.
Remark 2.11 Theorem 2.6 implies in particular: If (F n ) converges to F weakly in L 1 (Ω), and U n = G(F n ), then there exists a subsequence (U ν ) converging a.e. to some function U, such that U = G(F ).

More regularity results

All the proofs of this paragraph are given in the Appendix. First we deduce a weak form of the Picone inequality: Lemma 2.12 Let U ∈ W 1,p 0 (Ω), and V ∈ W (Ω), such that U ≧ 0 and -∆ p V ≧ 0 a.e. in Ω, and

V ≡ 0. Then U p (-∆ p V )/V p-1 ∈ L 1 (Ω) and Ω |∇U | p dx ≧ Ω U p V 1-p (-∆ p V )dx.
(2.11)

Next we prove a regularity Lemma, giving estimates of u and its gradient in optimal L k spaces, available for any renormalized solution. It improves the results of [START_REF] Boccardo | Nonlinear elliptic and parabolic equations involving measure data[END_REF], [START_REF] Grenon | L r estimates for degenerate elliptic problems[END_REF], [START_REF] Alvino | Existence results for nonlinear elliptic equations with degenerate coercivity[END_REF], [START_REF] Cabre | Semi-stable and extremal solutions of reaction equations involving the p-Laplacian[END_REF] and extends the estimates of the gradient given in [START_REF] Kinnunen | A local estimate for nonlinear equations with discontinuous coefficients[END_REF], [START_REF] Kinnunen | A boundary estimate for nonlinear equations with discontinuous coefficients[END_REF] for solutions U ∈ W 1,p 0 (Ω). Estimates in Marcinkiewicz or Lorentz spaces are given in [START_REF] Kilpeläinen | Estimates for p-Poisson equations[END_REF], [START_REF] Alvino | Estimates for the gradient of solutions of nonlinear elliptic equations with L 1 data[END_REF].

Lemma 2.13 Let 1 < p ≦ N. Let U = G(F ) be the renormalized solution of problem -∆ p U = F in Ω, U = 0 on ∂Ω.
(2.12)

with F ∈ L m (Ω), 1 < m < N. Set m = N p/(N p -N + p). (i) If m > N/p, then U ∈ L ∞ (Ω). (ii) If m = N/p, then U ∈ L k (Ω) for any k ≧ 1. (iii) If m < N/p, then U p-1 ∈ L k (Ω) for k = N m/(N -pm). (iv) |∇U | (p-1) ∈ L k (Ω) for k = N m/(N -m). In particular if m ≦ m, then U ∈ W 1,p 0 (Ω).
Using this Lemma, we get regularity results under growth conditions, extending well known results in case p = 2, f ≡ 1:

Proposition 2.14 Let 1 < p ≦ N. Let U = G(h) where h ∈ L 1 (Ω), and |h(x| ≦ f (x)(|U | Q + 1)
a.e. in Ω,

with f ∈ L r (Ω), r > 1 and Q > 0. If p < N ; then (i) If Q ≧ p -1 and Qr ′ < Q 1 (hence r > N/p), then U ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω). (ii) If Q > p -1 and Qr ′ = Q 1 and |U | p-1 ∈ L σ (Ω) for some σ > N/(N -p), then U ∈ W 1,p 0 (Ω) and U ∈ L k (Ω) for any k ≧ 1. (iii) If Q ≧ p -1 and if U ∈ W 1,p 0 (Ω), and (Q + 1)r ′ < p * , then U ∈ L ∞ (Ω); if (Q + 1)r ′ = p * , then U ∈ L k (Ω) for any k ≧ 1. (iv) If Q < p -1 and r > N/p, then U ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω). (v) If Q < p -1 and r = N/p, then U ∈ W 1,p 0 (Ω) and U ∈ L k (Ω) for any k ≧ 1. (vi) If Q < p -1 and r < N/p and Qr ′ < Q 1 , then U k ∈ L 1 (Ω) for any k < d = N r(p -1 - Q)/(N -pr). Either (Q + 1)r ′ < p * and then U ∈ W 1,p 0 (Ω), or (Q + 1)r ′ ≧ p * , then |∇U | t ∈ L 1 (Ω) for any t < θ = N r(p -1 -Q)/(N -(Q + 1)r). If p = N, then U ∈ W 1,N 0 (Ω) ∩ L ∞ (Ω)
, and |∇U | N (N -1)m/(N -m) ∈ L 1 (Ω) for any m < min(r, N ).

Remark 2.15 It may happen that U ∈ W 1,p 0 (Ω) for Q ≧ p -1, and condition (ii) is quite sharp: let p = 2 and Ω = B(0, 1); there exists a positive radial function U ∈ L N/(N -2) (Ω) such that 2) in Ω, U = 0 on ∂Ω, and lim

-∆U = U N/(N -
x→0 |x| N -2 |ln |x|| (N -2)/2 U (x) = c N ,
where c N > 0, see [61].

Then U ∈ L σ (Ω) for σ > N/(N -2), hence U ∈ W 1,2 0 (Ω). It satisfies the equation -∆U = f U Q with Q = N/(N -2), f ≡ 1, and also with Q = 1, f = U 2/(N -2) ∈ L N/2 (Ω).
Next we we prove local estimates of the second member F when F ∈ L 1 loc (Ω) and F ≧ 0,. following an idea of [START_REF] Bidaut-Véron | Nonexistence results and estimates for some nonlinear elliptic problems[END_REF]:

Lemma 2.16 Let U ∈ W loc (Ω) such that -∆ p U = F ≧ 0 a.e.
in Ω. For any x 0 ∈ Ω and any ball B(x 0 , 4ρ) ⊂ Ω, and any σ ∈ (0, N/(N -p)) , there exists a constant C = C(N, p, σ), such that

B(x 0 ,ρ) F dx ≤ Cρ N (1-1/σ)-p B(x 0 ,2ρ) U (p-1)σ dx 1/σ .
(2.13)

If U ∈ W 1,p loc (Ω), there exists a constant C = C(N, p) such that B(x 0 ,ρ) F dx ≦ Cρ N -p inf ess B(x 0 ,ρ) U p-1 . (2.14)
Finally we mention a result of [START_REF] Ponce | [END_REF], which is a direct consequence of the Maximum Principle when p = 2, but is not straightforward for p = 2, since no Comparison Principle is known for measures:

Lemma 2.17 Let h be a Caratheodory function from Ω × [0, ∞) into [0, ∞) . Let µ s ∈ M + s (Ω)
and u be a renormalized nonnegative solution of .16) 3 Correlation between the two problems 3.1 The pointwise change of unknowns (i) Let β satisfy (1.1). Let for any t ∈ [0, L)

-∆ p U = h(x, U ) + µ s in Ω, U = 0 on ∂Ω. (2.15) Suppose that sup t∈[0,u(x)] h(x, t) = F (x) ∈ L 1 (Ω). Then there exists a renormalized nonnegative solution V of -∆ p V = h(x, V ) in Ω, V = 0 on ∂Ω. ( 2 
Ψ(t) = t 0 e γ(θ)/(p-1) dθ, γ(t) = t 0 β(θ)dθ; then Ψ([0, L)) = [0, Λ) , Λ = Ψ(L) ≦ ∞, and the function τ ∈ [0, Λ) → g(τ ) = e γ(Ψ -1 (τ ))/(p-1) -1 = 1 p -1 τ 0 β(Ψ -1 (s))ds (3.1)
satisfies (5.10) and Ψ -1 = H, where

H(τ ) = τ 0 ds 1 + g(s) . (3.2) (ii) Conversely let g satisfying (5.10), then H([0, Λ)) = [0, L), L = H(Λ), and the function t ∈ [0, L) → β(t) = (p -1)g ′ (H -1 (t)) satisfies (1.1)
, and H = Ψ -1 : indeed

H(τ ) = τ 0 ds 1 + g(s) = τ 0 e -γ(Ψ -1 (s))/(p-1) ds = Ψ -1 (τ ) 0 e -γ(θ))/(p-1) Ψ ′ (θ)dθ = Ψ -1 (τ ).
Then β and g are linked by the relations, at any point τ = Ψ(t),

β(t) = (p -1)g ′ (τ ), 1 + g(τ ) = e γ(t)/(p-1) . (3.3)
In particular β is nondecreasing if and only if g is convex.

Remark 3.1 One easily gets the following properties:

L = ∞ =⇒ Λ = ∞; L < ∞ ⇐⇒ 1/(1 + g(s)) ∈ L 1 ((0, Λ)) ; Λ < ∞ ⇐⇒ e γ(t)/(p-1) ∈ L 1 ((0, L)) ; γ(L) < ∞ ⇐⇒ β ∈ L 1 ((0, L)) ⇐⇒ g bounded; lim t→L β(t) > 0 =⇒ lim t→Λ g(s)/s > 0; lim t-→L β(t) = ∞ =⇒ lim s-→Λ g(s)/s = ∞, and conversely if β is nondecreasing near L. If Λ < ∞, then lim v-→Λ g(v) = ∞ if β(u) ∈ L 1 ((0, L)); lim v-→Λ g(v) = e γ(L)/(p-1) -1 if β(u) ∈ L 1 ((0, L)).
Notice that the correlation between g and β is not monotone; we only have: if

g ′ 1 ≦ g ′ 2 , then β 1 ≦ β 2 . Also it is not symmetric between u and v : we always have u ≦ v; moreover ∇u = ∇v/(1 + g(v)), thus u can be expected more regular than v when lim v-→Λ g(v) = ∞. Remark 3.2 (i) If u is a renormalized solution of (1.12), then by definition β(u) |∇ u| p ∈ L 1 (Ω); if v is a renormalized solution of (1.11), then f (1 + g(v)) p-1 ∈ L 1 (Ω). (ii)) For any v ∈ W 1,p 0 (Ω), then u = H(v) ∈ W 1,p 0 (Ω). (iii) If L = ∞ and lim t→∞ β(t) > 0, and u is a renormalized solution of (1.12), then u ∈ W 1,p 0 (Ω); indeed β(t) ≧ m > 0 for t ≧ K 0 > 0, thus Ω |∇ u| p dx = {u≧K 0 } |∇ u| p dx + {u≦K 0 } |∇ u| p dx ≦ 1 m Ω β(u) |∇ u| p dx + Ω |∇ T K 0 (u)| p dx.

Examples

Here we give examples, where the correlation can be given (quite) explicitely, giving good models for linking the behaviour of β near L and g near Λ. The computation is easier by starting from a given function g and computing u from (1.9) and then β by (1.10). The examples show how the correlation is sensitive with respect to β : a small perturbation on β can imply a very strong perturbation on g. Examples 1, 2, 5, 6 are remarkable, since they lead to very well known equations in v. Example 10 is a model of a new type of problems in v, presenting a singularity, which can be qualified as quenching problem. The arrow ↔ indicates the formal link between the two problems.

1 • ) Cases where β is defined on [0, ∞) ( L = ∞ = Λ).
1) β constant, g linear:

Let β(u) = p -1, g(v) = v, u = ln(1 + v), -∆ p u = (p -1) |∇u| p + λf (x) ↔ -∆ p v = λf (x)(1 + v) p-1 .
2) g of power type and sublinear:

Let 0 < Q < p -1; setting α = Q/(p -1) < 1, and β(u) = (p -1)α/(1 + (1 -α)u), we find (1 + g(v)) p-1 = (1 + v) Q ; and (1 -α)u = (1 + v) 1-α -1 : -∆ p u = (p -1)α 1 + (1 -α)u |∇u| p + λf (x) ↔ -∆ p v = λf (x)(1 + v) Q ;
here g is concave and unbounded, thus β is nonincreasing, and

β(u) ∼ C/u near ∞, thus β ∈ L 1 ((0, ∞)) .
3) β of power type, g of logarithmic type. m+1) , with C = (m + 1) m/(m+1) . Indeed integrating by parts

Let β(u) = (p -1)u m , m > 0, then g(v) ∼ Cv(ln v)) m/(
u 1 s -(m+1) e s m+1 /(m+1) ds, we find that v ∼ u -m e u m+1 /(m+1) near ∞, then ln v ∼ u m+1 /(m + 1). Conversely let 1 + g(v) = (1 + Cv)(1 + ln(1 + Cv)) m/(m+1) , m > 0, C > 0, then Cu = (m + 1)((1 + ln(1 + v)) 1/(m+1) -1), and β(u) = (p -1)C((1 + Cu/(m + 1)) m + m/(m + 1 + Cu)), then β(u) ∼ Ku m near ∞, with K = (p -1)C m+1 (m + 1) -m .
4) β of exponential type, g of logarithmic type.

If β(u) = (p -1)e u , then g(v) ∼ v ln v near ∞. Indeed integrating by parts the integral u 0 e -s e e s ds we get v ∼ e e u -u-1 near ∞.

If β(u) = (p-1)(e u +1), we find precisely 1+g(v) = (1+v)(1+ln(1+v)) and u = ln(1+ln(1+v)) :

-∆ p u = (e u + 1) |∇u| p + λf (x) ↔ -∆ p v = λf (x)((1 + v)(1 + ln(1 + v))) p-1 .
If β(u) = (p -1)(e e u +u + e u + 1), we verify that e e+1 v = e e e u -e e and 1 + g

(v) ∼ v ln v ln(ln v)) near ∞. 2 • ) Cases where β has an asymptote (L < ∞ ), but g is defined on [0, ∞) . It is the case where 1/(1 + g(s)) ∈ L 1 ((0, ∞)) .

5) g of power type and superlinear:

Let Q > p-1; setting α = Q/(p-1) > 1, and β(u) = (p-1)α/(1-(α-1)u), with L = 1/(α-1), we find (1 + g(v)) p-1 = (1 + v) Q and (α -1)u = 1 -(1 + v) 1-α : -∆ p u = (p -1)α 1 -(α -1)u |∇u| p + λf (x) ↔ -∆ p v = λf (x)(1 + v) Q .
Another example is the case β(u) = 2(p -1)tgu. with L = π/2, where 1 + g(v) = 1 + v 2 , and u = Arctgv.

6) g of exponential type:

Let β(u) = (p -1)/(1 -u) with L = 1, then 1 + g(v) = e v , and u = 1 -e -v :

-∆ p u = p -1 1 -u |∇u| p + λf (x) ↔ -∆ p v = λf (x)e v .
7) g of logarithmic type:

Let β(u) = (p -1)k/(1 -u) k+1 , k > 0 with L = 1, then we obtain g(v) ∼ kv(ln v)) (k+1)/k near ∞. Conversely, if 1 + g(v) = (1 + kv)(1 + ln(1 + kv)) (k+1)/k , then β(u) = (p -1)(k/(1 -u) k+1 + (k + 1)/(1 -u)), thus β(u) ∼ (p -1)k/(1 -u) k+1 near 1.
Observe that β has a stronger singularity than the one of example 6, but g has a slow growth. 8) g of strong exponential type:

Let β(u) = (1 -u) -1 (1 -(ln(e/(1 -u))) -1 ) with L = 1, then 1 + g(v) = e e v -v-1 , u = 1 -e 1-e v .
Notice that β has a singularity of the same type as the one example 6.

3 • ) Cases where β and g have an asymptote (L < ∞ and Λ < ∞).

9) Let Q > 0. Setting α = Q/(p -1) > 0, and β(u) = (p -1)α/(1 -(α + 1)u), with L = 1/(α + 1), we obtain (1 + g(v)) p-1 = (1 -v) -Q and (α + 1)u = 1 -(1 -v) α+1 : -∆ p u = (p -1)α 1 -(α + 1)u |∇u| p + λf (x) ↔ -∆ p v = λf (x) (1 -v) Q 10) β(u) = (p -1)u/(1 -u 2 ), then 1 + g(v) = 1/ cos v, and u = sin v.

