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Abstract. We present a game-theoretic foundation for gene regulatory
analysis based on the recent formalism of rewriting game theory. Rewrit-
ing game theory is discrete and comes with a graph-based framework
for understanding compromises and interactions between players and for
computing Nash equilibria. The formalism explicitly represents the dy-
namics of its Nash equilibria and, therefore, is a suitable foundation for
the study of steady states in discrete modelling. We apply the formalism
to the discrete analysis of gene regulatory networks introduced by R.
Thomas and S. Kauffman. Specifically, we show that their models are
specific instances of a C/P game deduced from the K parameter.

1 Introduction

Gene regulation concerns the mutual inhibition and activation among genes and
the wider impact this has on cells and on whole organisms through the resulting
protein production or lack thereof, aka gene expression. In particular, the regu-
lation of genes may involve complex regulatory processes such as auto-regulation
and feedback loops, possibly via complex pathways. Studying regulation benefits
from using formal tools to give well-founded explanations of their complexities.
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Substantial work has focused on stochastic techniques and differential equa-
tions (over time) [4]. In this article, we focus on the two best known state-based
(aka logical and multivalued) models, due to Kauffman [5, 6] and Thomas [18, 19].
The two models are discrete and aim at providing qualitative information about
the dynamic aspects of gene regulation [4]. They are underpinned by the defi-
nition of a state graph that is intended to represent possible gene-state changes
[1, 19]. Informally, analyzing the dynamics of the state graph is based on the
identification of paths having specific topological properties. Notions in dynami-
cal systems are translated into topological properties on the graph. A trajectory
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is a pathway, a steady state is a sink (i.e., a vertex with no output edge), and
periodicity is described by a cycle. Terminal cycles and sinks are remarkable
topological features because they both embody attractors. Special attention is
paid to attractors because they represent robust and steady characteristic modes
of a dynamic system. Hence they can be considered as functional features (ca-
pabilities) of the system at a more integrated level because, over time, evolution
will make the system reach one of them as influenced by external conditions.

Cycles, sinks and more generally attractors, can be computationally unified
in a homogeneous notion of terminal strongly connected components (TSCC).
Basically, it represents a sub graph where any two vertices are connected to-
gether by a cycle and from where there is no escaping path. The topology of
the attractor is often interpreted as a characteristic feature of the regulatory dy-
namics. For instance, cycles and sinks correspond respectively to homeostasis [2]
and multi-stationarity. However to embrace the complexity of these dynamics,
one must understand and be able to work with them as mathematical objects in
a general and ideally algebraic manner to smoothly and coherently address all
the known and desirable features of gene regulation and to accommodate future
discoveries. In other words, a foundation is called for that, on the one hand, is
flexible and general and, on the other hand, employs a conceptual and technical
framework that sheds direct light on the issues at hand, i.e., that can bridge
the gap between topological features in a state graph and regulatory effects of
inter-dependent but autonomous genes.

The cornerstone of our contribution is to show that the steady states of gene
regulatory networks, as they are commonly understood, are a recently estab-
lished kind of Nash-style equilibria, called change-of-mind equilibria [14]. The
game-theoretic perspective we provide is technically and conceptually beneficial
because non-cooperative game theory is the embodiment of the compete-and-
coexist reality of genes and because it allows us to leverage the independently
developed theory of dynamic equilibria in rewriting game theory. In particu-
lar, we show that Kauffman’s and Thomas’ models can be defined as specific
instances of a particular game-skeleton. Technically, this recasts steady states
(attractors) and gene regulation to the fixed-point construction underlying our
discrete Nash equilibria. In particular, we show that steady states are the least
non-empty fixed points (in a lattice of fixed points) of the update functions
already considered by Kauffman and Thomas.

In Section 2, we briefly account for (rewriting) game theory, computation of
discrete Nash equilibria, and the very general game formalism involved, called
conversion/preference (C/P) games. In section 3, we review the discrete models
for gene regulation introduced by Kauffman and Thomas. In section 4, we show
that the two models can be viewed as instances of a C/P game.

