
HAL Id: hal-00339766
https://hal.science/hal-00339766

Submitted on 18 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Space Lower Bounds for Graph Exploration via Reduced
Automata

Pierre Fraigniaud, David Ilcinkas, Sergio Rajsbaum, Sébastien Tixeuil

To cite this version:
Pierre Fraigniaud, David Ilcinkas, Sergio Rajsbaum, Sébastien Tixeuil. Space Lower Bounds for Graph
Exploration via Reduced Automata. SIROCCO 2005, May 2005, Le Mont Saint-Michel, France.
pp.140-154, �10.1007/11429647_13�. �hal-00339766�

https://hal.science/hal-00339766
https://hal.archives-ouvertes.fr

Space lower bounds for graph exploration via

reduced automata?

Pierre Fraigniaud? David Ilcinkas? Sergio Rajsbaum† Sébastien Tixeuil?

? CNRS, LRI, Univ. Paris Sud, France
† Instituto de Matemáticas, UNAM, D. F. 04510, Mexico

{pierre|ilcinkas|tixeuil}@lri.fr rajsbaum@math.unam.mx

Abstract. We consider the task of exploring graphs with anonymous
nodes by a team of non-cooperative robots modeled as finite automata.
These robots have no a priori knowledge of the topology of the graph,
or of its size. Each edge has to be traversed by at least one robot. We
first show that, for any set of q non-cooperative K-state robots, there
exists a graph of size O(qK) that no robot of this set can explore. This
improves the O(KO(q)) bound by Rollik (1980). Our main result is an
application of this improvement. It concerns exploration with stop, in
which one robot has to explore and stop after completing exploration.
For this task, the robot is provided with a pebble, that it can use to
mark nodes. We prove that exploration with stop requires Ω(log n) bits
for the family of graphs with at most n nodes. On the other hand, we
prove that there exists an exploration with stop algorithm using a robot
with O(D log ∆) bits of memory to explore all graphs of diameter at most
D and degree at most ∆.

Keywords: Graph exploration, finite automaton, robot, mobile agent.

1 Introduction

The problem of exploring an unknown environment occurs in a variety of situ-
ations, like robot navigation, network maintenance, resource discovery, WWW
search, etc. The environment is modeled as a graph where one or more mobile
agents, called robots in this paper, are trying to collectively traverse every one
of its edges. There is a large body of work, that considers several variants of the
problem, since at least 1951; see e.g. [1–8] and references herein.

In this paper we are interested in exploration of undirected graphs where
nodes are not uniquely labeled. Besides the theoretical interest of understanding
when or at what cost such graphs can be explored, this situation can occur
in practice, due to e.g. privacy concerns, limited capabilities of the robots, or
simply anonymous edge intersections. We do assume that a robot can identify

? This work has been supported by the projects: INRIA “Grand Large”, “PairAPair”
of the ACI “Masses de Données”, “FRAGILE” of the ACI “Sécurité et Informa-
tique,” LAFMI (Franco-Mexican lab in Computer Science), and PAPIIT-UNAM.

II

the edges incident to a node through unique port labels. Our main goal is to
compute complexity bounds on the amount of memory needed by a set of robots
as a function of the size of the graphs that they can explore.

A robot moves from one node to another along the edges. When in a node,
it (deterministically) decides on the port number of an incident edge to move
to the node at the other end of the corresponding edge. It is easy to see that
a robot can traverse all edges of some graphs, say a cycle, but that it cannot
recognize when it has visited a node twice, so it explores all the graph but never
stops. Thus we consider also robots that can mark nodes; as in previous work
e.g. [1, 2] the robot can drop a pebble in a node and later identify it and pick it
up. In this case the robot can explore a graph and stop.

1.1 Collective Exploration

A graph that a set of robots cannot explore when they all star from some given
node (or set of nodes) is said to be a trap for them. The first trap for a finite
state robot is generally attributed to Budach [3] (the trap is actually a planar
graph). The trap constructed by Budach is of large size. A much smaller trap
was described in [6]: for any K-state robot, there exists a trap of at most K + 1
nodes. In [7], Rollik proved that no finite set of finite cooperative robots, i.e.,
automata that exchange information only when they meet at a node, can explore
all graphs. In the proof of this result, the author uses as a tool a trap for a set
of q non-cooperative K-state robots. This latter trap is of size O(KO(q)) nodes.

The size1 Õ(KK·

·

·

K

), with 2q + 1 levels of exponential, of the trap constructed
for cooperative robots depends highly on the size of a trap for non-cooperative
robots.

In this paper, we first show (cf. Theorem 1) that for any set of q non-
cooperative K-state robots, there exists a 3-regular graph G, and two pairs
{u, u′} and {v, v′} of neighboring nodes, such that any robot of the set, starting
from u or u′, fails to traverse the edge {v, v′}. The graph G has O(qK) nodes,
thus improving the O(KO(q)) bound of [7] (cf. Corollary 1). By simply plugging
this new trap for non-cooperative robots in the trap for cooperative robots by

Rollik, we get a new trap of size Õ(KK·

·

·

K

), with q + 1 levels of exponential,
thus smaller than the one in [7] (cf. Corollary 2).