Proof of the correlation Theorem

For proving Theorem 1.1, we cannot use approximations by regular functions, because of to the possible nonuniqueness of the solutions of (2.2) for p = 2, N , see Remark 2.4. Then we use the equations satisfied by the truncations. Such an argument was also used in [START_REF] Malusa | A new proof of the stability of renormalized solutions to elliptic equations with measure data[END_REF] in order to simplify the proofs of [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF]. [START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF], where 0 ≦ u(x) < L a.e. in Ω, and if L < ∞, then α s = 0 from Remark 2.5, and

Remark 3.3 (i) If u is a solution of (1.
u = T L (u) ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω). If v is solution of (1.11) and Λ < ∞, then µ s = 0 and v = T Λ (v) ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω). (ii) If u is a solution of (1.12), the set {u = L} has a p-capacity 0. It folllows from [25, Remark 2.11], if L = ∞, from [25, Proposition 2.1] applied to (u -L) + if L < ∞.
In the same way if v is a solution of (1.11), the set {v = Λ} has a p-capacity 0. Lemma 3.4 Suppose that u is a renormalized solution of (1.12), where 0 ≦ u(x) < L a.e. in Ω, or that v = Ψ(u) is a renormalized solution of (1.11), where 0 ≦ v(x) < Λ a.e. in Ω. For any K > 0, k > 0 there exists α K , µ k ∈ M 0 (Ω) ∩ M + b (Ω) such that the truncations satisfy the equations

-∆ p T K (u) = β(T K (u)) |∇ T K (u)| p + λf χ {u < K} + α K in D ′ (Ω), (3.4) 
-∆ p T k (v) = λf (1 + g(v)) p-1 χ {v<k} + µ k in D ′ (Ω), (3.5) 
and

µ k = (1 + g(k)) p-1 α K , for any k = Ψ(K) > 0. (3.6)
Moreover, if u is a solution of (1.12) then α K converges in the narrow topology to α s as K ր L;

if v is a solution of (1.11) then µ k converges in the narrow topology to µ s as k ր Λ.

Proof. (i) Let v be a renormalized solution of (1.11), and

u = H(v). Then f (1 + g(v)) p-1 ∈ L 1 (Ω). For any k ∈ (0, Λ) , let K = H(k), then T k (v) ∈ W 1,p 0 (Ω), and T K (u) = H (T k (v)) ∈ W 1,p 0 (Ω). Observe that (1 + g(T k (v))) p-1 = e γ(T K (u))
, and ∇T k (v) = e γ(T K (u))/(p-1) ∇T K (u).

(3.7)

Thus ∇v = e γ(u)/(p-1) ∇u, then |∇v| p-1 = e γ(u) |∇u| p-1 a.e. in Ω. From (2.4) (2.5), there exists

µ k ∈ M 0 (Ω) ∩ M + b (Ω), concentrated on {v = k} such that µ k → µ s in the narrow topology as k -→ ∞, and T k (v) satisfies (3.5), that means Ω |∇ T k (v)| p-2 ∇ T k (v).∇ϕ dx = λ {v<k} f (1 + g(v)) p-1 ϕ dx + Ω ϕ dµ k , for any ϕ ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω). For given ψ ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω), taking ϕ = e -γ(T K (u)) ψ, we obtain Ω |∇ T K (u)| p-2 ∇ T K (u).∇ψ dx = Ω β(T K (u)) |∇ T K (u)| p ψ dx + λ {U <k} f ψ dx + 1 (1 + g(k)) p-1 Ω ψdµ k .
In other words, T K (u) satisfies equation (3.4) where α K is given by (3.6). If Λ < ∞, then µ s = 0, and

v = T Λ (v) ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω), and µ k converges to 0 in D ′ (Ω) as k ր Λ, hence weakly * in M b (Ω).And taking ϕ = T k (v), lim kրΛ kµ k (Ω) = lim kրΛ ( Ω |∇T k (v)| p dx - Ω λf (1 + g(v)) p-1 vχ {v<k} dx) = Ω |∇v| p dx - Ω λf (1 + g(v)) p-1 vdx = 0,
thus µ k converges to 0 in the narrow topology. Hence in any case (Λ finite or not), µ k converges to µ s in the narrow topology as k ր Λ.

(ii) Let u be a renormalized solution of (1.12) and v = Ψ(u). Then

β(u)) |∇ u)| p ∈ L 1 (Ω) . For any K ∈ (0, L) , let k = Ψ(K) ∈ (0, Λ) . Then T k (v) = Ψ (T K (u)) ∈ W 1,p 0 (Ω). From (2.4) (2.5), there exists α K ∈ M 0 (Ω) ∩ M + b (Ω)
, concentrated on the set {u = K}, such that α K converges to α s in the narrow topology, as k -→ ∞, and T K (u) satisfies (3.4), that means

Ω |∇T K (u)| p-2 ∇T K (u).∇ψdx = {U <K} β(u) |∇u| p ψdx + {U <K} λf ψdx + Ω ψdα K , (3.8) for any ψ ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω). Taking ψ = e γ(T K (U )) ϕ, with ϕ ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω), Ω |∇T k (v)| p-2 ∇T k (v).∇ϕdx = {U <K} λf e γ(T K (u)) ϕdx + Ω e γ(T K (u)) ϕdα K , = {v<k} λf (1 + g(v)) p-1 ϕdx + (1 + g(k)) p-1 Ω ϕdα K = {v<k} λf (1 + g(v)) p-1 ϕdx + Ω ϕdµ k , (3.9) 
or equivalently (3.5) holds, where µ k is given by (3.6). If L < ∞, then α s = 0 from Remark 2.5, and

u = T L (u) ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω). And T K (u) converges to u strongly in W 1,p 0 (Ω) as K ր L. Then ∆ p T K (u) converges to ∆ p u in W -1,p ′ (Ω), and β(T K (u)) |∇ T K (u)| p converges to β(u)) |∇ u)| p and λf χ {u<K} converges to λf strongly in L 1 (Ω) . Taking ψ = T K (u) in (3.8), it follows that lim KրL Kα K (Ω) = lim KրL ( Ω |∇T K (u)| p dx - Ω β(T K (u)) |∇T K (u)| p dx - {u<K} λf T K (u)dx) = Ω |∇u| p dx - Ω β(u) |∇u| p dx - Ω λf udx = 0,
thus α K converges to 0 in the narrow topology as K ր L. Hence in any case (L finite or not), α K converges to α s in the narrow topology as K ր L.

Proof of Theorem 1.1. (i) Let v be a solution of (1.11), where 0 ≦ v(x) < Λ a.e. in Ω, and u = H(v). Taking ϕ k = 1 -1/(1 + g(T k (s))) p-1 , as a test function in (3.5), we find

{u<K} β(u) |∇ u| p dx = (p -1) {v<k} g ′ (v) |∇ v)| p (1 + g(v)) p dx = λ {v<k} f (1 + g(v)) p-1 ϕ k dx + φ(k) Ω dµ k ≦ λ Ω f (1 + g(v)) p-1 dx + Ω dµ k ≦ C
where C > 0 is independent of k; then β(u) |∇ u| p ∈ L 1 (Ω). And from (3.6), α K converges in the narrow topology to a singular measure α s : either lim k-→∞ g(k) = ∞, equivalently L < ∞ or L = ∞, β ∈ L 1 ((0, ∞)), and then α s = 0; or g is bounded, equivalently L = ∞ and β ∈ L 1 ((0, ∞)) and then

α s = (1 + g(∞)) p-1 µ s . Since T k (u) ∈ W 1,p 0 (Ω)
, it is also a renormalized solution of equation (3.4). From [25, Theorem 3.4] there exists a subsequence converging to a renormalized solution U of

-∆ p U = β(u) |∇ u| p + λf + α s
and T k (u) converges a.e in Ω to u, thus (the quasicontinuous representative of) U is equal to u. Then u is solution of (1.12).

(ii) Let u be a solution of (1.12), where 0 ≦ u(x) < L a.e. in Ω, and v = Ψ(u). Taking ψ = e γ(T K (u)) -1 = (1 + g(T k (v)) p-1 -1 as a test function if (3.4), we get after simplification

Ω β(T K (u)) |∇T K (u)| p dx = {u<K} λf ψdx + Ω ψdα K = {v<k} λf ((1 + g(v)) p-1 -1)dx + ((1 + g(k)) p-1 -1) Ω dα K = {v<k} λf ((1 + g(v)) p-1 -1)dx + µ k (Ω) -α K (Ω). Since β(u) |∇u| p ∈ L 1 (Ω) , then φ = f (1 + g(v)) p-1 ∈ L 1 (Ω)
, and the measures µ k are bounded independently of k. There exists a sequence (k n ) converging to Λ such that (µ kn ) converges weakly * to a measure µ.

Let v n = T kn (v), then (v n ) converges to v = Ψ(u) a.e. in Ω. From [25, Section 5.1] applied to v n = T kn (v), solution of (3.5) for k = k n , |∇v n | p-1 is bounded in L τ (Ω) for any τ < N/(N -1)
, and ∇v n converges to ∇v a.e. in Ω, and |∇v n | p-2 ∇v n converges to |∇v | p-2 ∇v strongly in L τ (Ω) for any τ < N/(N -1). And λf ((1 + g(v)) p-1 χ {v<kn} converges to φ strongly in L 1 (Ω) from the Lebesgue Theorem. Then v satisfies

-∆ p v = φ + µ in D ′ (Ω); (3.10) 
thus µ is uniquely determined, and µ k converges weakly * to µ as k ր Λ. Then v is reachable solution of this equation. Let us set M = φ + µ.

Case p = 2 or p = N. Then from uniqueness, v is a renormalized solution of (3.10). There exists m ∈ M + 0 (Ω) et η s ∈ M + s (Ω) such that M = m + η s , and from the definition of renormalized solution, for any k > 0, there exists η k ∈ M + 0 (Ω) concentrated on the set {v = k} , converging to η s in the narrow topology, and

-∆ p T k (v) = m {v<kn} +η kn in D ′ (Ω),
but we have also

-∆ p T kn (v) = λf (1 + g(v)) p-1 χ {v<kn} + µ kn in D ′ (Ω),
thus η kn = µ kn , and µ = η s , and

-∆ p v = f (1 + g(v)) p-1 + η s in D ′ (Ω);
hence in the renormalized sense; and µ kn converges to η s in the narrow topology.

General case. From [START_REF] Dal Maso | Some properties of reachable solutions of nonlinear elliptic equations with measure data[END_REF], there exists m ∈ M 0 (Ω) and η ∈ M + b (Ω) such that M = m + η, and there exists a sequence (k n ) tending to ∞, such that there exists

M kn ∈ W -1,p ′ (Ω) ∩ M b (Ω) such that -∆ p T kn (v) = M kn in D ′ (Ω), and η kn = M kn {v=kn} ∈ M + 0 (Ω) and M kn = m {v<kn} +η kn ,
and (η kn ) converges weakly* to M ; and for any for any h ∈ W 1,∞ (R) such that h ′ has a compact support, and any ϕ ∈ D(Ω)

Ω |∇v| p-2 ∇v.∇(h(v)ϕ)dx = Ω h(v)ϕdm + h(∞) Ω ϕdη.
But M kn = m {v<kn} +η kn = φχ {v<kn} + µ kn , hence η kn = µ kn and m {v<kn} = φχ {v<kn} , and {v = ∞} is of capacity 0, thus m = φ, and µ = η, thus (1.13)holds. Moreover if Λ < ∞, then L < ∞, and u, v ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω), and µ = α = 0, and u, v are variational solution of (PUλ), and (PVλ). If g is bounded, in particular if L = Λ = ∞ and β ∈ L 1 ((0, ∞)), then µ = e γ(∞) α s , thus µ is singular; and µ k converges in the narrow topology, thus v is a renormalized solution of (1.11). If Λ = ∞ and β ∈ L 1 ((0, ∞)), then α s = 0 from (3.6).

The case β constant, g linear

We begin by the case of problems (1.4) and (1.5), where f ≡ 0, and

β(u) ≡ p -1, or equivalently g(v) = v,
where the eigenvalue λ 1 (f ) defined at (1.16) is involved.

4.1

Some properties of λ 1 (f )

(i) Let f ∈ L 1 (Ω), f ≧ 0, f ≡ 0, such that λ 1 (f ) > 0. Let C > 0.
Then for any ε > 0, there exists

K ε = K ε (ε, p, C) > 0 such that for any v, w ∈ W 1,p 0 (Ω), Ω f (C + |v|) p dx ≦ (1 + ε) Ω f |v| p dx + K ε ≦ 1 + ε λ 1 (f ) ∇v p L p (Ω) + K ε (4.1) Ω f (C + |v|) p-1 |w| dx ≦ Ω f (C + |v|) p dx 1/p ′ Ω f |w| p dx 1/p ≦ 1 λ 1 (f ) 1/p Ω f (C + |v|) p dx 1/p ′ ∇w L p (Ω) . (4.2) Thus f (C + |v|) p-1 ∈ W -1,p ′ (Ω) ∩ L 1 (Ω), in particular f ∈ W -1,p ′ (Ω)
, and with new ε and K ε , [START_REF] Brezis | Blow-up for u t -∆u = g(u) revisited[END_REF], from [START_REF] Lucia | Simplicity of principal eigenvalue for p-Laplace operator with singular indefinite weight[END_REF]. If r > N/p, then φ 1 ∈ L ∞ (Ω), from Proposition 2.14, and φ 1 is locally Hölder continuous, from [START_REF] Cuesta | Eigenvalue problems for the p-Laplacian with indefinite weights[END_REF]. If r = N/p > 1, then φ 1 ∈ L k (Ω) for any k ≧ 1.

f (C + |v|) p-1 W -1,p ′ (Ω) ≦ 1 + ε λ 1 (f ) ∇v p-1 L p (Ω) + K ε . (4.3) (ii) If f ∈ L r (Ω), with r ≧ N/p > 1, or r > 1 = N/p, then λ 1 (f ) > 0, and λ 1 (f ) is attained at some first nonnegative eigenfunction φ 1 ∈ W 1,p 0 (Ω) of problem (1.
(iii) If 0 ∈ Ω, p < N and f (x) = 1/ |x| p , then f ∈ L N/p (Ω), but λ 1 (f ) > 0 from the Hardy inequality, given by λ 1 (f ) = ((N -p)/p) p and λ 1 (f ) is not attained.

Proof of Theorem 1.2

Theorem 1.2 is a consequence of Theorem 1.1 and of the two following results. The first one is relative to the case without measure:

Theorem 4.1 If λ > λ 1 (f ) ≧ 0, or λ = λ 1 (f ) > 0 and f ∈ L N/p (Ω), p < N , then problem -∆ p v = λf (1 + v) p-1 in Ω, v = 0 on ∂Ω. (4.4)
admits no renormalized solution, and problem (1.4) has no solution. If 0 < λ < λ 1 (f ) there exists a unique positive solution v ∈ W 1,p 0 (Ω).

If moreover f ∈ L r (Ω) , r > N/p, then v ∈ L ∞ (Ω). If f ∈ L N/p (Ω), p < N, then v ∈ L k (Ω) for any k > 1.
Proof. by density we obtain that λ ≦ λ 1 (f ). In particular if λ 1 (f ) = 0 there is no solution for λ > 0.

(ii) Assume λ = λ 1 (f ) > 0 and f ∈ L N/p (Ω), p < N . Taking an eigenfunction φ 1 ∈ W 1,p 0 (Ω) as above, we get

Ω |∇φ 1 | p dx = λ 1 (f ) Ω f φ p 1 dx. (4.5)
Consider a sequence of nonnegative functions

ψ n ∈ D(Ω) converging to φ 1 strongly in W 1,p 0 (Ω). Taking ψ p n ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) as a test function, we find (p -1) Ω |∇u| p ψ p n dx + λ 1 (f ) Ω f ψ p-1 n dx = p Ω ψ p-1 n |∇u| p-2 ∇u.∇ψ n dx. (4.6) 
For any function φ ∈ W 1,p 0 (Ω), we set

L(u, φ) := (p -1) |∇u| p φ p + |∇φ| p -pφ p-1 |∇u| p-2 ∇u.∇φ, L 1 (u, φ) := (p -1) |∇u| p φ p + |∇φ| p -pφ p-1 |∇u| p-1 |∇φ| . Thus 0 ≦ L 1 (u, φ) ≦ L(u, φ). From (4.6), Ω L 1 (u, ψ n )dx + λ 1 (f ) Ω f ψ p n dx ≦ Ω L(u, ψ n )dx + λ 1 (f ) Ω f ψ p n dx = Ω |∇ψ n | p dx;
then from the Fatou Lemma applied to a subsequence,

Ω L 1 (u, φ 1 )dx + λ 1 (f ) Ω f φ p 1 dx ≦ Ω L(u, φ 1 )dx + λ 1 (f ) Ω f φ p 1 dx = Ω |∇φ 1 | p dx,
hence from (4.5), we obtain L 1 (u, φ 1 ) = L(u, φ 1 ) = 0 a.e. in Ω. Then

φ 1 |∇u| = (p -1) |∇φ 1 | , and |∇u| p-2 ∇u.∇φ 1 = |∇u| p-1 |∇φ 1 | a.e. in Ω, ∇u = (p -1) ∇φ 1 φ 1 = ∇(ln(φ p-1 1 )) a.e. in Ω; then u = ln(φ p-1 1 ) + k, or φ p-1 1 = e u-k ≧ e -k a.e.
in Ω, which is contradictory.