In [15], we apply rewriting game theory to protein signalling in mitogen-
activated protein kinase (MAPK) cascades, which govern biological responses
such as cell growth. The aim there is more practical than in this article and
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v2 1, 0 0, 1

Fig. 1. Example of sequential(extensive form) and strategic game(normal form)

involves establishing an analytic model for protein signalling in the first place
and to develop tool support for it.

2 Rewriting Game Theory

In this section, we first provide a gentle reminder of the relevant ideas in game
theory (Section 2.1) and then introduce the principles of a framework for dis-
crete game theory (Section 2.2), before going into more technical details in the
remainder of the section. The framework generalises the notions of strategic
games and Nash equilibria without involving probability theory and continuous
notions. Good accounts of traditional game theory are [9, 13].

2.1 Non-Cooperative Game Theory

Non-cooperative game theory is game theory based around the notion of Nash
equilibrium. Nash equilibria are defined over strategies that account for the in-
tended behaviour of all agents/players in a game. We say that an agent is happy
if he cannot change his contribution to a (combined) strategy and generate a
better overall outcome for himself. A (combined) strategy is a Nash equilibrium
if all agents are happy with it. Game theory involves a wide spectrum of games
and theories. However two kinds of games are usually considered for modelling :
sequential games and strategic games. An example using a sequential game in ex-
tensive form is in Figure 1, left. An example of a strategic game in normal-form
is in the figure, right.

A play of the game on the left is a path from the root to a leaf, where the
first (second) number indicates the payoff to agent a1 (a2). A strategy over the
game, by contrast, is a situation where a choice has been made in all internal
nodes, not just in the nodes on a considered path. While it might look like the
strategy of a1 going right and a2 going left is good, it is not a Nash equilibrium
because a2 can go right, for a better payoff. At that point, also a1 can benefit
from changing his choice and, in fact, the only Nash equilibrium in the game
is a1 (a2) going left (right). Nash equilibria can be guaranteed to exist for all
sequential games, a result known as Kuhn’s Theorem [7, 20].

In strategic games, players act simultaneously. In contrast to sequential games,
Nash equilibria do not always exist in a pure form in strategic games. An exam-
ple is above on the right. In the example, there are two players: vertical, who
chooses a row and gets the first payoff, and horizontal, who chooses a column and
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gets the second payoff. As can be seen, in no outcome are both players happy,
i.e., one player always can and wants to move away. Instead, Nash’s Theorem
says that a probabilistic combination of strategies exists, where the agents are
happy with their expected payoffs [10, 12]. In the example, the only probabilis-
tic Nash equilibrium arises if both agents choose between their two options with
equal probability for expected payoffs of a half to each. Despite their clear math-
ematical interest, probabilistic strategies are often difficult to understand in a
modeling context. In the strategic-form game above, for example, expected pay-
offs of a half to each agent result if just one agent chooses with equal probability
between his two options. But, such situations do not amount to Nash equilibria.
Addressing the hows and whys of this in general quickly turns in to pure prob-
ability theory, with justifications that need not necessarily be meaningful in the
application area.

2.2 Conversion/Preference Games

Conversion/preference (C/P) games have been designed as an abstraction over
strategic-form games and as a game formalism that introduces as few concepts as
possible. This aim leads us to distinguish two relations on strategies, Conversion
and Preference. The key concept of C/P games is the synopsis, which abstracts
the notion of (combined) strategies. Roughly speaking, conversion says how an
agent can move from a synopsis to another; in other words, it says which changes
are allowed on synopses for a given agent. An agent makes choices among syn-
opses according to which he prefers over others. It should be noted that conver-
sions and preferences depend on agents. In what follows, conversion is denoted

// and preference is denoted ⊳. Clearly strategic-form games are instances of
C/P games, conversions are one dimension move (for instance along a line or a
column), while preferences are given by comparisons over payoffs: a synopsis is
preferred by an agent over another if his payoff is larger in the former.

Definition 1 (C/P Games [14]) Gcp are 4-tuples 〈A,S, ( //
a

)a∈A, (⊳a)a∈A〉:

– A is a non-empty set of agents.