1.2 Exploration by a Single Robot

Theorem 1 has a significant impact on the space complexity of graph exploration
by a single robot. We distinguish the two types of exploration mentioned above
perpetual exploration and exploration with stop, where the robot has to stop once
exploration is completed.

1 The Õ notation hides logarithmic factors.

Space lower bounds for graph exploration via reduced automata III

In acyclic graphs, exploration with stop is strictly more difficult than per-
petual exploration. In particular, it is shown in [4] that exploration with stop in
n-node bounded degree trees requires a robot with memory size Ω(log log log n),
whereas perpetual exploration requires O(1) bits.

As mentioned above, when exploration with stop is required, the robot is
provided with a pebble. We prove (cf. Theorem 2) that exploration with stop
requires a robot with Ω(log n) bits for the family of graphs with at most n nodes.
Note that, in arbitrary graphs, perpetual exploration and exploration with stop
are not comparable because even if perpetual exploration is a simpler task than
exploration with stop, in the latter case the robot is given a pebble. Therefore,
even if the existence of a trap of at most K + 1 nodes for any K-state robot
described in [6] implies an Ω(log n) bits lower bound for the memory size of a
robot that performs perpetual exploration in all graphs with at most n nodes,
our Ω(log n) lower bound is not a consequence of the result in [6].

Finally, we prove (cf. Theorem 3) that there exists an exploration with stop
algorithm using a robot with O(D log ∆) bits of memory for the exploration with
stop of all graphs of diameter at most D and degree at most ∆.

2 Preliminaries

In Section 2.1 we define formally what we mean by a robot exploring a graph. In
Section 2.2 we describe the basic properties of a robot. In Section 2.3 we show
how to simplify the structure of a robot, for the proofs of the following sections.

2.1 Graphs and Robots

A robot considered in this paper traverses a graph by moving from node to node
along the edges of the graph. All nodes are identical and hence indistinguishable
to the robot. However, each edge has two labels, each one associated to one of
its two endpoints. The labels are arbitrary, except that the edges incident to a
node are required to have different labels in their endpoints corresponding to
the node. When a robot is in a node, it sees only the labels at the endpoints of
the edges incident to the node. This allows the robot to distinguish the edges
incident to the node through their unique labels, called local port numbers.

An edge may have different port numbers in its two endpoints. When a robot
is in a node s and traverses an edge to get to the node t at the other end of the
edge, it learns the label at t’s endpoint of the edge once it enters t. The robot
decides which edge to take to leave t based on this label, as well as on the other
local port numbers at t (and hence the degree of t). To compute memory lower
bounds, it suffices to consider graphs where both port numbers coincide, and
where all nodes have the same degree. In such a graph a robot can be described
by a very simple automaton, as we shall see next. Thus, the graphs considered
in this paper are δ-homogeneous undirected graphs: δ-regular and edge-colored.
A graph is δ-regular if each of its nodes has degree δ, and it is edge-colored if

IV

each edge is labeled with one of the integers in the set ∆ = {0, 1, . . . , δ − 1} in
a way that no two edges incident to the same node have the same color.

When a robot traverses a δ-homogeneous graph, each time it arrives to a
node the local environment looks exactly the same as in any other node: all
nodes are equal and in each node all local ports are 0, 1, . . . , δ − 1. Thus, the
robot decides which edge to take to exit the node based only on its current
state. Formally, a δ-robot or simply robot when δ is understood, is an automaton
A = (∆,S, f, s0), with a finite set of states S, an initial state s0 ∈ S, and a
transition function f : S → S ×∆. For a state s ∈ S with f(s) = (s′, i), denote
fst(s) = s′ and f`(s) = i. The δ-robot A moves on a δ-regular graph as follows.
Initially A is placed on a node of the graph in state s0. If A is in a node v in
state s then A moves to the node v′ such that the edge {v, v′} is labeled f`(s),
and changes to state fst(s). We say that A traversed the edge {v, v′}. We assume
that every state s ∈ S of A is reachable from s0 (unreachable states do not affect
the behavior of A and can be ignored). In Section 4 we will consider an extended
definition of a robot that can drop a pebble in a node and pick it up when it
returns to the node to drop it somewhere else.

A trap for a set of δ-robots is a pair (G, U), where G is a δ-homogeneous
graph and U is a set of nodes, such that if all the robots are placed in nodes of
u ∈ U , each in its initial state, then there will be an edge {v, v′} that is never
traversed by the robots.

2.2 Basic Properties

Consider a robot A = (∆,S, f, s0). The transition function f defines a directed
labeled graph G(A) = (S, F) with node set S and arc set F , such that the arc
s → t ∈ F iff fst(s) = t, and the arc has label f`(s). Notice that the labeled
graph G(A) together with the starting node s0 completely determine the robot
A.

