N

N
N

HAL

open science

Graph Exploration by a Finite Automaton

Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, David Peleg

» To cite this version:

Pierre Fraigniaud, David Ilcinkas, Guy Peer, Andrzej Pelc, David Peleg. Graph Exploration by a
Finite Automaton. MFCS 2004, Aug 2004, Prague, Czech Republic. pp.451-462, 10.1007/978-3-540-

28629-5 34 . hal-00339763

HAL Id: hal-00339763
https://hal.science/hal-00339763
Submitted on 18 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00339763
https://hal.archives-ouvertes.fr

Graph Exploration by a Finite Automaton

P. Fraigniaud!, D. Tlcinkas', G. Peer?, A. Pelc?, and D. Peleg?

! CONRS, LRI, Université Paris-Sud, France
2 Dept. of Computer Science, Weizmann Institute, Israel
3 Dép. d’informatique, Univ. du Québec en Outaouais, Canada

Abstract. A finite automaton, simply referred to as a robot, has to
explore a graph whose nodes are unlabeled and whose edge ports are
locally labeled at each node. The robot has no a priori knowledge of the
topology of the graph or of its size. Its task is to traverse all the edges of
the graph. We first show that, for any K-state robot and any d > 3, there
exists a planar graph of maximum degree d with at most K + 1 nodes
that the robot cannot explore. This bound improves all previous bounds
in the literature. More interestingly, we show that, in order to explore all
graphs of diameter D and maximum degree d, a robot needs £2(D log d)
memory bits, even if we restrict the exploration to planar graphs. This
latter bound is tight. Indeed, a simple DFS at depth D + 1 enables a
robot to explore any graph of diameter D and maximum degree d using a
memory of size O(D log d) bits. We thus prove that the worst case space
complexity of graph exploration is @(D log d) bits.

1 Introduction

1.1 Background and motivation

A mobile entity, e.g., a software agent or a robot, has to explore an undirected
graph by visiting all its nodes and traversing all its edges, without any a priori
knowledge of the topology of the graph or of its size. The task of visiting all nodes
is fundamental in searching for data stored at unknown nodes of a network, and
traversing all edges is often required in network maintenance and when looking
for defective components. More precisely, we consider the task of “perpetual”
exploration in which the robot has to traverse all edges of the graph but is not
required to stop. That is, the robot moves from node to node, traversing edges,
so that eventually all edges have been traversed. Perpetual exploration is of
practical interest, e.g., if regular control of a network for the presence of faults is
required, and all edges must be periodically traversed over long periods of time.

If nodes and edges have unique labels, exploration can be easily achieved
(e.g., by depth-first search). However, in some navigation problems in unknown
environments, such unique labeling may not be available, or limited sensory
capabilities of the robot may prevent it from perceiving such labels. Hence it
is important to be able to program the robot to explore anonymous graphs,
i.e., graphs without unique labeling of nodes or edges. Clearly, the robot has
to be able to locally distinguish ports at a node: otherwise it is impossible to



2 P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg

explore even the star with 3 leaves (after visiting the second leaf, the robot
cannot distinguish the port leading to the first visited leaf from that leading to
the unvisited one). Hence we make a natural assumption that all ports at a node
are locally labeled 1,...,d, where d is the degree of the node. No consistency
between those local labelings is assumed.

In many applications, robots and mobile agents are meant to be simple,
often small and inexpensive devices. This limits the amount of memory with
which they can be equipped. As opposed to numerous papers that imposed
no restrictions on the memory of the robot and sought exploration algorithms
minimizing time, i.e., the number of edge traversals, we investigate the minimum
memory size of the robot that allows exploration of graphs of given (unknown)
size, regardless of the time of exploration. That is, we want to find an algorithm
for a robot performing exploration, using as little memory as possible.