– S is a non-empty set of synopses (read: outcomes of the game).

– For a ∈ A, //
a

is a binary relation over S, associating two synopses if

agent a can convert the first to the second.

– For a ∈ A, ⊳a is a binary relation over S, associating two synopsis if agent a
prefers the second to the first.

The idea of the definition is to make explicit the parts of strategic-form games
that are relevant to the definition of Nash equilibria and to dispense with any
other structural constraints, such as the uniform restriction that ‘vertical’ can
only move up and down. To illustrate, we note that the example we considered
earlier amounts to the C/P game in Figure 2.
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Fig. 2. Conversions and Preferences example

s //
a

s′ s ⊳a s′

s →a s′

Fig. 3. The (free) change-of-mind relation for agent a in Gcp

2.3 Abstract Nash Equilibrium

The following definition says that a synopsis s, i.e., our abstraction over (com-
bined) strategies, is an abstract Nash equilibrium if and only if all agents are
happy, meaning that whenever an agent can convert s to s′ then it is not the
case that he prefers s′ to s. The notion of abstract Nash equilibrium specialises
to Nash’s concrete form in the presence of the discussed structural constraints
on strategic-form games.

Definition 2 (Abstract Nash Equilibrium [14]) Given Gcp.

EqaN(s) , ∀a ∈ A, s′ ∈ S . s //
a

s′ ⇒ ¬(s ⊳a s′)

We suppress the word abstract from the definition for the reason discussed
above: in strategic-form games, the notions coincide. [14]. Said differently, Defi-
nition 2 is merely a more general (and simpler) way of writing what Nash wrote
[10, 12]. Technically, the form of our definition is intended to facilitate the fol-
lowing definition, thus giving rise to the name rewriting game theory.

Definition 3 ([14]) Given Gcp, the change-of-mind relation, →a, for agent a
is given in Figure 3. Let → ,

⋃
a∈A →a.

In other words, a Nash equilibrium is a synopsis for which there is no outgoing
change-of-mind step, i.e., an →-irreducible (aka a →-normal form).

Proposition 4 ([14]) EqaN(s) ⇔ s ∈ IrR→

The benefits of the changed perspective on game theory are partly concep-
tual, in the first instance for people that like rewriting, but they are also technical
in that Proposition 4 highlights the positive notion, i.e., change-of-mind, that
is behind Nash’s original definition and through which we get easy access to a
range of formal(ist) tools, not least of which is definition and proof by induction.
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2.4 A Graph-Theoretic Construction

Returning to our rewriting/graph-theoretic view on game theory, we note that
for arbitrary finite graphs only cycles can prevent the existence of terminal nodes.
We show in this section how that simple observation suffices for underpinning a
discrete version of Nash’s Theorem for arbitrary finite C/P games. The relevant
graph-theoretic notion we need for capturing all cycles is strongly connected
components.

– A graph is a binary relation on a carrier set, called vertices: →⊆ V × V .
– The reflexive, transitive (or pre-order) closure, →∗, of a graph, →, is

v1 → v2

v1 →∗ v2 v →∗ v

v1 →∗ v v →∗ v2

v1 →∗ v2

– The strongly connected component (SCC) of a vertex, v, in a graph is

⌊v⌋ , {v′ | v →∗ v′ ∧ v′ →∗ v}

(The relation “is in the ⌊−⌋-class of” is an equivalence relation.)
– The set of SCCs of a graph is

⌊V⌋ , {⌊v⌋ | v ∈ V}

– The shrunken graph of →⊆ V × V is y⊆ ⌊V⌋ × ⌊V⌋, defined by

Va y Vb , Va 6= Vb ∧ (∃va ∈ Va, vb ∈ Vb . va → vb)

The following result says that a Nash equilibrium exists in the “shrunken”
game of any finite original C/P game.