Each node of G(A) has out-degree 1 because f is a function. It follows that
G(A) consists of a simple, possibly empty path starting in s0 and ending in some
node s1, followed by a simple cycle starting and ending in s1. This is because we
assume that A has no unreachable states and S is finite. Thus, the arc labels of
the path define a path word W0 over ∆, |W0| ≥ 0, and the arc labels of the cycle
define a cycle word W over ∆, |W | ≥ 1. Clearly, |W0W | = |S|. The footprint of
A is fp(A) = W0W

∗. When A is placed on a node of a graph in state s0, fp(A)
is the sequence of labels of edges traversed by A. The next lemma says that once
A reaches a node x of the graph in some state s that belongs to the cycle of
G(A), the path that A follows in G is a closed path that includes x; moreover,
A returns to x in the same state s.

Lemma 1. Consider a robot A with path and cycle words W0, W placed in a
node of a graph G. Let x be a node reached by A after at least |W0| steps, and
assume A is in state s at this moment. Then A will eventually be back in x in
state s.

Space lower bounds for graph exploration via reduced automata V

Proof. Consider the behavior of A after at least |W0| steps. The robot A is thus
changing from state to state along the cycle of G(A). Since this cycle is finite,
and G is also finite, the robot must be twice in the same node in the same state.
Assume for contradiction that A is not twice in (x, s), i.e. in node x in state s.
Then let x′ be the first node (after x) for which A is twice in the same state, s′.
Consider the path taken by A from the initial node to the first time it is in node
x′ in state s′, and let x1 be the last node before entering x′ in state s′ for the first
time. Suppose A is in state s1 at this time. So A is never twice in (x1, s1). When
A eventually returns to x′ in s′, the last node visited is x′′ in state s′′. But since
all the states considered in the lemma are in the cycle of G(A) (because A has
taken at least |W0| steps), it must be that s′′ = s1. Thus, f`(s

′′) = f`(s1), which
implies that x1 = x′′ (since G is homogeneous). Then A is twice in (x1, s1), a
contradiction. ut

2.3 Reduced Robots

A robot A is irreducible if G(A) satisfies two properties: (i) for any two consec-
utive (distinct) arcs s → s1 → s2, it holds f`(s) 6= f`(s1), and (ii) for the two
arcs with the same end-node s→ s1, s2 → s1, it holds f`(s) 6= f`(s2). We show
here how to obtain an irreducible robot A′ = (∆,S ′, f ′, s′0) from a robot A. The
behavior of A and of A′ on a graph will not be exactly the same, but will be
related in the sense that the region of a graph traversed by A cannot be much
larger than the region traversed by A′.

Let Ḡ(A) be the undirected graph corresponding to G(A). Then, if A is
irreducible and its simple cycle is of length at least 2, then Ḡ(A) is edge-colored.
Roughly speaking, we want the robot to be irreducible to construct a graph
based on Ḡ(A) on which the robot will be moving. Since the constructed graph
must be homogeneous, Ḡ(A) must be homogeneous. Then we can place A at
the beginning of the path of Ḡ(A) and it will never try to go out of Ḡ(A). To
obtain an irreducible robot A′ from A we perform a series of reduction steps that
modify its transition function and reachable states. When A, A′ are placed on
the same node of a graph, the path traversed by A′ is contained in the the path
traversed by A; essentially A′ skips some closed walks of A. These reductions
are formally defined next.

A reduction step is the operation consisting of transforming a robot A =
(∆,S, f, s0) into another robot A′ = (∆,S ′, f ′, s′0) where one of the above prop-
erties (i) or (ii) is enforced for two arcs, each corresponding to a type-i or type-ii
reduction step. The idea is to repeat type-i steps until no more are possible, and
hence the robot satisfies property (i), and then if property (ii) is not satisfied,
do a single type-ii step to enforce property (ii). Only type-i reductions change
the path traversed by the robot.

A type-i reduction step is applicable if G(A) has two consecutive distinct arcs
s→ s1 → s2 with f`(s) = f`(s1). First, if s = s2 (so the cycle is of length 2 with
same labels), A′ is obtained from A by letting f ′(s) = (s, i), where i = f`(s); and
if s1 = s0 then s′0 = s. For other states f ′ = f . Otherwise, if s 6= s2, it is possible

VI

that s has 0, 1, or 2 in-neighbors. In each of these cases A′ is obtained from A by
the following modifications. If s has 0 in-neighbors, then s = s0; let s′0 = s2. If s
has 1 in-neighbor t (t 6= s1), with f(t) = (s, i), then let f ′(t) = (s2, i); If s = s0

then let s′0 = s2. If s has 2 in-neighbors t1, t2, with f(t1) = (s, i), f(t2) = (s, j),
then s 6= s0; Let f ′(t1) = (s2, i) and f ′(t2) = (s2, j). For other states f ′ = f .
After doing these modifications, A′ is obtained by removing any unreachable
states. Notice that for each one of the previous 3 cases at least one unreachable
state is removed, namely s. Thus, at most K − 1 type-i reductions are possible,
starting from a K-state robot.