(iii) Assume that 0 < λ < λ 1 (f ). Then f ∈ W -1,p ′ (Ω) from above, thus v 1 = G(λf ) ∈ W 1,p 0 (Ω) and v 1 ≧ 0, see Remark 2.10, and f (1 + v 1 ) p-1 ∈ W -1,p ′ (Ω). By induction we define v n = G(λf (v n-1 + 1) p-1 ∈ W 1,p 0 (Ω), then -∆ p v n = λf (v n-1 + 1) p-1 in W -1,p ′ (Ω). (4.7)
Taking v n as test function in (4.7), then from (4.1),

Ω |∇v n | p dx = λ Ω f (v n-1 + 1) p-1 v n dx ≦ λ Ω f (v n + 1) p dx ≦ λ(1 + ε) λ 1 (f ) Ω |∇v n | p dx + λK ε .
Taking ε > 0 small enough, it follows that (v n ) is bounded in W 1,p 0 (Ω). The sequence is nondecreasing, thus it converges weakly in W 1,p 0 (Ω), and a.e. in Ω to v = sup v n . For any w ∈ W 1,p 0 (Ω),

f (v n-1 + 1) p-1 w ≦ f (1 + v) p-1 |w| = h and h ∈ L 1 (Ω) from (4.2), thus f (v n-1 + 1) p-1 converges to f (1 + v) p-1 weakly in W -1,p ′ (Ω).
Then v is solution of (4.4), by compacity of (-∆ p ) -1 , see [START_REF] Peral | Multiplicity of solutions for the p-Laplacian[END_REF]. The regularity follows from Proposition 2.14 (iii).

Uniqueness is based on Lemma 2.12. Let v, v ∈ W 1,p 0 (Ω) be two nonnegative solutions. Then v ≡ 0 and v ≡ 0 since

f ≡ 0. Since -∆ p v ∈ W -1,p ′ (Ω) ∩ L 1 (Ω) and (-∆ p v)v ≧ 0, we obtain Ω (-∆ p v)vdx = Ω |∇v| p dx, hence Ω ( -∆ p v v p-1 + ∆ p v vp-1 )v p dx ≧ 0; Ω (- ∆ p v vp-1 + -∆ p v v p-1 )v p-1 dx ≧ 0; (4.8) but Ω ( -∆ p v v p-1 + ∆ p v vp-1 )(v p -vp )dx = λ Ω f ((1 + 1 v ) p-1 -(1 + 1 v ) p-1 )(v p -vp )dx ≦ 0;
then the two integrals in (4.8) are zero, hence

Ω (|∇v| p -p vp-1 v p-1 |∇v| p-2 ∇v.∇v + (p -1) |∇v| p vp v p )dx = 0, thus v = kv for some k > 0. Then f ((1 + kv) p-1 -(k + kv) p-1 ) = 0 a.e. in Ω, thus k = 1.
The second result is valid for measures which are not necessarily singular; it extends [2, Theorem 2.6] relative to p = 2. The proof of a more general result will be given at Theorem 6.2:

Theorem 4.2 If 0 < λ < λ 1 (f ), for any measure µ ∈ M + b (Ω)
, there exists at least one renormalized solution v ≧ 0 of problem

-∆ p v = λf (1 + v) p-1 + µ in Ω, v = 0 on ∂Ω.

Problem (PVλ) without measures

Next we study problem (PVλ) for a general function g.

The range of existence for λ

The existence of solutions of (PVλ) depends on the assumptions on g and f and the value of λ.

We will sometimes make growth assumptions on g of the form (1.3) for some Q > 0 and then our assumptions on f will depend on Q.

We begin by a simple existence result, where g only satisfies (1.2), Λ ≦ ∞, with no growth condition, under a weak assumption on f, satisfied in particular when f ∈ L r (Ω) , r > N/p. Proposition 5.1 Assume (1.2) and G(f ) ∈ L ∞ (Ω). Then for λ > 0 small enough, problem (PVλ) has a minimal bounded solution v λ such that v L ∞ (Ω) < Λ. 1) and λ ≦ λ 0 be fixed. Then

Conversely, if L = H(Λ) < ∞, (in particular if Λ < ∞) and if there exists λ > 0 such (PVλ) has a renormalized solution, then G(f ) ∈ L ∞ (Ω). Proof. Let w = G(f ) ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω). Let a > 0 such that a w L ∞ (Ω) < Λ. Let λ 0 = a((1 + g(a w L ∞ (Ω) ))) -(p-
-∆ p (aw) = af (x) = λ 0 ((1 + g(a w L ∞ (Ω) ))) (p-1) ≧ λ(1 + g(aw)) p-1
since g is nondecreasing. Between the subsolution 0 and the supersolution aw, there exists a minimal solution v λ obtained as the nondecreasing limit of the iterative scheme

v n = G(λf (x)(1 + g(v n-1 )) p-1 ), n ≧ 1.
(5.1)

Then v λ L ∞ (Ω) ≦ a w L ∞ (Ω) < Λ.
Conversely, let v be a solution of (PVλ). Then u = H(v) is a solution of (PUλ) and

L ≧ u ≧ λ 1/(p-1) G(f ) a.e. in Ω, hence G(f ) ∈ L ∞ (Ω). Remark 5.2 The converse result is sharp. Take f = 1/ |x| p with 0 ∈ Ω, then G(f ) ∈ L ∞ (Ω).
Hence if L < ∞ there is no solution of (PVλ) for any λ > 0; for example, there is no solution of problem

-∆ p v = λ |x| p (1 + v) Q in Ω, v = 0 on ∂Ω.
for Q > p -1. Otherwise from Theorem 1.2, for Q = p -1 and 0 < λ < λ 1 (f ), there exists a solution; in that case H(∞) = ∞.

Remark 5.3 When Λ < ∞, and g has an asymptote at Λ, it may exist solutions with v L ∞ (Ω) = Λ.

Consider example 9 of paragraph 3.2 with p = 2 and Ω = B(0, 1).

Here 1 + g(v) = (1 -v) -Q , Q > 0, and 
β(u) = Q(1-(Q+ 1)u). For λ = 2((N -2)Q+ N )/(Q+ 1) 2 , problem (PUλ) admits the solution u = (1 -r 2 )/(Q + 1). Then v = Ψ(u) = 1 -r 2/(Q+1) ∈ W 1,2 0 (Ω), and v L ∞ (Ω) = 1.
The range of λ ≧ 0 for which problem (PVλ) has a solution depends a priori on the regularity of the solutions. We introduce three classes of solutions. In case Λ < ∞ the notion of solution includes the fact that 0 ≦ v(x) < Λ a.e. in Ω. Definition 5.4 (i) Let S r be the set of λ ≧ 0 such that (PVλ) has a renormalized solution v, that means w ∈ W.

(ii) Let S * be the set of λ ≧ 0 such that (PVλ) has a variational solution v, that means v ∈ W 1,p 0 (Ω). (iii) Let S b be the set of λ ≧ 0 such that (PVλ) has a renormalized solution v such that v L ∞ (Ω) < Λ.

Remark 5.5 The sets S r , S * , S b are intervals:

S r = [0, λ r ) , S * = [0, λ * ) , S b = [0, λ b ) with λ b ≦ λ * ≦ λ r ≦ ∞. (5.2)
Indeed if λ 0 belongs to some of these sets, and v λ 0 is a solution of (PVλ 0 ), then v λ 0 is a supersolution of (PVλ) for any λ < λ 0 . Between the subsolution 0 and v λ 0 , there exists a minimal solution of (PVλ), obtained as the nondecreasing limit of the iterative scheme (5.1).

In case Λ = ∞, S b is the set of of λ ≧ 0 such that (PVλ) has a solution v ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω). For any λ < λ b there exists a minimal bounded solution v λ . And λ b ≦ λ * since any renormalized bounded solution is in W 1,p 0 (Ω) from Remark 2.5. In case Λ < ∞, then λ r = λ * , since S r = S * , from Remark 2.5. Moreover λ * < ∞. Indeed any solution v of (PVλ) satisfies λG(f ) ≦ v < Λ a.e. in Ω, and G(f ) ≡ 0.

A main question is to know if λ b = λ * = λ r , as it is the case when g(v) = v, from Theorem 1.2, where λ * = λ 1 (f ) . It was shown when g is defined on [0, ∞) and convex in [START_REF] Brezis | Blow-up for u t -∆u = g(u) revisited[END_REF] for p = 2. The method used was precisely based on the transformation u = H(v), even if problem (PUλ) was not introduced. By using the equations satisfied by truncations as in the proof of Theorem 1.1, we can extend the kea point of the proof:

Theorem 5.6 Let g 1 , g 2 ∈ C 1 ([0, Λ)) be nondecreasing, with 0 < g 2 ≦ g 1 on [0, Λ) . Let v ∈ W (Ω) such that -∆ p v ≧ 0 a.e. in Ω, and 0 ≦ v < Λ a.e. in Ω. Set H 1 (τ ) = τ 0 ds g 1 (s) , H 2 (τ ) = τ 0 ds g 2 (s) , Assume that 0 ≦ g ′ 2 • H -1 2 ≦ g ′ 1 • H -1 1 on [0, H 1 (Λ)) . (5.3 
)

Then v = H -1 2 (H 1 (v)) ∈ W, and v ≦ v, and 
-∆ p v ≧ g 2 (v) g 1 (v) p-1 (-∆ p v) in L 1 (Ω).
(5.4)

Proof. We can assume that g 1 (0) = 1. Let u = H 1 (v), and F = -∆ p v. Applying Theorem 1.1 with g = g 1 -1 and f = F g 1 (v) 1-p ≦ F, the function u is a renormalized solution of

-∆ p u = β 1 (u) |∇u| p + F g 1 (v) 1-p in Ω, u = 0 on ∂Ω, where β 1 (u) = (p -1)g ′ 1 (v) = (p -1)g ′ 1 (H -1 1 (u)). Let v = H -1 2 (u) = (H -1 2 • H 1 )(v) then v ≦ v, because g 2 ≦ g 1 . Moreover g ′ 1 (v) ≧ g ′ 2 (v)
, thus we can write

β 1 (u) |∇u| p = (p -1)g ′ 2 (v) |∇u| p + η = β 2 (u) |∇u| p + η, with η ∈ L 1 (Ω) , η ≧ 0; thus -∆ p u = β 2 (u) |∇u| p + f with f = F g 1 (v) 1-p + η. From Lemma 3.4, the truncations T k (v), T K (u), T k (v) satisfy respectively -∆ p T k (v) = F χ {v≦k} + µ k , -∆ p T K (u) = β 1 (T K (u)) |∇ T K (u)| p + F g 1 (v) 1-p χ {u ≦ K} + α K , -∆ p T k (v) = f g 2 (v) p-1 χ {v≦k} + μk , in D ′ (Ω), where α K = g 1 (v) 1-p µ k , μk = (g 2 (k)/g 1 (k)) p-1 µ k .
As in the proof of Theorem 1.1, we obtain f g 2 (v) p-1 ∈ L 1 (Ω) , and f g 2 (v) p-1 χ {v<k} converges to f g 2 (v) p-1 strongly in L 1 (Ω) . Moreover µ k converges to 0 in the narrow topologyas k → Λ, thus lim µ k (Ω) = 0; and g 2 (k) ≦ g 1 (k), thus lim μk (Ω) = 0, and μk converges to 0 in the narrow topology. Then from Theorem 2.6, v is a renormalized solution of

-∆ p v = f g 2 (v) p-1 in Ω, v = 0 on ∂Ω.
Then -∆ p v ∈ L 1 (Ω), and v satisfies (5.4).

Remark 5.7 Assumption (5.3) is equivalent to the concavity of the function φ = H -1 2 • H 1 ; and (5.4) means that

-∆ p φ(v) ≧ (Φ ′ (v)) p-1 (-∆ p v) in L 1 (Ω) .
If we take any concave function φ this inequality is formal. For the particular choice φ = φ, the inequality is not formal, since no measure appears.

Our main result covers in particular Theorem 1.3. Some convexity assumptions are weakened:

Theorem 5.8 Let g satisfying (1.2), and H be defined by (3.2) on [0, Λ), and f ∈ L 1 (Ω) . In case Λ = ∞, L = H(Λ) = ∞ we suppose f ∈ L r (Ω), r > N/p. Assume that for some λ > 0 there exists a renormalized solution v of

-∆ p v = λf (x)(1 + g(v)) p-1 in Ω, v = 0 on ∂Ω such that 0 ≦ v(x) < Λ a.e. in Ω. (i) Suppose that H × (1 + g) is convex on [0, Λ)
, or that g is convex near Λ. Then for any ε ∈ (0, 1) there exists a bounded solution w, such that w L ∞ (Ω) < Λ of

-∆ p w = λ(1 -ε) p-1 f (x)(1 + g(w)) p-1 in Ω, w = 0 on ∂Ω. (5.5)
In other words, λ b = λ * = λ r .

(ii) Suppose that g is convex on [0, Λ) . Then for any ε ∈ (0, 1) there exists a bounded solution w such that w L ∞ (Ω) < Λ of

-∆ p w = λf (x)(1 + g(w) -ε) p-1 in Ω, w = 0 on ∂Ω. (5.6) 
In particular if λ * < ∞, for any c > 0, there exists no solution of problem

-∆ p v = λ * f (x)(1 + g(v) + c) p-1 in Ω, v = 0 on ∂Ω. (5.7) Proof. (i) First case: L = H(Λ) = Λ 0 ds/(1 + g(s)) < ∞. • First suppose H × (1 + g) convex on [0, Λ) . We take g 1 = 1 + g and g 2 = (1 -ε)g 1 . Then H 2 = H/(1 -ε), H -1 2 (u) = H -1 ((1 -ε)u) = Ψ((1 -ε)u). Condition (5.3) is equivalent to (1 -ε)ug ′ (Ψ((1 -ε) 1/(p-1) u) ≦ ug ′ (Ψ(u))
. In terms of u, it means that the function u -→ uβ(u) is non decreasing; in terms of v it means that H ×g ′ is nondecreasing. This is true when

H × (1 + g) is convex, since (H × (1 + g)) ′ = 1 + H × g ′ . Then from Proposition 5.6, the function v = Ψ((1 -ε)H(v)) satisfies -∆ p v ≧ λ(1 -ε) p-1 f (x)(1 + g(v)) p-1 .
Thus there exists a solution w of (5.5) such that w ≦ v. And v(x) ≦ Ψ((1 -ε)L) < Λ a.e. in Ω, hence w is bounded, and moreover w L ∞ (Ω) < Λ.