Theorem 5 ([14]) For any finite C/P game, 〈A,S, ( //
a

)a∈A, (⊳a)a∈A〉,

– 〈A, ⌊S⌋, (ya)a∈A, (ya)a∈A〉 has a Nash equilibrium,
– all of which can be found in linear time in the size of S and →.

Nash’s Theorem says that probabilistic Nash equilibria exist for all finite
strategic-form games. By comparison, the result above says that “shrunken”
Nash equilibria always exist for finite members of the much larger class of C/P
games. We clarify what the ⌊−⌋-qualifier means next.

2.5 Change-of-Mind Equilibria

The topic of this section is to directly characterise the Nash equilibria prescribed
by Theorem 5. Naively speaking, our notion of change-of-mind equilibrium is
simply the graph underlying the considered compromises between synopses.

Definition 6 (Change-of-Mind Equilibrium) Write
S
→ for → ∩ (S × S).
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0, 1
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1, 0 // 0, 1
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Fig. 4. Change-of-mind equilibrium for our running strategic-form example

– Eqcom(s) , ∀s′ ∈ S . (s→∗s′ ⇒ s′ ∈ ⌊s⌋)

– Eqcom(
⌊s⌋
→) , Eqcom(s)

We refer to the former notion as change-of-mind equilibrium points and the
latter simply as change-of-mind equilibria. The concept of change-of-mind equi-
librium is well-defined because “ ∈ ⌊s⌋” is an equivalence relation.

Lemma 7 Consider 〈A,S, ( //
a

)a∈A, (⊳a)a∈A〉, 〈A, ⌊S⌋, (ya)a∈A, (ya)a∈A〉.

Eqcom(
⌊s⌋
→) ⇔ EqaN(⌊s⌋)

The lemma implies that the Nash equilibria prescribed by Theorem 5 have
the property that no agent can escape from them. Agents are allowed to move
within the equilibria but they will have to stay within the set perimeter. We will
return to the issue of size of the perimeter in Section 5. For now, we note that our
running example, see Figure 1, left, and Figure 2, has the change-of-mind equi-
librium in Figure 4. We note that both the probabilistic Nash and the change-
of-mind equilibria of the example involve all four outcomes. The probabilistic
version prescribes an exact expected payoff, while the discrete change-of-mind
version makes the dynamics behind the equilibrium clear. The two notions may
differ quite substantially in general but neither is uniformly smaller, has higher
(implied) payoff values, or is better in any similar sense.

3 Basic State-Based Analysis of Gene Regulation

Kauffman’s and Thomas’ models differ on a number of minor and on one major
issue, relative to our presentation. Among the minor ones, we count Kauffman’s
assumption that i) genes are boolean, i.e., that they can be in exactly two states:
active (expressing protein) or inactive and that ii) when one gene regulates an-
other it is always either repressing or activating it. Assumption ii) is reflected in
the signs (polarities) annotated to the regulatory-network example at the begin-
ning of Section 1. The major difference between the two approaches concerns the
way states are updated. In Thomas’ model only one gene is updated at each step
(asynchronous update) while in Kauffman’s all genes are updated (synchronous
update), albeit possibly reflexively. We return to this issue in Section 3.2.
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G = {cI , cro}, with cI 0 < cI1 and cro0 < cro1 < cro2

cI cro

KcI (〈 , cro0〉) = cI 1

KcI (〈 , cro1〉) = cI 0

KcI (〈 , cro2〉) = cI 0

Kcro(〈cI 0, cro0〉) = cro2

Kcro(〈cI 0, cro1〉) = cro2

Kcro(〈cI 0, cro2〉) = cro0

Kcro(〈cI 1, 〉) = cro0

Fig. 5. Two-variable regulatory network for phage λ ( is wildcard)

3.1 Regulatory Networks

On the minor issues, we essentially follow Thomas’ more general perspective of
allowing for a gene to assume a fixed but unbounded number of states (albeit
typically 2 or 3) and of using a more detailed way of specifying regulation.