We will use the following properties of a type-i reduction. Since f`(s) =
f`(s1) = i, if the robot is in a node v of the graph in state s, then it moves to
v′, where {v, v′} is colored i, changes to state s1, and moves back to v, in state
s2. Thus, it is easy to check that a type-i reduction eliminates this v, v′, v loop
from the path traversed by the robot in the graph, and makes no other changes
to the path; that is, if the path arrives to v from w and then proceeds to w′

after traversing the v, v′, v loop, after the type-i reduction the robot will go from
w to v and then directly to w′. Therefore, before the reduction step, the robot
explores a node at most distance 1 from the nodes explored by the robot after
the reduction.

Once a type-i reduction step is not applicable in G(A), a single type-ii re-
duction step is used, defined as follows. Assume there are two states such that
f(s) = f(s1), that is, G(A) has two arcs with the same end-node s→ t, s1 → t,
and f`(s) = f`(s1); otherwise the reduction does nothing. Exactly one of s, s1

must be in the cycle of G(A), let’s say s1. So there is a path from t to s1. Notice
that this path is of length at least 1 (i.e. the cycle of G(A) is of length at least
2), because otherwise t = s1 and there is a loop from t to itself labeled f`(s),
and a type-i reduction is applicable.

Recall that fp(A) = W0W
∗. Let W ′ be the longest common postfix of W0

and W ; |W ′| > 0 by the type-ii assumption. We consider two cases: |W0| > |W
′|

and |W0| = |W
′|. In the first case W is a postfix of W0; let t1 be the in-neighbor

of the node just before W ′ starts in the simple path of G(A) and let t2 be
the node just before W ′ starts in the cycle of G(A); thus f`(fst(t1)) = f`(t2)
is the first letter of W ′. In both cases A′ is obtained from A by the following
modifications: If |W0| > |W

′|, let f ′(t1) = (t2, f`(t1)). If |W0| = |W
′| let s′0 = t2,

and removing any unreachable states.

We use the following two properties of a type-ii reduction. A type-ii reduction
does not change at all the path traversed by the robot in the graph. After a type-ii
reduction is executed property (ii) is satisfied, and property (i) is not violated.

The previous arguments imply:

Lemma 2. For any robot A = (∆,S, f, s0) the robot A′ obtained through the
longest possible sequence of type-i reductions followed by a type-ii reduction is
irreducible. Let k be the number of type-i reduction steps in this sequence. Then
k ≤ |S| − 1. Assume both start at some node of a given graph. Then any edge
traversed by A is at distance at most k from some edge traversed by A′.

Space lower bounds for graph exploration via reduced automata VII

3 A Trap for a Team of Non-Cooperative Robots

In this section, we focus on graph exploration by a team of non-cooperative
robots.

Theorem 1. For any set A of q non-cooperative K-state robots, there exist a
3-homogeneous graph G and two pairs of neighboring nodes {u, u′} and {v, v′}
such that (1) the edge {u, u′} is labeled 0, (2) starting at u or at u′, any robot
in A fails to traverse the edge {v, v′}, and (3) G has 10qK + O(q) nodes.

Proof. The proof is by induction on q ≥ 0. The basic step is q = 0. The corre-
sponding graph G is displayed on Figure 1.

u u’

v

v’

1

12

2

0

0

Fig. 1. Basic step of the induction

For the induction step, assume that Theorem 1 holds for q, and let us show
that it holds for q + 1. Let A be a set of q + 1 non-cooperative K-state robots,
and let A ∈ A. By induction hypothesis, let Gq be an n-node 3-homogeneous
graph (where n is 10qK + O(q)) having two pairs of neighboring nodes {u, u′}
and {v, v′} with the edge {u, u′} labeled 0, such that, starting at u or at u′, any
robot in A \ {A} fails to traverse the edge {v, v′}. We construct a graph Gq+1

that satisfies Theorem 1 for A.

Let Â be an irreducible robot obtained from A as in Lemma 2. Consider its
footprint fp(Â) = W0W

∗, |W0W | ≤ K. We concentrate first our attention on

Â, and will come back later to the original robot A. Let us denote by pi the
i-th letter in fp(Â). Recall that since Â is irreducible, its associated undirected

graph Ḡ(Â) is homogeneous.

Let us place Â at node u of Gq , and let us observe its behavior. Let H1 be
the graph obtained from Gq by “cutting” the edge {v, v′}. In H1, nodes v and

v′ are both connected to a pending “half-edge.” If Â traverses the edge {v, v′}
in Gq , then in H1 it traverses one of these two half-edges, say the half-edge e

pending at v. We consider two cases, depending on when Â traverses e.

Case 1. If Â traverses e at step i ≤ |W0| (so pi is the label of e), then we
connect to e a path of length |W0| − i whose extremity is denoted by w. The

edges of this path are labeled pi+1, . . . , p|W0|. Note that since Â is irreducible,

VIII

two consecutive labels of this path are distinct. At w, we add a ring of length |W |.
The edges of this ring are labeled p|W0|+1, . . . , p|W0|+|W | starting and ending at

w. Note that since Â is irreducible, two consecutive labels of the ring are distinct,
and the three labels p|W0|, p|W0|+1, and p|W0|+|W | are pairwise distinct. To avoid
parallel edges we add a ring of length 2|W | at w if |W | = 2; to avoid loops when
|W | = 1, we add a ring with labels abab, where a is equal to the single letter of
W , and b is different from a and from the label pi of e.