• Next suppose g convex on [A, Λ) , with 0 ≦ A < Λ. Let M = 1 + g(A). Taking ε > 0 small enough, we construct a convex nondecreasing function g 1 ∈ C 1 ([0, Λ)) such that g 1 ≧ 1 + g, and

g 1 (s) = M on [0, A -c] , g 1 (s) ≦ M (1 + 2ε) on [0, A + d] , g 1 (s) = 1 + g(s) on [A + d, ∞) ,
with c = 2εM and d ≦ 2εM g ′ (A): we use a portion of circle tangent to the graph of 1 + g and to the line of ordinate M ; in case g ′ (A) = 0 we take g 1 = 1 + g). We set

g 2 = (1 -ε)g 1 . The function v = H -1 2 (H 1 (v)) = Ψ 1 ((1 -ε)H 1 (v)) satisfies -∆ p v ≧ λf (x)F p-1 ε , where F ε = (1 -ε) g 1 (v) g 1 (v) (1 + g(v)), and v ≦ v. On the set {v ≦ v ≦ A + d} , we find M ≦ g 1 (v) and g 1 (v) ≦ M (1 + 2ε), thus F ε ≧ (1 -3ε)(1 + g(v)). On the set {A + d ≦ v ≦ v} , we get g 1 (v) = g 1 (v) = 1 + g(v), thus F ε ≧ (1 -ε)(1 + g(v)). On the set {v ≦ A + d ≦ v} , there holds M ≦ g 1 (v) ≦ M (1 + 2ε) ≦ 1 + g(v), thus again F ε ≧ (1 -ε)(1 + g(v)). Then again -∆ p v ≧ λ(1 -ε) p-1 f (x)(1 + g(v)) p-1
, and we conclude as above by replacing ε by 3ε.

Second case: L = ∞. Here v can be unbounded. Extending [START_REF] Brezis | Blow-up for u t -∆u = g(u) revisited[END_REF], we perform a bootstrapp based on Lemma 2.13. The function H 1 is concave, thus

H 1 (v) -H 1 (v) ≦ (v -v)H ′ 1 (v)) = v - v g 1 (v) ≦ v g 1 (v) (5.8)
and

H 1 (v) = (1 -ε)H 1 (v), hence ε(1 + g(v)) ≦ εg 1 (v) ≦ v/H 1 (v) ≦ C(1 + v) for some C > 0. Then (1 + g(w)) p-1 ∈ L σ (Ω) for any σ ∈ [1, N/(N -p)) . Since f ∈ L r (Ω), r > N/p, from Hölder inequality, there exists m 1 > 1 such that f g(w) p-1 ∈ L m 1 (Ω). If p = N, then v ∈ L ∞ (Ω) from Lemma 2
.13 and we conclude as above. Next assume p < N. We can suppose m 1 < N/p. Setting w 1 = w, w 1 is a solution of (PV(1 -ε) p-1 λ), and -∆ p w 1 ∈ L m 1 (Ω); from Lemma 2.13, w s 1 ∈ L 1 (Ω) with s = (p -1)N m 1 /(N -pm 1 ). Replacing 1 + g by (1 -ε)(1 + g) we construct in the same way a solution w 2 of (PV(1 -ε) 2(p-1) λ) such that g(w 2 ) ≦ C(1 + w 1 )), By induction we construct a solution w n of (PV(1 -ε) n(p-1) λ) such that g(w n ) ≦ C(1 + w n-1 )), thus f g(w n ) p-1 ∈ L mn (Ω), with 1/m n -1/r = 1/m n-1 -p/N . There exists a finite n = n(r, p, N ) such that m n > N/p, thus w n+1 ∈ L ∞ (Ω) from Lemma 2.13. Since ε is arbitrary, we obtain a bounded solution of (5.5).

(ii) Suppose that g is convex on [0, Λ) . We take g 1 = 1 + g and g 2 = g 1 -ε, then (5.3) is satisfied, because g ′ is nondecreasing and H 1 ≦ H 2 . Then we construct a solution w of (5.6), such that w

≦ v = H -1 2 (H 1 (v)).
Here we only find w(x) ≦ v(x) < L a.e. in Ω, by contradiction, but not w L ∞ (Ω) < Λ. As above (5.8) holds. And

H 1 (v) = H 2 (v), hence H 1 (v) -H 1 (v) = ε v 0 ds g 1 (s)(g 1 (s) -ε) ds ≧ ε v 0 ds g 1 (s) 2 ds
Then there exists C > 0 such that H 1 (v) -H 1 (v) ≧ Cε, a.e. on the set {v > 1} , thus g 1 (v) ≦ v/εC(A) on this set. Hence there exists C ε > 0 such that εg 1 (v 1 ) ≦ C ε (1 + v). Replacing g by g -nε, in a finite number of steps as above we find a solution of (5.5), since ε is arbitrary.

Assume that there exists a solution of (5.7) for some c > 0. Then

-∆ p v = λ * (1 + c) p-1 f (x)(1 + g(v)/(1 + c)) p-1 in Ω.
Considering g/(1+c) and ε = c/2(1+c), there exists a bounded solution w such that w

L ∞ (Ω) < Λ, of -∆ p w = λ * f (x)(1 + g(w) + c/2) p-1 in Ω,
We take α > 0 small enough such that α ≦ c/2(1 + g(w) L ∞ (Ω) ). Then w is a supersolution of (PVλ * (1 + α) p-1 ), thus there exists a solution y of this problem such that y L ∞ (Ω) < Λ, which contradicts the definition of λ * .

Cases where g has a slow growth

In the linear case g(v) = v, we have shown that λ * = λ 1 (f ). Next we consider the cases where g has a slow growth, that means g satisfies (1.3) for some Q ∈ (0, Q 1 ) .

First suppose that g is at most linear near ∞ and show a variant of Theorem 4.1:

Corollary 5.9 Assume that Λ = ∞, and g satisfies (1.3) with Q = p -1, that means

0 ≦ M 1/(p-1) p-1 = lim τ -→∞ g(τ ) τ < ∞, (5.9 
)

Then λ * ≧ M p-1 λ 1 (f ) : if M p-1 λ < λ 1 (f ) there exists at least a solution v ∈ W 1,p 0 (Ω) to problem (PVλ); if (1 + g(v))/v is decreasing, the solution is unique. If f ∈ L r (Ω) , r > N/p, any solution satisfies v ∈ L ∞ (Ω), thus λ b = λ * . If f ∈ L N/p (Ω) and p < N, any solution v ∈ L k (Ω) for any k > 1. Proof. Let M > M p-1 such that M λ < λ 1 (f ). There exists A > 0 such that (1 + g(s)) p-1 ≦ M (A + s) p-1 on [0, ∞) . Defining v 1 = G(λf ) ∈ W 1,p
0 (Ω) as in the linear case of Theorem 4.1, and

v n = G(λf (1 + g(v n-1 )) p-1 ) ∈ W 1,p 0 (Ω), we find from (4.3) Ω |∇v n | p dx ≦ λM Ω f (A + v n-1 ) p-1 v n dx ≦ λM (1 + ε) λ 1 (f ) Ω |∇v n | p dx + λK ε ,
with a new K ε > 0, and conclude as in the linear case. Uniqueness follows from Lemma 2.12, and regularity from Proposition 2.14, (iii).

Corollary 5.9 obviously applies to the case where g is sublinear near ∞, that means g satisfies (1.3) with Q < p -1, and shows that if λ 1 (f ) > 0, then λ * = ∞. In fact existence of a renormalized solution can be obtained for some functions f without assuming λ 1 (f ) > 0, as it was observed in [START_REF] Porretta | Nonlinear elliptic equations having a gradient term with natural growth[END_REF]: Proposition 5.10 Assume that p < N, Λ = ∞, and g satisfies (1.3) with Q ∈ (0, p -1) and f ∈ L r (Ω), r ∈ (1, N/p), with Qr ′ < Q 1 .

Then for any λ > 0 there exists a renormalized solution v of (PVλ) such that

v d ∈ L 1 (Ω) for d = N r(p -1 -Q)/(N -pr). In particular λ r = ∞. If (Q + 1)r ′ ≦ p * , then v ∈ W 1,p 0 (Ω), thus λ * = ∞. If (Q + 1)r ′ > p * , then |∇v| θ ∈ L 1 (Ω) for θ = N r(p -1 -Q)/(N -(Q + 1)r). Proof. Let M > 0 such that (1 + g(t)) p-1 ≦ M (1 + t) Q for t ≧ 0. For any fixed n ∈ N, there exists v n ∈ W 1,p 0 (Ω) such that -∆ p v n = λT n (f (x)(1 + g(v n )) p-1 ).
It is obtained for example as the limit of the nondecreasing iterative sheme

v n,k = G(λT n (f (x)(1 + g(v n,k-1 )) p-1 )), k ≧ 1, v n,0 = 0. We take φ β (v n ) as a test function, where φ β (w) = w 0 (1 + |t|) -β dt, for given real β < 1. Setting α = 1 -β/p and w n = (1 + v n ) α -1, we get 1 α p Ω |∇w n | p dx = Ω |∇v n | p (1 + v n ) β dx ≦ (1 -β) -1 λM Ω f (1 + v n ) 1-β+Q dx.
From the Sobolev injection, There exists C > 0 such that

Ω w p * n dx p/p * ≦ C Ω f (1 + w n ) (1-β+Q)/α dx ≦ C f L 1 (Ω) + C f L r (Ω) Ω w (1-β+Q)r ′ /α n dx 1/r ′ Taking β = ((Q + 1)r ′ -p * )/(r ′ -N/(N -p) < 1, we find (1 -β + Q)r ′ /α = p * . Then (w n ) is bounded in W 1,p 0 (Ω), thus (v d n ) is bounded in L 1 (Ω). If (Q + 1)r ′ ≦ p * then β ≦ 0, thus (v n ) is bounded in W 1,p 0 (Ω). If (Q + 1)r ′ > p * , then β > 0,
and

Ω |∇v n | θ dx ≦ Ω |∇v n | p (1 + v n ) β dx 1/θ Ω (1 + v n ) d dx βθ/dp ; thus (|∇v n | θ ) is bounded in L 1 (Ω), where θ < p. Then (f (x)g(v n )) p-1 ) is bounded in L σ (Ω) with σ = rd(rQ + d) > 1.
From Remark 2.11, up to a subsequence, (v n ) converges a.e. in Ω to a renormalized solution of the problem with the same regularity. Remark 5.11 (i)The fact that λ r = ∞ is much more general, as it will be shown at Theorem 6.2. (ii) The regularity of the solution constructed at Proposition 5.10 is a little stronger that the one exspected from Proposition (2.14) (vi). We do not know if any solution of the problem has the same regularity.

Our next result concerns any function g with a slow growth, without assumption of convexity. It is a direct consequence of Proposition 2.14: Proposition 5.12 Assume that Λ = ∞, and g satisfies (

1.3) with Q ∈ [p -1, Q 1 ) and f ∈ L r (Ω) with Qr ′ < Q 1 .
Then any renormalized solution of (PVλ) is in

W 1,p 0 (Ω) ∩ L ∞ (Ω). Thus λ b = λ * = λ r .
Remark 5.13 It holds in particular when p = N, g satisfies (1.3) for some Q ≧ N -1 and f ∈ L r (Ω), r > 1.

Superlinear case: Extremal solutions

In this paragraph we assume for simplicity that g is defined on [0, ∞) .

Definition 5.14 Assume that 0 < λ b ≦ λ * ≦ λ r < ∞. The function v * = sup λրλ b v λ ,
where v λ is the minimal bounded solution of (PVλ) is called extremal.

Remark 5.15 Assume that g is at least linear near ∞ : lim τ -→∞ g(τ )/τ > 0 (it holds in particular when g is convex, g ≡ 0).

(i) Then λ r < ∞. Indeed there exists c > 0 such that 1 + g(τ ) ≧ c(1 + τ ) for any τ ∈ [0, ∞) . If (PVλ) has a solution, then there exists a solution of problem

-∆ p v = λc 1/(p-1) f (x)(1 + v) p-1 in Ω, w = 0 on ∂Ω.
Then λ ≦ c -1/(p-1) λ 1 (f ) from Theorem 4.1.

(ii) The function v * is well defined with values in [0, ∞] as soon as G(f ) < ∞. For simplification, we will assume in the main results that f ∈ L r (Ω) , r > N/p.

Next we study the case g superlinear near ∞ :

g ∈ C 1 ([0, ∞))
, g(0) = 0 and g is nondecreasing, and lim s-→∞ g(s) s = ∞.

(5.10)

Here the first question is to know if v * satisfies the limit problem (PVλ b ) and in what sense.

The case p = 2 was studied in [START_REF] Brezis | Blow-up for u t -∆u = g(u) revisited[END_REF] for g convex, with f = 1. In fact the proof does uses the convexity, and extends to more general f and we recall it below. Lemma 5.16 ([15]) Assume p = 2 and (5.10), f ∈ L r (Ω) , r > N/2. Then v * is a very weak solution of (PVλ b ), that means v * ∈ L 1 (Ω), g(v * ) ∈ L 1 (Ω, ρdx) where ρ is the distance to ∂Ω, and

- Ω v * ∆ζdx = Ω f g(v * )ζdx, ∀ζ ∈ C 2 Ω , ζ = 0 on ∂Ω. (5.11)
Proof. Let λ n ր λ b and v n = v λn ; multiplying the equation relative to v n by a first eigenfunction Φ 1 > 0 of the Laplacian with the weight f, one finds

λ 1 (f ) Ω f v n Φ 1 dx = λ n Ω f (1 + g(v n ))Φ 1 dx;
and the superlinearity of g implies that

Ω f (1 + g(v n ))Φ 1 dx is bounded, thus (f g(v n )) is bounded in L 1 (Ω, ρdx).
Using the test function ϕ = G(1), it implies that (v n ) is bounded in L 1 (Ω) from the Höpf Lemma. Then v * ∈ L 1 (Ω) and satisfies (5.11).

When moreover g is convex, it was proved in [START_REF] Nedev | Regularity of the extremal solution of semilinear elliptic equations[END_REF] that v * is more regular, in particular g(v * ) ∈ L 1 (Ω), by using stability properties of v * . Thus v * is a renormalized solution of (PVλ * ). In case p = 2 there is no notion of very weak solution.