Definition 8 (Regulatory Networks) are 3-tuples 〈G, y, K〉:

– G is a non-empty set of genes, ranged over by g, gi and each associated with
a non-empty, linearly ordered set of states, 〈Sg, <

g〉, ranged over by sg, sgi ;
– y ⊆ G×G, a relation, with g1 y g2 saying that g1 may regulate g2 — let

Ig , {gi | gi y g} be the regulatory inputs to g;

– KG ,
⊗

g∈G Kg, are comfort functions, Kg :
⊗

gi∈Ig
Sgi

→ Sg, for each
gene saying when g is being regulated and what state it is pushed towards.

We note that G is not restricted to genes, per se, but could also contain,
e.g., proteins, or something completely different. We also note that our comfort
functions are seeming slightly more general than Thomas’ corresponding notion
of logical parameters for the simple reason that, as given, Definition 8 is more in
line with our other definitions; for the examples we consider, we shall not need
the extra expressive power. Finally, we will sometimes use the comfort functions,
Kg, as if they had type

⊗
gi∈G Sgi

→ Sg, with the obvious implicit coercion.
As an example, Figure 5 displays a regulatory network similar to the Kauffman-

style one at the beginning of Section 1, namely the standard example of bacte-
riophage lambda (phage λ), with two genes: cI and cro.

3.2 Gene-State Updates

Both Kauffman’s and Thomas’ analyses proceed by considering the state space
of a given regulatory network,

⊗
g∈G Sg, and both prevent updates across a

state, e.g., cI 0 to cI 2. The rationale for the latter is that moving from a state to
another involves a phase transition, which is costly in terms of energy, and two
phase transitions should therefore not be considered atomically. They differ in
what state they predict the system will move to from a given state.

In Kauffman’s case, above left, each gene is prompted for its comfort state
relative to the states of all genes in the given point in the state space and a
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〈cI 0, cro0〉

〈cI 0, cro1〉 〈cI 1, cro0〉

〈cI 1, cro1〉

〈cI 0, cro2〉 〈cI 1, cro2〉

〈cI 0, cro0〉

〈cI 0, cro1〉 〈cI 1, cro0〉

〈cI 1, cro1〉

〈cI 0, cro2〉 〈cI 1, cro2〉

Fig. 6. Kauffman (left) and Thomas (right) analysis of two-variable phage λ

synchronous move is made towards the combined comfort state, while allowing
for at most one phase transition for each gene. If a gene is not regulated upon,
i.e., if no comfort state is specified, it retains its state. Reflexive state-space
transitions are not considered. The details for the example in Figure 5 are in
Figure 6, left.

In Thomas’ case, Figure 6 right, each gene is prompted as before but moves
are made asynchronously, i.e., each state may have several moves out of it,
one for each gene being considered. In the figure, we indicate cI -updates with
dashed arrows and cro-updates with dotted arrows, although the two are not
distinguished in the actual analysis.

3.3 Steady States

In the two state graphs above, 〈cI 1, cro0〉 clearly plays a special role: it is a
static steady state, i.e., it is the only state that does not have arrows out of it.
From this, we can seemingly, i.e., we would like to, conclude that if the two genes
end up in that configuration, they stay that way. The relevance of state-based
analysis comes from the fact that the state in question has been observed to
be (self-)sustainable: it is phage λ’s lysogenic state that “involves integration of
the phage DNA into the bacterial chromosome [of its host] where it is passively
replicated at each cell division — just as though it were a legitimate part of the
bacterial genome” [21].

Similarly, there is an inescapable cycle, i.e., a dynamic steady state, involving
〈cI 0, cro1〉 and 〈cI 0, cro2〉 in both graphs. The implied regulatory flip-flopping
between 〈cI 0, cro1〉 and 〈cI 0, cro2〉 is, in fact, biologically characteristic of phage
λ’s lytic state in which it actively uses its host’s transcription mechanism to
replicate itself [21].4

In our formalism, and despite their obvious topological differences, both
the static and the dynamic steady states described are simply change-of-mind-
equilibria, which means that they can be uniformly accommodated as far as our
general theory goes. More, the biological justification for why the states are spe-

4 The cycle between 〈cI 0, cro0〉 and 〈cI 1, cro1〉 is a known false positive of Kauffman’s
model.
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cial, i.e., that they are inescapable, is the exact the justification for why they
are both change-of-mind equilibria.