Case 2. If Â traverses e at step i > |W0|, then it traverses e to get into some

state s of the cycle in G(Â); assume this is the j-th state of the cycle (recall

that the cycle is assumed to start in the last state of the path of G(Â)). That

is, after traversing e, Â would traverse edges labeled p|W0|+j , p|W0|+j+1, . . .

Let x be the node of H1 reached by Â after |W0| steps, let W−1 be the

sequence W written in reverse order, and let Â−1 be the robot that traverses
edges labeled (W−1)∗. Thus, when Â−1 starts at x and Â reaches x, Â−1 proceeds

as Â, but backwards. Let Â∗ be the robot that traverses edges labeled W ∗, i.e.
the robot derived from Â by removing states and transitions that involved W0.

Claim. Starting from x, Â−1 eventually traverses one of the half-edges pending
at v or v′.

Proof. Assume for contradiction that Â−1 does not traverse any of the half-edges
pending at v or v′. By Lemma 1, Â−1 returns to x in the same state, and hence
its path in H1 is a closed path. This path traversed backwards is exactly what
Â∗ traverses from x. So Â∗ does not traverse any of the half-edges pending at v
or v′. Thus, Â also does not traverse them, a contradiction. �

By Claim 3 we can consider the state reached by Â−1 after it traverses one
of the pending half-edges; assume this is the k-th state of the cycle in G(Â). We

consider two sub-cases, depending on whether Â−1 traverses the same half-edge
as Â, or not.

Case 2.1. The robot Â−1 traverses the half-edge e pending at v (i.e., the

same as Â). This implies that the k-th label in W is equal to the (j − 1)-th
label in W , which is the label of e. We consider the section of the cycle of
G(Â) from the j-th state to the k-th state. The end edges of this section have
the label of e. We now consider the following word: W ′ = W (j − 1)W (j)W (j +
1) . . .W (k−1)W (k)W (k+1) . . . W (j−1)W (j)W (j+1) . . .W (k−1)W (k)W (k+
1) . . .W (j−1)W (j)W (j+1) . . . W (k−1)W (k) (Note that W (j−1) = W (k) and

|W ′| ≥ 2 × |W | + 2). The two robots Â and Â−1 cannot follow the same path
forever after crossing edge e: otherwise, it would mean that moving them both
backwards, they would also follow the same path forever (which is impossible
since the two robots took different paths at node x in the past). Moreover, the
two robots must separate after at most |W | steps, and since |W ′| ≥ 2× |W |+2,
they must separate after at least 1 step and at most |W | − 1 steps. Now, if the
two robots separate from each other at some point after crossing edge e, let us
consider the smallest l such that W (j + l) 6= W (k− 1− l), i.e. the nearest place

Space lower bounds for graph exploration via reduced automata IX

where the two robots separate from one another. Since W (j− 1) = W (k), l ≥ 1.
By definition of l, we have W (j + l− 1) = W (k− l). Since the considered robots
are reduced, we also have W (j + l − 1) 6= W (j + l). Still by definition of l, we
get W (j + l) 6= W (k − 1 − l). Finally, because we consider reduced robots and
we have W (j + l− 1) = W (k − l), we get W (j + l− 1) 6= W (k− 1− l). Overall,
this means that W (j + l− 1), W (j + l), and W (k − 1− l) are pairwise disjoint.
We are now ready to construct the following graph: from e, there is a chain that
ends in W (j + l − 1) at node w, and from this last node a circle W ′′ goes from
W (j + l) to W (k− l− 1). Since W (j + l) 6= W (k− 1− l) (see above), |W ′′| > 2.
When |W ′′| > 2, we add at w a ring of length |W ′′| labeled W ′′, starting and

ending at w, so that once Â and Â−1 reach w, each one traverses this ring in
the opposite direction, and gets back to w in the appropriate state to proceed
along the path back to the half-edge e.

Case 2.2. The robot Â−1 traverses the half-edge e′ pending at v′ (i.e., not

the same as Â). Suppose when Â−1 goes through v′ it is in state s. We consider

again the section of the cycle of G(Â) from the j-th state to the k-th state (if
the section is of length 1, we extend it with W to make sure there is at least one
internal node). We connect e and e′ by a path with the labels of this section.
Thus, when A traverses the half-edge e, it follows the newly added path, and
gets to v′ in the appropriate state, namely s, to proceed along the same path of
Â−1 but backwards, and return to x.

In all three cases, every node of degree 2 in the resulting graph is comple-
mented by a pending half-edge, and every node of degree 1 is complemented
by two pending half-edges. Every half-edge is labeled consistently so that the
resulting graph, denoted by H2, is 3-homogeneous.