Without convexity

Without convexity we obtain a local result: Proposition 5.17 Assume (5.10) and f ∈ L r (Ω) , r > N/p. Then v * is a local renormalized solution of (PVλ b ). In particular

T k (v * ) ∈ W 1,p loc (Ω) for any k > 0, v * p-1 ∈ L σ loc (Ω), for any σ ∈ [1, N/(N -p)) , and (|∇v * |) p-1 ∈ L τ loc (Ω), for any τ ∈ [1, N/(N -1)) , and 
-∆ p v * = λ * f (1 + g(v * )) p-1 in D ′ (Ω).
For the proof we use the following Lemma:

Lemma 5.18 Assume f ∈ L 1 (Ω), and g satisfies (5.10). Let (λ n ) be a sequence of reals such that limλ n > 0, and

(v n ) be a sequence of renormalized solutions of problem (PVλ n ). Then (f g(v n ) p-1 ) is bounded in L 1 loc (Ω), and 
(v p-1 n ) is bounded in L σ loc (Ω), for any σ ∈ [1, N/(N -p)) .
Proof of Lemma 5.18. From Lemma 2.16, for any x 0 such that B(x 0 , 4ρ) ⊂ Ω, there exists a constant C = C(N, p) such that

λ n B(x 0 ,ρ) f (1 + g(v n )) p-1 dx ≦ Cρ N -p min B(x 0 ,ρ) v p-1 n ≦ Cρ N -p B(x 0 ,ρ) f dx B(x 0 ,ρ) f v n p-1 dx.
Then there exist c = c(N, p, ρ, f, x 0 , limλ n ) > 0 such that

B(x 0 ,ρ) f g(v n ) p-1 dx ≦ c B(x 0 ,ρ) f v n p-1 dx.
From (5.10), there exists A > 0 such that g(t) ≧ (2c) 1/(p-1) t for any t ≧ A, thus

B(x 0 ,ρ) f g(v n ) p-1 dx ≦ c B(x 0 ,ρ) f v n p-1 dx ≦ 2A p-1 c B(x 0 ,ρ) f dx ≦ 2A p-1 c f L 1 (Ω) ,
and the claim is proved. Moreover we deduce that min

B(x 0 ,ρ) v p-1 n ≦ c ′ = c ′ (N, p, ρ, f, g, x 0 );
from the weak Harnack inequality, (v p-1 n ) is bounded in L σ loc (Ω), for any σ ∈ [1, N/(N -p)) . Proof of Proposition 5.17. Let λ n ր λ b , and v n = v λn . From Lemma 5.18, (f g(v n ) p-1 ) is bounded in L 1 loc (Ω), and (v p-1 n ) is bounded in L σ loc (Ω), for any σ ∈ [1, N/(N -p)) . Then from [9, Theorem 3.2], there exists a subsequence converging a.e. in Ω. And (v n ) is nondecreasing thus the whole sequence converges to v * . And g is nondecreasing, thus f g(v * ) p-1 ∈ L 1 loc (Ω) from the Beppo-Levi Theorem, and

(f g(v n ) p-1 ) converges to f g(v * ) p-1 weakly in L 1 loc (Ω); thus (λ n f (x)(1 + g(v n )) p-1 ) converges to λ * f (x)(1 + g(v * )) p-1 weakly in L 1 loc (Ω). From [9, Theorem 3.3], v * is a local renormalized solution of (PVλ b ).
Our next results use the Euler function linked to the problem. From the Maximum Principle, problem (PVλ) is equivalent to

-∆ p v = λf (x)ϕ(v) = λf (x)(1 + g(v + )) p-1 in Ω, v = 0 on ∂Ω. (5.12) 
where

ϕ(t) = (1 + g(t + )) p-1 ; Φ(t) = t 0 ϕ(s)ds = t 0 (1 + g(s + )) p-1 ds, (5.13) 
thus Φ ∈ C 1 (R). For any f ∈ L 1 (Ω) and any v ∈ W 1,p 0 (Ω) such that f Φ(v) ∈ L 1 (Ω), we set J λ (v) = 1 p Ω |∇v| p dx -λ Ω f Φ(v)dx. (5.14) 
In particular the function J λ is defined on W 1,p 0 (Ω)∩L ∞ (Ω). Let us recall some important properties of J λ . Proposition 5.19 ([19]) Assume f ∈ L 1 (Ω) and (1.2). Let λ > 0 such that there exists a supersolution v ∈ W 1,p 0 (Ω) of (PVλ). Then J λ is defined on K v = v ∈ W 1,p 0 (Ω) : 0 ≦ v ≦ v and attains its minimum on K v at some point v which is a solution of (PVλ). In particular if 0 < λ < λ b , then

J λ (v λ ) = min Kv λ J λ (v) ≦ 0. Remark 5.20 In fact J λ (v λ ) < 0. Indeed if J λ (v λ ) = 0, then for any t ∈ (0, 1) , J λ (tv λ ) ≧ 0, thus t p Ω |∇v λ | p dx ≧ pλ Ω f Φ(tv λ )dx ≧ pλt Ω f v λ dx thus f v λ = 0, and f > 0, thus v λ = 0, which is contradictory.
Next we give a global result under the well-known Ambrosetti-Rabinowitz condition on g : Proposition 5.21 Assume (5.10), f ∈ L r (Ω) , r > N/p and lim t→∞ tϕ(t)/Φ(t) = k > p.

(5.15)

Then v * ∈ W 1,p 0 (Ω) and is a variational solution of (PVλ b ).

Proof. Let λ n ր λ b , and v n = v λn . From Proposition 5.19,

J λn (v n ) = 1 p Ω |∇v n | p dx -λ n Ω f Φ(v n )dx ≦ 0
and

Ω |∇v n | p dx = λ n Ω f (1 + g(v n )) p-1 v n dx; (5.16) 
then there exists B > 0 and C > 0 such that

0 ≧ pJ λn (v n ) = λ n Ω f (v n ϕ(v n ) -pΦ(v n ))dx ≧ 1 2 λ n (k -p) {vn≧B} f Φ(v n ))dx -Cλ n thus f Φ(v n ) is bounded in L 1 (Ω)
, and also Ω |∇v n | p dx is bounded; then there exists a subsequence converging weakly in W 1,p 0 (Ω), and necessarily to v * . From Proposition 5.17, v * is a solution of (PVλ b ) in D ′ (Ω), thus in the variational sense.

Remark 5.22 Proposition applies in particular when lim t→∞ tg ′ (t)/g(t) = m > 1. It follows from the L'Hospital rule, since (tϕ(t)) ′ /Φ ′ (t) = 1 + (p -1)tg ′ (t)/(1 + g(t))) for any t > 0. This improves the result of [START_REF] Cabre | Semi-stable and extremal solutions of reaction equations involving the p-Laplacian[END_REF], where moreover it is supposed that g(t) ≦ C(1 + t m ), and extends also the one of [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF].

With convexity

Here we assume that g satisfies is superlinear and convex near ∞. Recall that λ b = λ * = λ r < ∞ from Theorem 5.8 and Remark 5.15. We first define some functions linked to g and give their asymptotic properties. Lemma 5.23 Assume (5.10) with g convex near ∞.Let for any t ≧ 0

j(t) = tg ′ (t) -g(t), J (t) = tϕ(t) -pΦ(t), (5.17) 
h(t) = t 0 g ′ (s)(g ′ (t) -g ′ (s))ds = g(t)g ′ (t) - t 0 g ′2 (s)ds. ( 5.18) 
Then lim t→∞ j(t)/g ′ (t) = ∞, lim t→∞ J (t)/ϕ(t) = ∞. and lim t→∞ h(t)/j(t) = ∞.

Proof. (i) The function j is nondecreasing near ∞, since g is convex near ∞. Thus j has a limit L in (-∞, ∞] . Let us show that L = ∞; indeed if L is finite, then tg ′ (t) ≦ g(t) + |L| + 1 for large t, thus (g(t) + |L| + 1)/t is nonincreasing, which contradicts (5.10). First assume that g ∈ C 2 ((0, ∞)) and g"(t) > 0: from the l'Hospital rule,

lim t→∞ j(t)/g ′ (t) = lim t→∞ j ′ (t)/g ′′ (t) = lim t→∞ t = ∞.
In the general case g is convex for t ≧ A ≧ 0, and lim t→∞ g ′ (t) = ∞; thus for any K > 0, there exists

t K > A + 2K such that g ′ (t) ≧ 2g ′ (A + 2K) for t ≧ t K . Then for t ≧ t K , j(t) = t 0 (g ′ (t) -g ′ (s))ds = A 0 (g ′ (t) -g ′ (s))ds + t A (g ′ (t) -g ′ (s))ds ≧ -g(A) + A+2K A (g ′ (t) -g ′ (s))ds ≧ -g(a) + Kg ′ (t), thus lim t→∞ j(t)/g ′ (t) = ∞. And J ′ (t) = (p -1)(1 + g(t)) p-2 (j(t) -1) = ϕ ′ (t)(j(t) -1)/g ′ (t) (5.19) thus lim t→∞ J ′ (t)/ϕ ′ (t) = ∞; and lim t-→∞ ϕ(t) = ∞, thus lim t→∞ J (t)/ϕ(t) = ∞.
(ii) First assume that g ∈ C 2 ((0, ∞)) and g ′′ (t) > 0. Then h(t) = t 0 g(s)g ′′ (s)ds, and from the l'Hospital rule, lim

t→∞ h(t)/j(t) = lim t→∞ h ′ (t)/tg ′′ (t) = lim t→∞ g(t)/t = ∞.
In the general case, for any C > g ′ (A), there exists A 1 > A > 0 such that g ′ (s) ≧ 2C, for s ≧ A 1 and g ′ (s) ≦ 2C for s ≦ A 1 and there exists B > 5A 1 such that g ′ (t) ≧ 2g ′ (5A 1 ) for t ≧ B. Then denoting

C A = h(A) -Cj(A), for t ≧ B, h(t) -Cj(t) = C A + t A (g ′ (s) -C)(g ′ (t) -g ′ (s))ds ≧ -|C A | -CA 1 (g ′ (t) + 2C) + 5A 1 A 1 (g ′ (s) -C)(g ′ (t) -g ′ (s))ds ≧ -|C A | -CA 1 (g ′ (t) + C) + 2A 1 Cg ′ (t) = -|C A | + CA 1 (g ′ (t) -C) thus lim t→∞ h(t)/j(t) = ∞.
The following result will be used also in next Paragraph. The proof is new, using only the function J . Notice that the proof given in [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF] for p = 2 was not extendable. Proposition 5.24 Assume (5.10) with g convex near ∞, and f ∈ L 1 (Ω). Let (λ n ) be a sequence of positive reals such that limλ n > 0, and (v n ) be a sequence of solutions of (PVλ n ), such that

v n ∈ W 1,p 0 (Ω), f Φ(v n ) ∈ L 1 (Ω), and J λn (v n ) ≦ c ∈ R. Then (∆ p v n ) is bounded in L 1 (Ω).
Proof. The function v n ∈ W 1,p 0 (Ω) still satisfies (5.16), thus

pJ λn (v n ) = λ n Ω f (v n ϕ(v n ) -pΦ(v n ))dx = λ n Ω f J (v n )dx ≦ cp, (5.20) 
where J is defined at (5.17). Then from Lemma 5.23,

Ω f ϕ(v n )dx is bounded, which means that (∆ p v n ) is bounded in L 1 (Ω).
As a consequence, we prove that the extremal solution is a solution of (PVλ * ) in a very simple way:

Corollary 5.25 Assume (5.10) with g convex near ∞, and f ∈ L r (Ω) with r > N/p. Then the extremal solution v * is a renormalized solution of (PVλ * ).

Proof. Let λ n ր λ * , and v n = v λn . Then J λn (v n ) ≦ 0 from Proposition 5.19. From Proposition 5.24, (f g(v n ) p-1 ) is bounded in L 1 (Ω), and

(v p-1 n ) is bounded in L σ (Ω), for any σ ∈ [1, N/(N -p)) .
Then from [9, Theorem 3.2], converges to v * a.e. in Ω, as in Proposition 5.17. From the Beppo-Levi theorem, f g(v * ) p-1 ∈ L 1 (Ω), and

(f g(v n ) p-1 ) converges to f g(v) p-1 weakly in L 1 (Ω); thus (λ n f (x)(1 + g(v n )) p-1 ) converges to λ * f (x)(1 + g(v)) p-1 weakly in L 1 (Ω). From Remark 2.11, v is a renormalized solution of (PVλ * ).
Next we find again this result and get further informations on v * by using stability properties of the minimal bounded solutions. This extend the results of [START_REF] Nedev | Regularity of the extremal solution of semilinear elliptic equations[END_REF] for p = 2 and of [START_REF] Sanchon | Regularity of the extremal solutions of some Nonlinear elliptic problems[END_REF] for p > 2 with f ≡ 1. Here we use the function h defined at (5.18), introduced by [START_REF] Nedev | Regularity of the extremal solution of semilinear elliptic equations[END_REF]. We first extend the definition given in [START_REF] Cabre | Semi-stable and extremal solutions of reaction equations involving the p-Laplacian[END_REF] for functions v ∈ W 1,p 0 (Ω) :

Definition 5.26 A renormalized solution v of problem (PVλ) is called semi-stable if the "second derivative of J λ is nonnegative", in the sense

{∇v =0} |∇v| p-2 ((p -2)( ∇v.∇ψ |∇v| ) 2 + |∇ψ| 2 )dx ≧ (p -1)λ Ω f (1 + g(v)) p-2 g ′ (v)ψ 2 dx, (5.21) 
for any ψ ∈ D(Ω) if p ≧ 2; for any ψ ∈ D(Ω) such that ψ ≦ Cv and |∇ψ| ≦ C |∇v| in Ω for some

C > 0 if p < 2.
The integral on the left-hand side is well defined. Indeed either p > 2 and |∇v| p-1 ∈ L 1 (Ω), or p < 2 and

{∇v =0} |∇v| p-2 |∇ψ| 2 dx ≦ C {|∇v|>1} |∇v| p-1 |∇ψ| dx + {0<|∇v|≦1} |∇ψ| 2 dx When v ∈ W 1,p 0 (Ω), (5.21
) is valid for any ψ ∈ W 1,p 0 (Ω), satisfying the conditions above when p < 2.

Proposition 5.27 Assume (5.10) with g convex near ∞, and f ∈ L r (Ω) , r > N/p. Let h be defined at (5.18). (i) Then

f (1 + g(v * )) p-1 h(v * ) ∈ L 1 (Ω). (5.22) (ii) If N < N 0 = pp ′ /(1 + 1/(p -1)r), then v * ∈ L ∞ (Ω). If N > N 0 , then v * p-1 ∈ L k (Ω) for any k < σ, where 1/σ = 1 -pp ′ /N + 1/r(p -1). If N = N 0 , then v * ∈ L k (Ω) for any k ≧ 1. (iii) If N < N 1 = p(1 + p ′ )/(1 + p ′ /r) then v * ∈ W 1,p 0 (Ω). If N > N 1 , |∇v * | p-1 ∈ L τ (Ω) for any τ < τ where 1/τ = 1 + 1/(p -1)r -(p ′ + 1)/N. If N = N 1 , |∇v * | ∈ L s (Ω) for any s < p. (iv) If lim t→∞ h(t)/t > 0, then v * ∈ W 1,p 0 (Ω). It holds in particular if lim t→∞ (g ′ (t) -g(t)/t) > 0.
Proof. (i) Let λ n ր λ * , and

v n = v λn . By hypothesis g is convex for t ≧ A. From [19, Proposition 2.2], v n is semi-stable. Taking ψ = g(v n ) in (5.21) with λ = λ n and v = v n , we get Ω |∇v n | p g ′2 (v n )dx ≧ λ n Ω f (1 + g(v n )) p-2 g ′ (v n )g 2 (v n )dx.
Taking S(v n ),as a test function in (PVλ n ), where S(t) = t 0 g ′2 (s)ds, we find

Ω |∇v n | p g ′2 (v n )dx = λ n Ω f (1 + g(v n )) p-1 S(v n )dx By difference we obtain Ω f (1 + g(v n )) p-2 ((1 + g(v n ))S(v n ) -g ′ (v n )g 2 (v n ))dx = Ω f (1 + g(v n )) p-2 (S(v n ) -g(v n )h(v n ))dx ≧ 0.
Observing that S(t) ≦ g(t)g ′ (t) + |h(A)| for t ≧ A, and lim t→∞ h(t)/g ′ (t) = ∞, from Lemma 5.23, there exists C > 0 such that

Ω f (1 + g(v n )) p-2 g(v n )h(v n ))dx ≦ C. And lim t→∞ g(t) = ∞, thus 1 + g(t) ≦ 2g(t) for t ≧ A, hence (f (1 + g(v n )) p-1 h(v n )) is bounded in L 1 (Ω), thus (5.22) holds. Then f g(v * ) p-1 j(v * ) ∈ L 1 (Ω) from Lemma 5.23, hence f g(v * ) p-1 g ′ (v * ) ∈ L 1 (Ω) and f g(v * ) p /v * ∈ L 1 (Ω).
In particular we find again that (f (1 + g(v * )) p-1) ∈ L 1 (Ω), which was obtained in a shorter way at Theorem 5.25.

(ii)The regularity of v * follows from the estimate f (g(v * )) p /v * ∈ L 1 (Ω) : Taking r ′ < σ < N/(N -p), we have v * p-1 ∈ L σ (Ω). Defining θ by p/θ = p -1 + 1/r + 1/σ, we have θ ∈ (1, p ′ ) , and from Hölder inequality,

Ω (f g(v * ) p-1 ) θ dx = Ω ( f 1/p g(v * ) v * 1/p ) (p-1)θ (f θ/p v * θ/p ′ )dx ≦ Ω f g(v * ) p v * dx θ/p ′ Ω (f θ/p v * θ/p ′ ) p ′ /(p ′ -θ) dx 1-θ/p ′ ≦ Ω f g(v * ) p v * dx θ/p ′ Ω f r dx θ/p Ω v * σ(p-1) dx θ/pσ
Then f g(v * ) p-1 ∈ L θ (Ω) with θ > 1. If p = N, then from Lemma 2.13, v * ∈ L ∞ (Ω). Next assume p < N. Choosing σ sufficiently close to r ′ , one has θ < N/p. From Lemma 2.13, as soon as θ < N/p, we find v * p-1 ∈ L σ 1 (Ω) with σ 1 = N θ/(N -pθ). For σ sufficiently close to r ′ , we also find σ 1 > σ.