4 C/P games-based Modeling of Gene Regulatory
Networks

Our modeling of Kauffman/Thomas-style gene regulation via C/P games will
have the update graphs exemplified in Figure 6 as change-of-mind relations.
Several ways of specifying the C/P-game 4-tuple, 〈A,S, ( //

a
)a∈A, (⊳a)a∈A〉, will

lead to the desired result. The approach we take interprets the distinction be-
tween conversion and preference as chemical reality vs observation of the same.
Specifically, we distinguish chemical reactions that genes and proteins are in-
volved in and how closely we choose/are able to observe changes.

Given a regulatory network, 〈G, y, KG〉, with associated gene states, (Sg)g∈G,

we take the gene state space, SG ,
⊗

g∈G Sg, as our set of synopses, S. Reflect-
ing the (perceived) universality of the considered chemical situation, we insist
that the conversion relations of all agents, whatever we specify them to be, are
the same. By default, we allow all state changes and leave it to the specific ap-
plications to put in place any necessary ad hoc restrictions.5 Following Thomas,
however, we are particularly interested in the at-most-one-phase-transition-at-
a-time restriction.

Definition 9 For linear order g0 < . . . < gn, let gi ⊖ gj = i − j, and let

s //±1
s′ , ∀g ∈ G . | πg(s) ⊖ πg(s

′) | ≤ 1

A C/P game whose conversion fulfills the previous definition is called 1-restrained.
Similarly straightforwardly, our preference relation is dictated by the comfort
functions, Kg, of a regulation network.

Definition 10 We say that s′ is a comfort approximation for g in s if

K-Approxg(s, s
′) , (πg(s) ≤ πg(s

′) ≤ Kg(s)) ∨ (πg(s) ≥ πg(s
′) ≥ Kg(s))

Definition 11 Given 〈G, y, KG〉 and for any s, s′ ∈ SG and g ∈ G, let

– s ⊳G s′ , ∀g . K-Approxg(s, s
′)

– s ⊳g s′ , K-Approxg(s, s
′) ∧ (∀g′ . g′ 6= g ⇒ πg′(s) = πg′(s′))

be the synchronous respectively g-asynchronous preference relations.

With this, we see that Kauffman-style regulation analysis is a 1-player reg-
ulation game, while Thomas-style regulation analysis is a multi-player game,
played by the considered genes. In Kauffman-style the 1-player is the whole set
of genes G, whereas in Thomas-style, players are the elements of G.

5 For example, for eliminating “false cycles” arising due to vastly differing kinetics for
two or more reactions, e.g., in the standard 4-variable model of phage λ [17].
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Theorem 12 (Regulation Games & Kauffman/Thomas) Given 〈G, y, KG〉,

– The Kauffman update function, cf. Figure 6, left, is the change-of-mind rela-

tion, →, of 〈G, SG, //±1
, ⊳G〉, the 1-restrained synchronous regulation game,

and the steady states are the change-of-mind equilibria, Eqcom.
– The Thomas update function, cf. Figure 6, right, is the change-of-mind rela-

tion, →, of 〈G, SG, ( //±1
)g∈G, (⊳g)g∈G〉, the 1-restrained asynchronous regu-

lation game, and the steady states are the change-of-mind equilibria, Eqcom.

Moreover, and in both cases, the static (dynamic) steady states are the change-
of-mind equilibria that are also (not) Nash equilibria, EqaN.

Proof The statements about the update functions follow by construction.
The statements about static vs dynamic equilibria are questions of terminology,
according to Proposition 4: “singleton change-of-mind equilibria are Nash equi-
libria”. That steady states and change-of-mind equilibria coincide follow from
Lemma 7 and (the proof of) Theorem 5, further to the characterisation of steady
states as terminal strongly connected components in [3]. �

In Figure 7 we depict the full regulation game of 2-variable λ-phage.