Finally, if Â does not traverse any of the two pending half-edges, then we set
H2 = H1. For l = 0, 1, 2, let parity(l) be the parity of the number of pending
half-edges labeled l in H2.

Claim. For any l, l′ ∈ {0, 1, 2}, parity(l) = parity(l′).

Proof. An edge of H2 can be considered as two non-pending half-edges. For
l ∈ {0, 1, 2}, let tl be the total number of half-edges of H2 labeled l, and pl,
resp. npl, be the number of pending, resp. non-pending, half-edges of H2 labeled
l. All nodes in H2 are exactly of degree 3 and are incident to one half-edge of
each label. Thus t0 = t1 = t2 = |H2| where |H2| is the number of nodes of
H2. In H2, if an half-edge is not pending, then it forms an edge with another
non-pending edge of H2 with the same label. Therefore, all the npl’s are even.
Since tl = pl + npl, tl and pl have the same parity, and thus all the pl’s have the
same parity. �

The parity of the number of pending half-edges of a given label in H2 is
denoted by %. If % is odd, then we add to H2 a node connected to one of the
half-edges, labeled say l, and add two half-edges pending from this node, labeled
l′ 6= l and l′′ /∈ {l, l′}. As a consequence, % becomes even. Now, we pair the half-
edges with identical labels. For every pair but one, we connect the two half-edges

X

of the pair by the gadget displayed in Figure 2. (It could be possible to connect
the half-edges by just one edge, but the resulting graph may then not be simple).
By labeling the edges of every gadget appropriately, we obtain a 3-homogeneous
graph H3 with only two pending half-edges, of the same label.

H2

Fig. 2. The gadget for connecting half-edges

Claim. Starting from u, Â does not traverse any of the two half-edges of H3.

Proof. By construction, Â travels in Gq , and outside Gq it follows the trajectory

defined by paths and/or the ring attached to Gq at edges e and e′. Therefore, Â
does not traverse any of the half-edges of H2. In particular, it does not traverse
any of the two half-edges of H3. �

We define H4 as the graph obtained from H3 by adding a “tower” of height
K +1 connected to the two remaining half-edges, and a gadget closing the tower
(see Figure 3):

K+1

H3 v v’11

Fig. 3. The “tower” added to H3

Finally, the two internal nodes of the gadget at the top of the tower in H4

are denoted by v1 and v′1 (see Figure 3).

Claim. The edge {v1, v
′
1} of H4 is not traversed by A when starting from u.

Space lower bounds for graph exploration via reduced automata XI

Proof. By Claim 3, starting from u in H4, Â does not traverse any of the two
edges leading from H3 to the tower. By Lemma 2, the trajectory of A is never
at distance greater than K (where K is the number of states of A) from the

trajectory of Â. Thus, since the tower is of height K + 1, A never reaches the
top of the tower. Therefore, A does not traverse the edge {v1, v

′
1}. �

We repeat the same construction by considering the robot Â launched from
u′ in H4. More precisely, we construct Gq+1 from H4 in the same way H4 was
constructed from Gq . In particular, there is a tower in Gq+1, and we define the
nodes v2 and v′2 of Gq+1 as the two internal nodes of the gadget at the top of
this tower. By construction Gq+1 is 3-homogeneous.

Claim. Any robot in A fails to traverse the edge {v2, v
′
2} of Gq+1 when starting

from u or u′.

Proof. By induction hypothesis, starting from u or u′, a robot in A \ {A} never
traverses v, v′ in Gq and so will never traverse any of the edges added to obtain
Gq+1, and hence does not traverse the edge {v2, v

′
2} of Gq+1. From Claim 3,

starting from u, A fails to traverse the edge {v1, v
′
1} of H4. This edge being the

one that is “opened” to construct Gq+1 from H4, A fails to reach any of the
two nodes v2 or v′2 in Gq+1. Finally, by construction of Gq+1 from H4, A fails to
reach any of the two nodes v2 or v′2 in Gq+1 when starting from u′, in the same
way A fails to reach any of the two nodes w or w′ in H4 when starting from u.
�

To complete the proof, it just remains to compute the size of Gq+1.

Claim. |Gq+1| ≤ |Gq |+ 10K + O(1).

Proof. We give simple upper bounds on the size of the intermediate graphs.
First, we have |H2| ≤ |Gq | + K + O(1). Moreover, there are at most one half-
edge pending from every added node in H2. For each pair of pending half-edges,
we added four nodes, and thus |H3| ≤ |H2|+ 2K + O(1). Finally, the tower has
2K +O(1) nodes and thus |H4| ≤ |Gq |+5K +O(1). The same procedure for the
starting node u′ contributes to another 5K + O(1) additional nodes. The result
follows. �

As a direct consequence of the previous claim, |Gq+1| ≤ 10qK + O(q), which
completes the proof of Theorem 1. ut

By simply rewriting Theorem 1, we derive a bound of the size of the small-
est trap for a set of q non-cooperative K-state robots, improving the one by
Rollik [7]:

Corollary 1. For any set of q non-cooperative K-state robots, there exists a
trap of size O(qK).