Then we can define an increasing sequence (σ ν ) and a sequence (θ ν ), as long as θ ν < N/p. If (σ ν ) has a limit σ, then 1/σ = 1-pp ′ /N +1/r(p-1), and (θ ν ) converges to θ = (1+1/r(p-1)-p ′ /N ) -1 .

It follows that v * ∈ L ∞ (Ω) if N < N 0 . If N ≧ N 0 , v * p-1 ∈ L k (Ω) for any k < σ.
(iii) Lemma 2.13 also gives estimates of the gradient:

if p = N, then v * ∈ W 1,N 0 (Ω). If p < N, (|∇v * | p-1 ) ∈ L τν (Ω) with 1/τ ν = 1/θ ν -1/N, as long as θ ν < N p/(N p -N + p), and (τ ν ) converges to τ = (1 + 1/(p -1)r -(p ′ + 1)/N ) -1 . Then v * ∈ W 1,p 0 (Ω) if τ > p ′ , that means if N < N 1 . If N ≧ N 1 , (|∇v * | p-1 ) ∈ L τ (Ω) for any τ < τ . (iv) If lim t→∞ h(t)/t > 0, then Ω |∇v n | p dx = λ n Ω f (1 + g(v n )) p-1 v n dx ≦ C, thus v * ∈ W 1,p 0 (Ω).
It holds in particular when lim t→∞ j(t)/t > 0, from Lemma 5.23.

Remark 5.28 if p ≧ 2, v * is semi-stable. Indeed v n = v λn satisfies (5.21) for any ψ ∈ D(Ω). And (|∇v n |) converges strongly in L 1 (Ω) to |∇v * | p-1 , so that we can go to the limit from Lebesgue Theorem and Fatou Lemma.

Remark 5.29 In case p = 2, Ω strictly convex, and f = 1, then v * ∈ W 1,2 0 (Ω), for any function g satisfying (5.10), from [START_REF] Nedev | Extremal solutions of semilinear elliptic equations[END_REF] . The proof uses the fact that J λ * (v * ) ≦ 0 and Pohozaev identity; the kea point is that v * is regular near the boundary, from results of [START_REF] Ramiandrisoa | Blow-up for two nonlinear problems[END_REF]. In the general case p > 1 with f ≡ 1, if we can prove that v * is regular near the boundary, then v * ∈ W 1,p 0 (Ω). Indeed Pohozaev identity extends to the p-Laplacian, see [START_REF] Guedda | Quasilinear elliptic equations involving critical Sobolev exponents[END_REF]. For general f we cannot get the result by this way, even for p = 2.

v n / v n W 1,p 0 (Ω) . Up to a subsequence, (w n ) converges to a function w weakly in W 1,p 0 (Ω) and strongly in L k+1 (Ω), for any k < Q * . For any ζ ∈ D(Ω),

Ω |∇w n | p-2 ∇w n ∇ζdx = v n 1-p W 1,p 0 (Ω) Ω (1 + g(v n )) p-1 ζdx
tends to 0, thus w = 0. Let z n = t n v n , where

t n = inf t ∈ [0, 1] : J λn (tv n ) = max s∈[0,1]
J λn (sv n ) .

In fact lim J λn (z n ) = ∞. Indeed suppose that limJ λn (z n ) = M < ∞. For given K > 0, setting u n = Kw n , then up to a subsequence, J λn (u n ) ≦ J λn (z n ) ≦ M + 1 for large n. And lim Ω f Φ(u n )dx = 0, from (5.23) and the assumptions on f , hence lim J λn (u n ) = λK p /p from (5.14). Taking K large enough leads to a contradiction. Then t n ∈ (0, 1) for large n, thus

J ′ λn (z n )(z n ) = Ω |∇z n | p dx -λ n Ω f (1 + g(z n )) p-1 z n dx = 0, λ -1 n pJ λn (z n ) = Ω f (z n ϕ(z n ) -pΦ(z n ))dx = Ω f J (z n )dx.
And lim t-→∞ j(t) = ∞, from Lemma 5.23. Thus there exists B > 0 such that j(s) -1 > 0 for s ≧ B, hence J (B) ≦ J (t) ≦ J (τ ) for any B ≦ t ≦ τ from (5.19). Moreover z n ≦ v n a.e. in Ω, thus {z n > B} ⊂ {v n > B} , then with different constants C > 0,

Ω f J (z n )dx ≦ C + {zn>B} f J (z n )dx ≦ C + {vn>B} f J (v n )dx ≦ C + Ω f J (v n )dx ≦ C + λ -1 n pc therefore (J λn (z n ))
is bounded, and we reach a contradiction. Then (v n ) is bounded in W 1,p 0 (Ω). As a consequence we obtain the boundedness of the extremal solution under estimate 5.23, which achieves the proof of Theorem 1.4: Proposition 5.33 Assume (5.10) and (5.23), g convex near ∞, and f ∈ L r (Ω) with (Q+1)r ′ < p * . Then the extremal solution v * ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) and is a variational solution of (PVλ * ).

Proof. Considering λ n ր λ * , the sequence of minimal solutions v n = v λn satisfies J λn (v n ) ≦ 0 from Proposition 5.19. From Proposition 5.32, (v n ) is bounded in W 1,p 0 (Ω), and converges to v * a.e. in Ω, thus v * ∈ W 1,p 0 (Ω) and is a variational solution of (PVλ * ). Then v ∈ L ∞ (Ω) from Proposition 2.14 (iii).

Next we show the multiplicity result of Theorem 1.5, where f, g satisfy the assumptions of Proposition 5.32. We still use the Euler function J λ associated to (PVλ). Here two difficulties occur. For small λ, J λ has the geometry of Mountain Path near 0, but function g can have a slow growth, and one cannot prove that the Palais-Smale sequences are bounded in W 1,p 0 (Ω); then we use a result of [START_REF] Jeanjean | On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem[END_REF] saying that there exist (λ n ) converging to λ, such that J λn has a critical point v n , and we prove that this sequence (v n ) is bounded. For larger λ it is not sure that J λ has the geometry of Mountain Path near the minimal solution v λ of (PVλ), and we have to make further assumptions on g.

Proof of Theorem 1.5. For any λ ∈ (0, λ * ) there exists at least one solution, the minimal one v λ , such that J λ (v λ ) < 0, from Proposition 5.19 and Remark 5.20.

(i) Existence of a second solution for λ small enough.

From (5.10) and (5.23), there exists λ 0 ∈ (0, λ * ) such that for any λ < λ 0 , there exists R λ > 0 such that inf J λ (v) : v W 1,p 0 (Ω) = R λ > 0, and a function w λ ∈ W 1,p 0 (Ω) with w λ W 1,p 0 (Ω) > R λ and J λ (w λ ) < 0. Then J λ has the geometry of the Mountain Path near 0:

c λ = inf θ∈Γ max t∈[0,1] J λ (θ(t)) > 0 = max(J λ (0), J λ (w λ )), (5.24) 
where Γ = θ ∈ C([0, 1] , W 1,p 0 (Ω)) : θ(0) = 0, θ(1) = w λ . Let λ 1 ∈ (0, λ 0 ) be fixed. Let us show the existence of a solution at the level c λ 1 . There exists δ > 0 such that the family of functions (J λ ) α∈[λ 1 (1-δ),λ 1 (1+δ)] also satisfy the condition (5.24):

c λ = inf θ∈Γ max t∈[0,1]
J λ (θ(t)) > 0 = max(J λ (0), J λ (w λ 1 )).

(5.25)

From [START_REF] Jeanjean | On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem[END_REF], for almost every λ ∈ [λ 1 (1 -δ), λ 1 (1 + δ] , there exists a sequence (v λ,m ) , bounded in W 1,p 0 (Ω), such that lim J λ (v λ,m ) = c λ and lim J ′ λ (v λ,m ) = 0 in W -1,p ′ (Ω) . From (5.23), the Palais-Smale condition holds: there exists a subsequence, converging to a function v λ strongly in W 1,p 0 (Ω), and J λ (v λ ) = c λ , and J ′ λ (v λ ) = 0, in other words v λ is a solution of (PVλ). This holds for a sequence (λ n ) converging to λ 1 . Let v n = v λn , then v n is a solution of (PVλ n ), thus

J λn (v n ) = λ n Ω f (v n ϕ(v n ) -pΦ(v n ))dx = c λn ≦ c λ + 1.
From Proposition 5.32, (v n ) is also bounded in W 1,p 0 (Ω). Up to a subsequence (v n ) converges to a function v weakly in W 1,p 0 (Ω) and strongly in L k (Ω) for any k < p * , and a.e. in Ω. Then (

λ n f (1 + g(v n )) p-1 ) converges to λ 1 f (1 + g(v)) p-1 strongly in L 1 (Ω). From Remark 2.11, v is a solution of (PVλ 1 ). And (f (v n ϕ(v n ) -pΦ(v n ))) converges to f (vϕ(v) -pΦ(v)) strongly in L 1 (Ω) then (J λn (v n )) = (c λn ) converges to J λ (v), thus J λ (v) = c λ .
(i) Existence of a second solution for λ < λ * .

Let λ 1 < λ * be fixed. Let λ 2 ∈ (λ 1 , λ * ) , and let v λ 1 , v λ 2 be the minimal bounded solutions associated to λ 1 , λ 2 . Then on 0, v λ 2 there exists a solution v 0 minimizing J λ 1 . . From Proposition 5.19, v 0 is a solution of (PVλ 1 ) and

v λ 1 is minimal, thus v λ 1 ≦ v 0 ≦ v λ 2 .
• First suppose p = 2 and g is convex. Then v 0 = v λ 1 and it is a strict minimum of J λ 1 . Indeed v λ 2 is semi-stable, thus for any ϕ ∈ W 1,2 0 (Ω),

Ω |∇ϕ| 2 dx ≧ λ 2 Ω f g ′ (v λ 2 )ϕ 2 dx; and g ′ (v λ 2 ) ≧ g ′ (v λ 1 ), thus J ′′ λ 1 (v λ 1 ).(ϕ, ϕ) = Ω |∇ϕ| 2 dx -λ 1 Ω f g ′ (v λ 1 )ϕ 2 dx ≧ (1 - λ 1 λ 2 ) Ω |∇ϕ| 2 dx; and J ′ λ 1 (v λ 1 ) = 0, then v λ 1 is a strict local minimum in W 1,p 0 (Ω). Then there exists R λ 1 > 0 and w λ 1 ∈ W 1,p 0 (Ω) with w λ1 W 1,p 0 (Ω) > R λ 1 such that inf J λ (v) : v -v λ 1 W 1,p 0 (Ω) = R λ 1 > J λ 1 (v λ 1 ) > J λ 1 (w λ 1
). Therefore J λ 1 has the geometry of the Mountain Path near v λ 1 . Using the results of [START_REF] Jeanjean | On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem[END_REF] as above, we get the existence of a solution of (PV λ 1 ) at a level c λ 1 > J λ 1 (v λ 1 ), different from v λ 1 .

• Next suppose that g satisfies condition (5.15), without convexity assumption, and f ∈ L ∞ (Ω). If v 0 = v λ 1 we have constructed a second solution. Next assume that v 

0 = v λ 1 . Since f ∈ L ∞ (Ω), v λ 2 and v 0 ∈ C 1,α Ω . From [34, Theorem 5.2], v 0 is a local minimum in W 1,p 0 (Ω) : it minimizes J λ 1 in a ball B(v 0 , δ) of W
v n ∈ W 1,p 0 (Ω) satisfies lim J λ 1 . (v n ) = c and if ξ n = J ′ λ 1 . (v n ) tends to 0 in W -1,p ′ (Ω), one finds, with different constants C > 0, Ω |∇v n | p dx -ξ n (v n ) = λ 1 Ω f v + n ϕ(v + n )dx - Ω f v - n dx ≧ λ 1 {vn≧A} f v + n ϕ(v + n )dx -C v n W 1,p 0 (Ω) ≧ λ 1 k + p 2 {vn≧A} f Φ(v n )dx -C v n W 1,p 0 (Ω) ≧ k + p 2p Ω |∇v n | p dx -C(1 + v n W 1,p 0 (Ω) ) thus (v n ) is bounded in W 1,p 0 (Ω).
And there exists a function ṽ such that J λ 1 . (ṽ) < J λ 1 . (v 1 ) and

v λ 1 -ṽ ≧ 1 + δ. Let cλ = inf θ∈Γ max t∈[0,1] J λ (θ(t)) ≧ max(J λ 1 (v λ 1 ), J λ 1 (ṽ)) where Γ = θ ∈ C([0, 1] , W 1,p 0 (Ω)) : θ(0) = v λ 1 , θ(1) = w λ .
And v λ 1 is a local minimum. Then either the inequality is strict and there exists a solution at level cλ from Moutain Path Theorem. Or cλ = J λ 1 (v 1 ) and there exists a solution in W 1,p 0 (Ω)\B(v λ 1 , δ), from the variant of [START_REF] Ghoussoub | A general mountain path principle for locating and classifying critical points[END_REF]. Remark 5.34 In case p = N, assumptions of growth are not needed in Propositions 5.31 and 5.33: for any g satisfying (5.10), convex near ∞, and f ∈ L r (Ω) , r > 1, we have v * ∈ W 1,N 0 (Ω) ∩ L ∞ (Ω), from Proposition 5.27. However assumption (1.3) for some Q > N -1 is required in order to get the multiplicity result of Theorem 1.5.

Problem (PVλ) with measures

Here we study the existence of a renormalized solution of problem

-∆ p v = λf (1 + g(v)) p-1 + µ in Ω, v = 0 on ∂Ω (6.1)
where µ ∈ M + b (Ω), µ = 0. The problem is not easy for p = 2. Indeed the convergence and stability results relative to problem (2.2) are still restrictive, see Theorem 2.6. Remark 6.1 In order to obtain an existence result, an assumption of slow growth condition is natural, as well as more assuptions on f . Take for example p = 2 < N and g(v) = v Q for some Q > 0, and let µ = δ a be a Dirac mass at some point a

∈ Ω. If v is a solution, then v(x) ≧ C |x -a| 2-N near a; then necessarily |x -a| (2-N )Q f ∈ L 1 (Ω); then Q < N/(N -2) if f ≡ 1.
More generally if there exists a solution of (6.1), then f G (µ) ∈ L 1 (Ω), where G (µ) is the potential of µ. This condition is always satisfied if f ∈ L r (Ω) for some r > N/2.

The existence result of Theorem 1.6 is a consequence of the next theorem, where µ ∈ M b (Ω) is arbitrary, without assumption of sign. It improves a result announced in [39, Theorem 1.1.] for Q > 1, with an incomplete proof. Our result covers the general case Q > 0, and gives better informations in the case Q = p -1. We give here a detailed proof, valid for any p ≦ N, where the approximation of the measure is precised. Theorem 6.2 Consider the problem

-∆ p U = λh(x, U ) + µ in Ω, U = 0 on ∂Ω, (6.2) 
where µ ∈ M b (Ω), and

|h(x, U )| ≦ f (x)(K + |U | Q ),
with Q > 0 and λ, K > 0, and f ∈ L r (Ω) with Qr ′ < Q 1 . Then there exists a renormalized solution of (6.2) in any of the following cases:

Q = p -1 and λ < λ 1 (f ); (6.3) 0 < Q < p -1; (6.4) Q > p -1 and λ f L r (Ω) (λK f L r (Ω) + |µ| (Ω)) (Q-p+1)/(p-1) |Ω| 1/r ′ -Q/Q 1 ≦ C (6.5)
for some C = C(N, p, Q) for p < N, and C = C(N, Q, K N (Ω)) for p = N.