5 A Fixed-Point Construction

The original Thomas characterisation of steady states is in terms of fixed points
of the considered update function [17]. As noted earlier, that function is a specific
instance of the following function.

Definition 13 (Upgrade) U (S) ,
⋃

s∈S{s′ ∈ S | s→∗s′}

We first note that U always has fixed points.

Lemma 14 ([14]) The fixed points of U is a non-empty, complete lattice.

Proof U is monotonic on the complete lattice P(S) because →∗ is reflexive,
and we are done by Tarski’s Fixed-Point Theorem [16]. �

Example fixed-points are the empty set, ∅, and the whole set, S. The interest-
ing point is that the change-of-mind equilibria are exactly the least non-empty
(pre-)fixed-points of the upgrade function.

Lemma 15 ([14]) Consider some 〈A,S, ( //
a

)a∈A, (⊳a)a∈A〉.

Eqcom(
⌊s⌋
→)

m
U (⌊s⌋) = ⌊s⌋ ∧ (∀S′ . ∅ ( S′ ( ⌊s⌋ ⇒ U (S′) 6⊆ S′)

The characterisations of steady states in [17] and in [3] therefore coincide,
with the proviso that the fixed points are least non-empty, and both are instances
of our more general theory of dynamic equilibria in rewriting game theory.
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KcI (〈 , cro0〉) = cI 1

KcI (〈 , cro1〉) = cI 0

KcI (〈 , cro2〉) = cI 0

Kcro(〈cI 0, cro0〉) = cro2

Kcro(〈cI 0, cro1〉) = cro2

Kcro(〈cI 0, cro2〉) = cro0

Kcro(〈cI 1, 〉) = cro0

〈cI 0, cro0〉

〈cI 0, cro1〉 〈cI 1, cro0〉

〈cI 1, cro1〉

〈cI 0, cro2〉 〈cI 1, cro2〉

〈cI 0, cro0〉

〈cI 0, cro1〉 〈cI 1, cro0〉

〈cI 1, cro1〉

〈cI 0, cro2〉 〈cI 1, cro2〉

〈cI 0, cro0〉

〈cI 0, cro1〉 〈cI 1, cro0〉

〈cI 1, cro1〉

〈cI 0, cro2〉 〈cI 1, cro2〉

〈cI 0, cro0〉

〈cI 0, cro1〉 〈cI 1, cro0〉

〈cI 1, cro1〉

〈cI 0, cro2〉 〈cI 1, cro2〉

Fig. 7. λ-phage C/P game.

– The upper left hand-side diagram describes the convertibility relation.
– The upper right hand-side diagram describes the resulting C/P game.
– The lower left hand-side diagram is the preference relation of cI .
– The lower right hand-side diagram is the preference relation of cro.

6 Conclusion

In this article we introduce a game-theory based framework to model gene reg-
ulatory networks. We show that a discrete Nash equilibrium can be viewed as a
generalization of steady states in discrete models (TSCC). More, we show that
Thomas’ and Kaufman’s models are particular instances of a more general game
construction (that conceivably could have other interesting instances). Game
theory aims at describing equilibria coming from interactions between agents.
One way of viewing Nash-style equilibria is that they are logical expressions cap-
turing the functional units at the level of abstraction above the one at which the
considered game exists. In this paper, for example, we have shown that change-
of-mind equilibria can be used to predict what gene expression will take place.
In other words, we have moved from the chemical abstraction level of protein
binding and catalysis captured in expression games, up to the biochemical ab-
straction level of, e.g., phage λ’s lysogenic and lytic states. At the other end of
the spectrum, Maynard Smith has shown that a game-theoretic analysis of the

12



ecological concept of fitness leads to the formal substantiation of Darwinian evo-
lution, i.e., “survival of the fittest”. Our future work concerns similar treatments
of the various abstraction levels in between, namely chemical, biochemical, cellu-
lar, multi-cellular and environmental level. Game theory may provide a unified
framework to encompass theory occuring at different levels and to provide a
suitable framework to deal with interactions between levels in order to get an
integrative theory of biology.
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