By simply plugging this latter bound in the construction by Rollik [7] for
team of cooperative robots, we get:

XII

Corollary 2. For any set of q cooperative K-state robots, there exists a trap of

size Õ(KK·
·

·

K

), with q + 1 levels of exponential.

4 Bounds for Exploration With Stop

In this section, we consider the exploration with stop problem, in which a robot
must traverse all edges of the graph, and eventually stop once this task has been
achieved. A robot cannot solve this task in graphs with more nodes than its
number of states, by Lemma 1. Thus, the robot is given pebbles that it can drop
and take to/from any node in the graph. It is known that any finite robot with
a finite source of pebbles cannot explore all graphs [7]. On the other hand, it is
known that a robot with unbounded memory can explore all graphs, using only
one pebble [5]. An important issue is to bound the size of the robot as a function
of the size of the explored graphs.

A δ-p-robot with a pebble or simply p-robot when δ is understood, is an
automaton A = (∆,S, f, s0, sf), with a finite set of states S, s0, sf ∈ S, and

f : S × {0, 1} → S ×∆× {pick, drop}.

Every state s ∈ S has a component p(s) ∈ {0, 1} that indicates if A has the
pebble, p(s) = 1, or not, p(s) = 0. For the initial state, s0, p(s0) = 0; for the
stop state, sf , p(sf) = 1. Each node v of the graph is in some state p(v) ∈ {0, 1}
that indicates if the pebble is in v, p(v) = 1, or not, p(v) = 0. The initial state
of the graph satisfies: p(v) = 1 for exactly one node v. We will assume the robot
is placed initially in the node with the pebble.

The movement of a δ-p-robot A on a δ-regular graph is represented by a
sequence of configurations, each one consisting of the state of the robot and the
state of the graph. For the initial configuration, A is placed on some node of
the graph in state s0, and the pebble is in exactly one node. In general, if A is
in a node v in state s in some configuration, we compute f(s, p(v)) = (s′, i, b).
In the next configuration A will be in the node v′ such that the edge {v, v′} is
colored i, in state s′. Also in the next configuration: if b = drop then p(v) = 1
and p(s′) = 0, and if b = pick then p(v) = 0 and p(s′) = 1. It is assumed that b
can be equal to drop only if p(s) = 1 and b can be equal to pick only if p(v) = 1.

A robot A explores with stop a graph if after starting in any node of the
graph that has the pebble, it traverses all its edges and enters a stop state. A
graph which A does not explore with stop is called a trap for A.

The next theorem shows that a p-robot that performs exploration with stop
in all graphs of at most n nodes requires Ω(n1/3) states, or equivalently Ω(log n)
bits of memory.

Theorem 2. For any K-state p-robot there exists a trap of size O(K3).

Proof. Let A = (∆,S, f, s0, sf) be a K-state p-robot. We construct a trap of
size O(K3) for A. For that purpose, we consider the restriction of A to states s

Space lower bounds for graph exploration via reduced automata XIII

such that p(s) = 0 and input 0 (on nodes with no pebble). This defines a robot
(with no pebble, as in Section 2.1) except that some states may be unreachable
from s0. For every state s of this robot, we consider the robot As that has s as
initial state, and includes only reachable states from s. Let A = {As} be the set
of all these robots. Thus, |A| ≤ K.

Let G be a graph satisfying Theorem 1 for the set A. Remove edges {u, u′}
and {v, v′} from G. Consider two copies of the resulting graph, with the four
nodes of degree 2 indexed by the index of the copy, 1 and 2. These nodes are
re-connected as follows. Let c be the color of the deleted edge {v, v′}. Create two
edges {v1, v

′
2} and {v′1, v2} with color c. The resulting graph is denoted by G1

(see Figure 4).

u1

u’1

v1

v’1

Graph G Graph G
u2

u’2

v2

v’2

Fig. 4. The graph G1

Consider an infinite ternary tree modified as follows. Each node is replaced
by a 6-cycle. Edges of the cycles are labeled alternatively 1 and 2. Then, edges
of the infinite tree are replaced by two “parallel” edges labeled 0, as depicted on
Figure 5. The resulting graph is denoted by T .

0

1

2
1

2

1
2

100

1

2
1

2

0

2
1

2

1

0

0 0

0 0

0 0

0

2

2
1

0
2

1

1
2

2
100

0 0

0

Fig. 5. The modified infinite tree T

XIV

The two graphs G1 and T are composed by replacing every pair {{x, y},
{x′, y′}} of parallel edges in T by a copy of G1. More precisely, x, y, x′, y′ are
respectively connected to nodes u1, u