Proof. (i) Construction of a suitable approximation of µ. Let

µ = µ 1 -µ 2 + µ + s -µ - s , with µ 1 = µ + 0 , µ 2 = µ - 0 ∈ M + 0 (Ω), µ + s , µ - s ∈ M + s (Ω), thus µ 1 (Ω) + µ 2 (Ω) + µ + s (Ω) + µ - s (Ω) ≦ 2 |µ(Ω)| .
Following the proof of [START_REF] Boccardo | Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data[END_REF], see also [START_REF] Droniou | Parabolic capacities and soft measures for nonlinear equations[END_REF], for i = 1, 2, one has

µ i = ϕ i γ i , with γ i ∈ M + b (Ω) ∩ W -1,p ′ (Ω) and ϕ i ∈ L 1 (Ω, γ i ).
Let (K n ) n≧1 a increasing sequence of compacts of union Ω, and set

ν 1,i = T 1 (ϕ i χ K 1 )γ i and ν n,i = T n (ϕ i χ Kn )γ i -T n-1 (ϕ i χ K n-1 )γ i . By regularization there exist nonnegative φ n,i ∈ D(Ω) such that φ n,i -ν n,i W -1,p ′ (Ω) ≦ 2 -n µ i (Ω). Then h n,i = n 1 φ k,i ∈ D(Ω) and (h n,i ) converges strongly in L 1 (Ω) to a function h i , and h n,i L 1 (Ω) ≦ µ i (Ω). Also G n,i = n 1 (ν k,i -φ k,i ) ∈ W -1,p ′ (Ω) ∩ M b (Ω) and (G n,i ) converges strongly in W -1,p ′ (Ω) to some G i , and µ i = h i +G i , and G n,i M b (Ω) ≦ 2µ i (Ω).
Otherwise by regularization there exist nonnegative λ 1 n and λ 2 n ∈ D(Ω) converging respectively to µ + s , µ - s in the narrow topology, with λ

1 n L 1 (Ω) ≦ µ + s (Ω), λ 2 n L 1 (Ω) ≦ µ - s (Ω).
Then the sequence of approximations of µ defined by

µ n = h n,1 -h n,2 + G n,1 -G n,2 + λ 1 n -λ 2 n
satisfies the conditions of stability of Theorem 2.6, and moreover is bounded with respect to |µ| (Ω) by a universal constant:

|µ n | (Ω) ≦ 4 |µ| (Ω).
(ii) The approximate problem. For any fixed n ∈ N, we search a variational solution of

-∆ p U n = λT n (h(x, U n )) + µ n , (6.6) 
by using the Schauder Theorem. To any V ∈ W 1,p 0 (Ω) we associate the solution

U = F n (V ) ∈ W 1,p 0 (Ω) of -∆ p U = λT n (h(x, V )) + µ n ,
where T n is the truncation function. We find

∇U p L p (Ω) ≦ λn U L 1 (Ω) + µ n W -1,p ′ (Ω) U W 1,p 0 (Ω) , thus U W 1,p 0 (Ω) ≦ C n independent on V. Let B n = B(0, C n ) be the ball of W 1,p 0 (Ω) of radius C n .
Then F n is continuous and compact from B n into itself, thus it has a fixed point U n . From Proposition 2.2 and Remark 2.3, using (2.6) with σ = Qr ′ /(p -1), we have

( Ω |U n | Qr ′ dx) (p-1)/Qr ′ ≦ C 0 |Ω| ℓ λ Ω |T n (h(x, U n ))| dx + |µ n (Ω)| ≦ C 0 |Ω| ℓ λ f L r (Ω) Ω |U n | Qr ′ dx) 1/r ′ + λK f L r (Ω) + 4 |µ| (Ω) , (6.7)
Corollary 7.3 Assume (1.1) and f ∈ L r (Ω) , r > N/p, f ≡ 0. Suppose that β is nondecreasing near L and lim t-→L β(t) = ∞, and e γ(t)/(p-1) ∈ L 1 (Ω) .

(i) Then u * = sup λրλ * u λ is a solution of (PUλ * ), and u * ∈ W 1,p 0 (Ω). If one of the conditions (i) (ii) (iii) of Theorem 1.4 holds, then u * L ∞ (Ω) < L. (ii) Suppose moreover that(1.3) holds with Q < Q * , and f ∈ L r (Ω) with (Q + 1)r ′ < p * . Then for small λ > 0 there exists at least two solutions of (PUλ) such that u L ∞ (Ω) < L. It is true for any λ < λ * when p = 2 and β is nondecreasing.

Remarks on growth assumptions

Condition (7.1) is not easy to verify. It is implied by

lim t-→L β(t) Ψ Q/(p-1)-1 (t) < ∞ (7.2)
from the L'Hospital rule. If moreover β is nondecreasing, the two conditions are equivalent.

Remark 7.4 If β = β 1 + β 2 , where β 1 ∈ L 1 ((0, L)) and Λ 2 = ∞ and β 2 satisfies (7.1), then β satisfies (7.1). Indeed setting v = Ψ(u), v 1 = Ψ 1 (u) and v 2 = Ψ 2 (u), one finds v 2 ≦ v and 1 + g(v) v q ≦ e γ(L)/(p-1) 1 + g 2 (v 2 ) v q ≦ e γ(L)/(p-1) 1 + g 2 (v 2 ) v q 2 .
In particular (7.1) is satisfied with Q = p -1 by any β of this form, such that β 2 is bounded.

Next we give a simple condition on β ensuring (7.1):

Lemma 7.5 Let Q > 0. Assume that β ∈ C 1 ([0, L)), and L = ∞ or only e γ(θ)/(p-1) ∈ L 1 ((0, L)) , and

lim t-→L β ′ β 2 (t) ≦ 1 - p -1 Q . ( 7.3) 
Then (7.1) holds.

Proof. The conditions imply Λ = ∞ and lim t-→L β ′ β 2 (t) = lim t-→L gg ′′ g ′2 (Ψ(t)) = lim τ -→∞ gg ′′ g ′2 (τ ); then (7.3) implies that g (p-1)/Q is concave near ∞, thus at most linear. An open question raised in [START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF] and also [START_REF] Dall'aglio | Nonlinear parabolic problems with a very gen,eral quadratic gradient term[END_REF] was to know if any nondecreasing β defined on [0, ∞) satisfies (7.1) for some Q > p-1. Here we show that condition (7.1) is not always satisfied, even with large Q, even when τ Q is replaced by an exponential: Proof. From Remark 3.1 there is a one-to-one mapping between such a function and a function g ∈ C 1 ([0, ∞)), convex, such that lim s-→∞ g(s)/s = ∞, and 1/(1 + g(s)) ∈ L 1 ((0, ∞)) .

Thus it is sufficient to show the existence of such a function g satisfying (7.4). We first construct a function g which is only continuous. Let F be the curve defined by F. Set g(s) = 0 for s ∈ [0, 1] . There exists m 1 > 1 such that the line of slope m 1 issued from (1, 0) cuts F at two points s ′ 1 < s ′′ 1 . Then we define g(s) = m 1 (s -1) for any s ∈ [1, s 1 ] , where s 1 > s ′′ 1 is chosen such that s 1 -1 ≧ (1 + g( 1))e m 1 , that means s 1 ≧ 1 + e m 1 . Then and the point (s 1 , g(s 1 )) is under F. By induction for any n ≧ 1, we consider m n > 2m n-1 such that the line of slope m n issued from (s n-1 , g(s n-1 )) cuts the curve F n defined by nF at two points s ′ n < s ′′ n . We define g(s) = g(s n-1 ) + m n (s -s n-1 ) for any s ∈ [s n-1 , s n ] , where s n > s ′′ n is chosed such that s n -s n-1 ≧ (1 + g(s n-1 ))e mn and s n ≧ 2s n-1 .Then sn s n-1 ds/(1 + g(s) ≧ 1.

The function g satisfies 1/(1 + g(s)) ∈ L 1 ((0, ∞)) , and g ≧ nF on [s ′ n , s ′′ n ] , and s ′ n > s n > 1, thus (7.4) holds; and g(s n ) ≧ m n (s n -s n-1 ) ≧ m n s n /2, then lim s-→∞ g(s)/s = ∞. Then we regularize g near the points s n in order to get a C 1 convex function. Proof of Lemma 2.17. Let ĥ(x, t) = h(x, max(0, min(t, u(x))). Then 0 ≦ ĥ(x, t) ≦ F (x) a.e. in Ω. From the Schauder theorem for any n ∈ N there exists V n ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) such that -∆ p V n = T n ( ĥ(x, V n )) in Ω.

From Remark 2.11, up to a subsequence, V n converges a.e. to a renormalized solution V of equation 

-∆ p V = ĥ(x, V ) in Ω,

  (i) If (4.4) has a solution then also problem (1.4) has a solution u ∈ W, from Theorem 1.1. And u ∈ W 1,p 0 (Ω) from Remark 3.2. Taking ϕ = ψ p with ψ ∈ D ′ (Ω) , ψ ≧ 0 as a test function we obtain (p -1) Ω |∇u| p ψ p dx + λ Ω f ψ p dx = p Ω ψ p-1 |∇u| p-2 ∇u.∇ψdx ≦ Ω |∇ψ| p dx + (p -1) Ω |∇u| p ψ p dx; then from the Young inequality, λ Ω f ψ p dx ≦ Ω |∇ψ| p dx;

Remark 7 . 6

 76 As observed in[START_REF] Abdellaoui | Some remarks on elliptic problems with critical growth in the gradient[END_REF], many "elementary" nondecreasing functions β on [0, ∞) satisfy condition (7.1) for any Q > p -1. In the examples of Section 3, we have seen that forβ(u) = u m , m > 0, g(v) = O(v(ln v) m/(m+1) ) near ∞. For β(u) = e u , g(v) = O(v ln v) near ∞. For β(u) = e e u +u + e u + 1, g(v) = O(v ln v ln(ln v)).In those cases, lim t-→∞ (β ′ /β 2 )(t) = 0.

Lemma 7 . 7

 77 Consider any functionF ∈ C 0 ([0, ∞)) strictly convex, with lim s-→∞ F (s) = ∞.Then there exists a function β ∈ C 0 ([0, ∞) , increasing with β(0) ≧ 0, lim t-→∞ β(t) = ∞ such that the corresponding function g given by (1.8) satisfies lim τ -→∞ g(τ ) F (τ ) = ∞.(7.4) 

s 1 1

 1 ds/(1 + g(s) ≧ 1,

. 4 )• 5 ) 1 ρF U α ξ λ ρ dx + |α| 2 ΩρΩF U α ξ λ ρ + |α| 2 ΩU (p- 1 )σ ξ λ ρ dx 1 /θ 57 Next.

 451221157 then β, α ∈ (0, 1) for m < m, and β ≦ 0 ≦ α -1 for m ≧ m. The function U k,ε = ((ε + |T k (U )|) αε α )sign(U ) belongs to W 1,p 0 (Ω), and from (8.1) we getΩ |∇U k,ε | p dx = α p Ω |∇T k (U )| p (ε + |T k (U )|) β dx ≦ C Ω |F | (ε α + |U k,ε |) η * /αm ′ dx ≦ C F L m (Ω) ( Ω (ε α + |U k,ε |) η * /α dx) 1 m ′ ,(8.2)where C > 0. From the Sobolev injection of W 1,p 0 (Ω) into L p * (Ω) we find, with other constants C > 0, depending on Ω (Ω (ε α + |U k,ε |) p * dx) p/p * ≦ C(ε αp + ( Ω |U k,ε | p * dx) p/p * ≦ C(ε αp + F L m (Ω) ( Ω (ε α + |U k,ε |) p * dx) 1 m ′ ,and p * < pm ′ , because m < N/p; thus from the Young inequalityΩ |T k (U )| η * dx ≦ Ω (ε α + |U k,ε |) p * dx ≦ C(ε η * + F 1/(p/p * -1/m ′ ) L m (Ω) p/p * -1/m ′ ) = η * /(p -1), thus Ω |T k (U )| η * dx ≦ C F η * /(p-1) L m (Ω) ,and from the Fatou Lemma, (iii) follows:Ω |U | (p-1)N m/(N -pm) dx (N -pm)/N m ≦ C F L m (Ω) .(8Assume moreover that m < m. Using (8.2), (8.3) and going to the limit as k -→ ∞, we findΩ |∇U | p (ε + |U )|) β dx ≦ C( F L m (Ω) ε η * /m ′ + F η * p/p * (p-1) L m (Ω)We have η < p, and βη/(p -η) = η * , thus from Hölder inequality,Ω |∇U | η dx ≦ Ω |∇U | p (ε + |U )|) β dx η/p Ω (ε + |U )|) η * dx 1-η/p. Using (8.5) and (8.4), and going at the limit as ε -→ 0, (iv) follows for m < m :Ω |∇U | (p-1)N m/(N -m) dx (N -m)/N m ≦ C F L m (Ω) (8.6)where|K(x)| ≦ f (x)(1 + |U | Q-p+1 ); if (Q + 1)r ′ ≦ p * then K(x) ∈ L s (Ω) for some s ≧ N/p, then U ∈ L ∞ (Ω) if the inequality is strict, and U ∈ L k (Ω) for any k ≧ 1 in case of equality. Next assume Q < p -1. Then |h(x)| ≦ f (x)(|U | p-1 + 2), hence (iv) holds from above. If r = N/p, then again Qr ′ < Q 1 , and we find m = N/p. Then h(x) ∈ L s (Ω) for any s < N/p, hence U ∈ W 1,p 0 (Ω) and (v) holds from Lemma 2.13. If r < N/p then m < N/p. Thus from Lemma 2.13U k ∈ L 1 (Ω) for any k < (p-1)N m/(N -pm) = θ. If (Q+1)r ′ < Q 1 , then m > m, thus U ∈ W 1,p 0 (Ω). If (Q + 1)r ′ ≧ Q 1 , then m ≦ m, thus |∇U | p-1 ∈ L τ (Ω) for any τ < N m/(N -m) = θ.Then (vi) follows.Proof of Lemma 2.[START_REF] Brezis | Blow-up solutions of some nonlinear elliptic problems[END_REF]. In [10, Proposition 2.1], we have given the estimates (2.13) for the superharmonic continuous functions in R N . In fact they adapt to any local renormalized solution of the equation in Ω. Indeed such a solution satisfies U p-1 ∈ L σ loc (Ω) for any σ ∈ (0, N/(N -p)) . Let x 0 ∈ Ω and ρ > 0 such that B(x 0 , 4ρ) ⊂ Ω. Let ϕ ρ = ξ λ ρ with λ > 0 large enough, andξ ρ (x) = ζ(|x -x 0 | /ρ), where ζ ρ ∈ D(R) with values in [0, 1] , such that ξ(t) = 1 for |t| ≤ 1, 0 for |t| ≥ 2. Let σ ∈ (1, N/(N -p)) and α ∈ (1 -p, 0) . We set U ε = U + ε, for any ε > 0. Let k > ε. Then we can take φ = T k (U ε ) α ξ λ ρas a test function, where λ > 0 large enough will be fixed after. HenceΩ F T k (U ε ) α ξ λ ρ dx + |α| Ω T k (U ε ) α-1 ξ λ ρ |∇(T k (U )| p dx ≤ λ Ω T k (U ε ) α ξ λ-|∇(T k (U )| p-2 ∇(T k (U )∇ξ ρ dx ≤ |α| 2 Ω T k (U ε ) α-1 ξ λ ρ |∇(T k (U )| p dx + C(α) Ω T k (U ε ) α+p-1 ξ λ-p ρ |∇ξ ρ | p dx.HenceΩ F T k (U ε ) α ξ λ ρ dx + |α| 2 Ω T k (U ε ) α-1 ξ λ ρ |∇(T k (U )| p dx ≤ C(α) Ω T k (U ε ) α+p-1 ξ λ-p ρ |∇ξ ρ | p dx.Then we make ε tend to 0 and k to ∞. Setting θ = (p -1)σ/(p -1 + α) > 1, we obtainΩ U α-1 ξ λ ρ |∇U | p dx ≤ C |∇ξ ρ | pθ ′ dx 1/θ ′with a new constant C depending of α from the Hölder inequality. Taking λ large enough, U α-1 ξ λ ρ |∇U | p ≤ Cρ N/θ ′ -p supp ∇ξρ we take φ = ξ λ ρ as a test function. We getΩ Since ℓ > p -1, we can fix an α ∈ (1 -p, 0) such that τ = σ/(1 -α) > 1. Then as ε → 0, Ω F ξ λ ρ dx ≤ C supp ∇ξρ U (p-1)σ ξ λ ρ dx 1/θp ′ +1/τ p × Ω ξ λ-θ ′ p ρ |∇ξ ρ | θ ′ p dx 1/θ ′ p ′ Ω ξ λ-τ ′ p ρ |∇ξ ρ | τ ′ p dx 1/τ ′ p . But 1/θp ′ + 1/τ p = σ = 1 -(1/θ ′ p ′ + 1/τ ′ p), hence Ω F ξ λ ρ dx ≤ Csupp ∇ξρ U (p-1)σ ξ λ ρ dx 1/σ ρ N (1-1/σ)-p and (2.13) follows. Otherwise, if U ∈ W 1,p loc (Ω), from the weak Harnack inequality, there exists a constant C ′ = C ′ (σ, N, p) such that 1 ρ N B(x 0 ,2ρ) U (p-1)σ dx 1/(p-1)σ ≦ C ′ inf ess B(x 0 ,ρ) U, hence (2.14) holds by fixing σ.