′
2, u

′
1, u2 in G1. These new edges are labeled

0. The resulting graph is denoted by G2. A “meta-edge” of G2 is defined as a
copy of G1 replacing a parallel edge of T .

By definition of G and A, the p-robot A is unable to traverse a meta-edge of
G2 without the help of the pebble2. We now modify G2 to obtain a graph G3 such
that the p-robot A is unable to explore G3, even with the pebble. G3 contains
O(K) 6-cycles of T , and thus has at most O(K3) nodes. The transformation
from G2 to G3 is technical and very similar to the transformation used in [6]
and in [7]. Thus we only sketch the construction of G3, skipping technical details.
Since any p-robot cannot go from a 6-cycle to another 6-node cycle of G2 without
using the pebble, we define key steps as those for which the last time the p-robot
leaves a 6-cycle with the pebble, go through a meta-edge, and enters another 6-
cycle with the pebble. Because the number of states is finite, A will eventually
be twice in the same state at these key steps, at two nodes w and w′. With the
same technique as in [6], we identify the nodes w and w′. This leads to the graph
G3 with the desired properties, that is G3 has O(K) 6-cycles, and thus O(K)
“parallel” edges. In each pair of “parallel” edges, there is a copy of G1. Since G1

has O(K2) nodes, then G3 has O(K3) nodes. ut

Theorem 3. There exists an exploration with stop algorithm which requires
O(D log ∆) bits of memory when performed in the family of graphs with diameter
at most D and degree at most ∆.

Proof. We describe an algorithm called DFS-with-stop, that enables a robot
to explore all graphs, with stop. Exploration is achieved by a traversal of the
graph similar to DFS. Let u0 be the initial position of the robot. The pebble
is dropped at u0, and will remain there until exploration is completed. The
exploration proceeds in a sequence of phases. At phase i ≥ 1, the robot performs
a DFS at depth i. At any time during each phase the robot keeps in memory
the current sequence of port numbers leading back to u0 in the DFS tree. This
takes O(i log ∆) bits of memory during phase i, in a graph of maximum degree
∆. At the beginning of Phase i, the robot sets the variable stop ← true. The
robot traverses the edges incident to a node u in increasing order of their labels.
When the robot leaves the current node u, and enters some node v, it proceeds
as follows. If the pebble is at v, then the robot backtracks. Otherwise, if the
current depth of the DFS is ≤ i−1, then the robot carries on the DFS traversal.
If the current depth of the DFS is equal to i, then the robot checks whether v has
already been visited or not during a previous phase. For that purpose, the robot
performs an auxiliary DFS of depth i− 1 from v. This again requires O(i log ∆)
bits of memory for storing the sequence of port numbers leading back to v in
the auxiliary DFS tree. If the robot finds the pebble during the execution of the

2 Since the {u, u′} edges are “open”, the proof requires to consider the last time the
p-robot is in a u node; this is deferred to the full version of the paper.

Space lower bounds for graph exploration via reduced automata XV

auxiliary DFS, then v is at distance ≤ i−1 from u0, and thus it has already been
explored during a previous phase. If the robot does not find the pebble during
the execution of the auxiliary DFS from v, then it sets the variable stop← false.
After completion of the DFS at Phase i, the robot stops if and only if stop = true.
Else, it carries on exploration, by starting Phase i + 1. Clearly, the robot stops
after Phase D + 1 in a graph of diameter D. The memory requirement of this
exploration algorithm is dominated by the storage of the sequences of port labels
corresponding to two paths (one for the DFS, one for the auxiliary DFS). These
paths are of length at most D + 1 in the family of graphs with diameter D, and
thus contributes for O(D log ∆) when the degree of the graph is at most ∆. ut

5 Conclusions

We have proved that exploration with stop (using one pebble) requires Ω(log n)
bits for the family of graphs with at most n nodes. In [6], the same lower bound
holds for perpetual exploration. In fact, [6] proves that perpetual exploration
requires Θ(D log ∆) for the family of graphs of diameter at most D and degree
at most ∆. This latter result is obtained by proving that DFS-exploration is
space-optimal. We thus ask the following question: is Ω(D log ∆) bits of memory
required to explore with stop all graphs of diameter at most D and degree at
most ∆?

References

1. M. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan. The power of a pebble:
Exploring and mapping directed graphs. Information and Computation 176: 1–21,
2002. Prel. Version in STOC 1998.

2. M. Bender and D. Slonim. The power of team exploration: Two robots can learn
unlabeled directed graphs. In 35th Ann. Symp. on Foundations of Computer Science
(FOCS), pages 75–85, 1994.

3. L. Budach. Automata and labyrinths. Math. Nachrichten, pages 195–282, 1978.
4. K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree Exploration with Little Mem-

ory. In 13th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 588–
597, 2002.

5. G. Dudek, M. Jenkins, E. Milios, and D. Wilkes. Robotic Exploration as Graph
Construction. IEEE Transaction on Robotics and Automation 7(6): 859–865, 1991.

6. P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph Exploration by a
Finite Automaton. In 29th International Symposium on Mathematical Foundations
of Computer Science (MFCS), LNCS 3153, pages 451–462, 2004.

7. H.-A. Rollik. Automaten in planaren graphen. Acta Informatica 13: 287–298, 1980.
8. C.-E. Shannon. Presentation of a Maze-Solving Machine. In 8th Conf. of the Josiah

Macy Jr. Found. (Cybernetics), pages 173–180, 1951.