and V ≧ 0

 0 from the Maximum Principle. It remains to show that V ≦ U. For fixed m > 0, andn ∈ N the function ω = T m ((V n -U ) + ) = T m ((V n -T Vn L ∞ (Ω) U ) + ) ∈ W 1,p 0 (Ω); and ω + = ω -= 0, thus from [25, Definition 2.13] Ω |∇U | p-2 ∇U.∇ωdx = Ω ωh(x, U )dx + Ω ω + dµ + s -Ω ω -dµ - s = Ω ωh(x, U )dx

  2.8 Any reachable solution satisfies |∇U | p-1 ∈L τ (Ω), for any τ ∈ [1, N/(N -1)) , and (the cap p -quasi continuous representative of ) U is finite cap p -quasi everywhere in Ω, from [24, Theorem 1.1] and[START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF] Remark 2.11]. Moreover, from[START_REF] Dal Maso | Some properties of reachable solutions of nonlinear elliptic equations with measure data[END_REF], for any k > 0, there exist α k , β k ∈ M 0 (Ω) ∩ M + b (Ω), concentrated on the sets {U = k} and {U = -k} respectively, converging weakly* to µ 1 , µ 2 , such that

 Remark 5.30In the exponential case 1 + g(v) = e v , with f ≡ 1, it has been proved that v * ∈ W 1,p 0 (Ω), and v * ∈ L ∞ (Ω) whenever N < N 2 = 4p/(p -1) + p, see [START_REF] Garcia Azorero | On an Emden-Fowler type equation[END_REF] and [START_REF] Azorero | Quasilinear problems with exponential growth in the reaction term[END_REF]. In the power case, (1 + g(v)) p-1 = (1 + v) m the same happens; if N ≧ N 2 , and m < m c , where

then also v * ∈ L ∞ (Ω), see [START_REF] Ferrero | On the solutions of quasilinear elliptic equations with a polynomial-type reaction term[END_REF]. The same conclusions hold when the function g behaves like an exponential or a power, see [START_REF] Ye | Boundedness of the extremal solution for semilinear elliptic problems[END_REF], [START_REF] Cabre | Semi-stable and extremal solutions of reaction equations involving the p-Laplacian[END_REF], [START_REF] Sanchon | Boundeness of the extremal solutions of some p-Laplacian problems[END_REF], and [START_REF] Eidelman | On regularity of the extremal solution of the Dirichlet problem for some semilinear elliptic equations of the second order[END_REF]. Up to our knowledge, the gap between N 0 = pp ′ and N 2 remains for general g, excepted in the radial case, see [START_REF] Cabre | Regularity of radial minimizers of rection equations involving the p-Laplacian[END_REF].

We end this paragraph with a boundness property when g has a slow growth:

Proposition 5.31 Assume that g satisfies (5.10)and (1.3) for some Q ∈ (p -1, Q 1 ) , and g is convex near ∞, and f ∈ L r (Ω) with Qr ′ < Q 1 .

Then v * ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) and is a variational solution of (PVλ * ).

Proof. As in Proposition 5.12, it follows from Corollary 5.25 and Proposition 2.14 (i).

Boundedness and multiplicity under Sobolev conditions

Next we assume only that g is subcritical with the Sobolev exponent:

and f ∈ L r (Ω) with (Q + 1)r ′ < p * . Then J λ is well defined on W 1,p 0 (Ω) and J λ ∈ C 1 (W 1,p 0 (Ω)).

Proposition 5.32 Assume (5.10) and (5.23), g convex near ∞, and f ∈ L r (Ω) with (Q+1)r ′ < p * . Let (λ n ) be a sequence of positive reals such that lim λ n = λ > 0, and (v n ) be a sequence of solutions of (PVλ n ) such that v n ∈ W 1,p 0 (Ω), and

Proof. We still have

where J is defined at (5.17). From Proposition 5.24, (f g(v n ) p-1 ) is bounded in L 1 (Ω). Following the method of ( [START_REF] Jeanjean | Bounded Palais-Smale Mountain-path sequences[END_REF]), suppose that up to a subsequence, lim v n W 1,p 0 (Ω) = ∞, and consider w n = with ℓ = (p -1)/Qr ′ -(N -p)/N, and C 0 = C 0 (N, p, Q, r) for p < N, and

(Ω) for some ε > 0. From Theorem 2.6 we can extract a subsequence converging a.e. in Ω to a renormalized solution of problem (6.2).

(iv

Then

, and satisfies

And (ϕ n ) converges to 0 strongly in L 1 (Ω), and (η n ) is bounded in L 1 (Ω), since f ∈ L r (Ω) and

From [25, Section 5.1], up to a subsequence, (w n ) converges a.e. in Ω to a function w. And (w

) is bounded in L 1 (Ω), for any s < N/(N -p), and r ′ < N/(N -p), thus (|w n | (p-1)r ′ ) converges strongly in L 1 (Ω) to |w| (p-1)r ′ ; hence w ≡ 0. And (ψ n ) converges strongly in L 1 (Ω) to λf |w| p-1 , hence (η n ) converges strongly to some η ∈ L 1 (Ω) . Therefore, w is a renormalized solution of problem -∆ p w = η, in Ω, and |η| ≦ λf (x) |w| p-1 a.e. in Ω. (6.9)

From Proposition 2.14 (i), we get w ∈ W 1,p 0 (Ω), since r > N/p. Then

which is contradictory. Then as above there exists a renormalized solution of problem (6.2).

Here the estimate of (|U n | Qr ′ ) does not hold, but we construct a special approximation (U n ) satisfying the estimate: we still have, for any V ∈ W 1,p 0 (Ω) and U = F n (V ),

( 1) . Since Q > p -1, then x(U ) < x(V ) as soon as a (Q-p+1)/(p-1) b ≦ C(p, Q), which is assumed in (6.5) and x(V ) ≦ y = y(a, b, p, Q) small enough. Using the Schauder Theorem in the set of functions V ∈ W 1,p 0 (Ω) such that x(V ) ≦ y and U W 1,p 0 (Ω) ≦ C n there exists a solution U n ∈ W 1,p 0 (Ω) of (6.6) such that Ω |U n | Qr ′ dx is bounded. We conclude as before.

3) is sharp, from Theorem 1.2. The proof given above for Q > p -1 still works for Q = p -1, but condition (6.5) obtained in that case is not sharp.

We end this paragraph by an non existence result.

Proof. It follows from Lemma 2.17: if there exists a solution with a measure, there exists a solution without measure. In case (i) it follows also from Theorems 4.1 and 1.1: problem (1.4) has no solution, thus the same happens for problem (6.10).

Applications to problem (PUλ)

From the existence results obtained for problem (PVλ), we deduce existence results for problem (PUλ) by using Theorem 1.1. Starting from a function β satisfying (1.1), we associate to β the function g defined by the change of unknown, namely by (3.1). We recall that if β is defined on [0, ∞) , then also is g;

In some results we assume that g satisfies (1.3):

In the case β constant Theorem 1.2 follows:

Proof of Theorem 1.2. Any renormalized solution u of (1.4) satisfies (p -1)

Then from existence and uniqueness of the solutions of (2.2) when µ ∈ M 0 (Ω), v is also a renormalized solution; as in the proof of Theorem 1.1 (case p = 2 or N ), it follows that µ ∈ M + s (Ω) , thus µ = 0, and

; and for any µ s ∈ M + s (Ω) there exists a solution v s of (1.17) from Theorem 1.6, thus a corresponding solution u s ∈ W 1,p 0 (Ω) of (1.4). The nonexistence follows from Proposition 6.4.

Our next result follows from Corollary 5.9, Theorem 1.6 and Propositions 5.10, 5.12:

; and there exists an infinity of less regular solutions u s ∈ of (PUλ).

Then for any λ > 0 there exists a renormalized solution u of (PVλ) such that v = Ψ(u) satisfies

There exists also an infinity of less regular solutions u s of (PUλ).

(iii) Suppose (1.3) with p -1 < Q < Q 1 , and f ∈ L r (Ω) with Qr ′ < Q 1 . Then for λ > 0 small enough, there exists a solution u ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) of (PUλ), and an infinity of less regular solutions.

From Proposition 5.1 and Theorem 5.8 we deduce the following: Corollary 7.2 (i) Assume (1.1), and f ∈ L r (Ω) , r > N/p. Then for λ > 0 small enough, there exists a minimal solution u λ ∈ W 1,p 0 (Ω) ∩ L ∞ (Ω) of (PUλ), with u λ L ∞ (Ω) < L. (ii) Suppose moreover that lim t→L β(t) > 0 and tβ(t) is nondecreasing near L, and f ≡ 0, . Then there exists λ * > 0 such that if λ ∈ (0, λ * ) there exists a minimal solution

if λ > λ * there exists no renormalized solution.

From Theorems and 1.4, and 1.5 and Remark 3.2, we obtain the following:

Extensions

1) In the correlation Theorem 1.1, we can assume that f depends also on u or v. If u is a solution of a problem of the form

where f (x, u) ∈ L 1 (Ω), f (x, u) ≧ 0, then formally v is a solution of

Conversely, if v is a solution of a problem of the form

then formally u is a solution of

This extends strongly the domain of applications of our result.

Remark 7.8 This argument was an essential point in the Proof of Theorem 1.3: we used the fact that, for any g satisfying (1.2) with Λ = ∞, and any v ∈ W(Ω), such that

Let us give a simple example of application:

Corollary 7.9 Let ω ∈ C 1 ([0, ∞)) be nonnegative and nondecreasing, and f ∈ L r (Ω) , r > N/p. Consider the problem

(i) Then for small λ > 0, there exists a solution in W 1,p 0 (Ω) ∩ L ∞ (Ω) . (ii) Assume that lim sup t-→∞ ω(t) p-1 /e kt < ∞ for some k > 0.

If r ′ (k + 1) < N/(N -p) then for any small λ > 0, there exists an infinity of solutions in W 1,p 0 (Ω).

If r ′ (k/p ′ + 1) < N/(N -p) and ω is convex, there exists two solutions in

). And g satisfies (1.3) with Q = (p -1)(k + 1), and is convex when ω is convex. The results follows from Proposition 5.1, Theorems 1.1, 1.6 and 1.5.

Remark 7.10

In particular for any b > 0, for any f ∈ L r (Ω) , r > N/p, and small λ > 0, problem

has an infinity of solutions in W 1,p 0 (Ω), one of them in L ∞ (Ω) , two of them if b ≧ p -1.

2) Theorem 1.1 also covers and precises the recent multiplicity result of [1, Theorem 3.1], relative to radial solutions of problems with other powers of the gradient:

with m > 1 and q ≧ (m -1)N/(N -1), where f is radial and f ∈ L r (Ω) , r > N (q -m + 1)/q, and c > 0. Then there exists λ > 0 such that for any λ < λ, problem (7.5) in D ′ (Ω) admits an infinity of radial solutions, and one of them in C 1 Ω .

Proof. In the radial case, problem (7.5) only involves the derivative w ′ :

hence the change of functions w ′ = A |u ′ | p/q-1 u ′ with p = q/(q -m + 1) and A = (c/(p -1) -p/q . reduces formally to -r

where ρ = (c/(p -1)) p-1 λ. By hypothesis, 1 < p ≦ N, and f ∈ L r (Ω) , r > N/p. From Theorem 1.2, for any ρ < λ 1 (f ) defined at (1.16), and for any measure µ s ∈ M + s (B(0, 1)) there exists a renormalized nonnegative solution v s of problem

thus there exists an infinity of nonnegative solutions

Take µ s,a = aδ 0 , with a > 0. Then (7.8) has at least a radial solution v s,a , obtained as in Theorem 6.2 by the Schauder theorem for radial functions. Then u = u s,a is radial, and r → u(r) satisfies (7.7) in D ′ ((0, 1)), hence u ∈ C 1 ((0, 1]) and u ′ (r) < 0. Then w

going to the limit, we find that w is a solution of (7.5) in D ′ (Ω). Then there exists an infinity of radial solutions of (7.5) for any λ < λ = ((p -1)/c) p-1 λ 1 (f ). And taking µ s,a = 0, the problem in u admits a bounded radial solution u 0 ∈ C 1 ([0, 1]), thus (7.5) admits a radial solution w 0 ∈ C 1 Ω .

Remark 7.12 Moreover, since v s is radial, from the assumptions on f, we know the precise behaviour near 0 of the singular solutions:

). If q > m, that means if q > p, then w is bounded, the singularity appears at the level of the gradient. If q < m, then w(r) = Cr -(m-q)/(q-m+1) (1+o(1)), with C = C(N, m, q, c). If q = m-1, then w(r) = C(-ln r) -1 (1+o(1)).

If q = (m-1)N/(N -1), then p = N, and lim r→0 (-ln r)

Appendix

Proof of Lemma 2.12. The relation is known for V ∈ W 1,p 0 (Ω), see for example [START_REF] Allegretto | A Picone's identity for the p-Laplacian and Applications[END_REF]. Let F = -∆ p V, and

. And (V n ) is nondecreasing; from Remark 2.11, (V n ) converges a.e. to a renormalized solution w of -∆ p v = -∆ p V ; from uniqueness, w = V ; and

From the Fatou Lemma U p V 1-p (-∆ p V ) ∈ L 1 (Ω), and (2.11) holds.

Proof of Lemma 2.13. We have m ∈ (1, N/p) for p < N, and m = 1 for p = N.

• First suppose 1 < m < N/p, thus p < N. Let ε > 0 and k > 0. We use the test function φ β,ε (T k (U )), where φ β,ε (w) = w 0 (ε + |t|) -β dt, for given real β < 1.We get

Setting η = (p -1)mN/(N -m) and then η * = (p -1)N m/(N -pm), we take

• Assume m ≧ m, p < N. Then L m (Ω) ⊂ W -1,p ′ (Ω), thus, from uniqueness, U ∈ W 1,p 0 (Ω) and it is a variational solution. More precisely, L m (Ω) ⊂ W -1,N m/(N -m) (Ω). If m = m, then N m/(N -m) = p ′ , and (8.6) follows. If m > m, then from [START_REF] Kinnunen | A local estimate for nonlinear equations with discontinuous coefficients[END_REF], [START_REF] Kinnunen | A boundary estimate for nonlinear equations with discontinuous coefficients[END_REF], U ∈ W 1,ℓ (Ω) with ℓ = (p-1)N m/(N -m), and (8.6) still holds, and (iii) follows for m ≧ m; and (i) and (ii) from the Sobolev injection. Another proof in case m > N/p is given in [START_REF] Peral | Multiplicity of solutions for the p-Laplacian[END_REF].

• Assume m > 1 and p = N. then again L m (Ω) ⊂ W -1,N m/(N -m) (Ω), hence (8.6) still holds, and then U ∈ L ∞ (Ω).

Proof of Proposition 2.14.

Next suppose p < N. First assume that Qr From the Fatou Lemma and Lebesgue Theorem, going to the limit as n -→ ∞ for fixed m, since the truncations converge strongly in W 1,p 0 (Ω), we deduce

Then T m ((V -U ) + = 0 for any m > 0, thus V ≦ U a.e. in Ω.