A robot with a k-bit memory is modeled as a finite automaton. The first
known finite automaton algorithm designed for graph exploration was intro-
duced by Shannon [35] in 1951. Since then several papers have been dedicated
to the graph exploration problem. In 1967, during his talk at Berkeley, Rabin [32]
presented a proof that no finite automaton with a finite number of pebbles can
explore all graphs (a pebble is a marker that can be dropped at and removed
from nodes). In 1971, Miiller [29] gave some formal arguments to support Ra-
bin’s claim, in the restricted case of a robot without pebble. In 1977, Coy [16]
presented another proof, but some parts of it are fuzzy. The first formal proof of
Rabin’s claim is generally attributed to Budach [15], in 1978, for a robot with-
out pebble. Actually, the long and technical paper by Budach is concerned with
labyrinths. A labyrinth is a two-dimensional obstructed chess-board (i.e., Z? with
forbidden cells). The forbidden cells in Z? are described by a set L. If L (resp.,
Z?\ L) is finite, then the labyrinth is called finite (resp., co-finite). Exploring a
finite labyrinth means that the automaton is able to go arbitrarily far away from
its starting position, for any starting position. The edges of the labyrinth are
consistently labeled North, South, East, West. (Budach’s result applies also to
graphs because a co-finite labyrinth is a finite graph.) The same year, Blum and
Kozen [10] improved Budach’s result by proving that three finite automata can-
not cooperatively perform exploration of all graphs. In 1979, Kozen [27] proved
that four cooperative robots cannot explore all graphs. Finally, in 1980, Rol-
lik [34] gave a complete proof of Rabin’s claim. More precisely, Rollik proved
that no finite set of finite automata can cooperatively perform exploration of all
cubic planar graphs. Since a finite automaton is more powerful than a pebble,
Rabin’s claim is a corollary of Rollik’s theorem. In all proofs, including the one
by Budach and the one by Rollik, the size of the smallest trap for an automa-
ton with no pebble (i.e., the smallest graph that an automaton with no pebble
cannot explore) is large. One of the objectives of the current paper is to revisit
Rabin’s claim in the case of a robot with no pebble, specifically for improving
the size of traps, and for designing traps with specific topological properties.



Graph Exploration by a Finite Automaton 3

1.2 Our results

Our first result is the design of a trap with at most K +1 vertices for any K-state
automaton. More precisely, we prove that, for any d > 3 and for any K-state
automaton, there exists a planar graph of K + 1 nodes and maximum degree
d that the automaton cannot explore. (We assume d > 3 since, obviously, all
connected graphs of maximum degree d < 2 can be explored by a robot with a
constant memory size.) This construction improves —in terms of size— the best
bound known so far, i.e., 2K, due to Rollik.

More importantly, our construction methodology is quite generic and can be
adapted for the minimization of other graph parameters. In particular, we prove
that, for any d > 3 and for any K-state automaton, there exists a planar graph
of O(K) nodes, maximum degree d, and diameter O(lﬁ)gg I; ) that the automaton
cannot explore. This latter result has an important corollary, namely that for
any d > 3 and any D, a robot requires £2(D logd) memory bits to explore all
graphs of maximum degree d and diameter D. This bound is tight. Indeed, a
simple DFS at depth D + 1 enables a robot with O(D logd) memory bits to
explore all graphs of maximum degree d and diameter D.

To summarize, we prove that the worst case space complexity of graph ex-
ploration is @(D logd) bits.

1.3 Related work

Exploration and navigation problems for robots in an unknown environment
have been extensively studied in the literature (cf. [25, 33]). There are two groups
of models for these problems. In one of them a particular geometric setting is
assumed (see, e.g., [5,9,17]). Another approach is to model the environment as
a graph, assuming that the robot may only move along its edges. The graph
setting can be further specified in two different ways. In [1,8, 7,18, 24] the robot
explores strongly connected directed graphs and it can move only in the head-
to-tail direction of an edge, not vice-versa. In [4,12,15,19,21-23,28, 31, 34] the
explored graph is undirected and the robot can traverse edges in both directions.
Graph exploration scenarios considered in the literature differ in an important
way: it is either assumed that nodes of the graph have unique labels which the
robot can recognize (as in, e.g., [18,22,31]), or it is assumed that nodes are
anonymous (as in, e.g., [7,8,15,34]). We are concerned with the latter context.
The efficiency measure adopted in papers dealing with graph exploration is either
the completion time of this task, measured by the number of edge traversals,
(cf., e.g., [31]), or the memory size of the robot, measured either in bits or by
the number of states of the finite automaton modeling the robot (cf., e.g.[19,
24]). Time is not an issue in our approach, and we address the latter efficiency
measure, i.e., memory space. Three versions of the exploration problem have
been addressed in the literature: exploration with return (in which the robot
has to perform exploration and return to its starting position), exploration with
stop (in which the robot has to complete exploration and eventually stop), and
perpetual exploration (the type of exploration considered in this paper). For



4 P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg

instance, it is shown in [19] that exploration with stop in n-node trees requires
a robot with memory size £2(logloglogn), and that exploration with return in
n-node trees can be achieved by a robot with O(log® n) memory bits. Minimizing
the memory of the robot for the exploration of anonymous undirected graphs
has been addressed in, e.g., [10,15,19,27, 34].

Also, a large part of the literature is concerned with labyrinth exploration.
The exploration problem in such labyrinths is known to be strictly simpler than
graph exploration [10]. In [20], Dépp proved that a robot is able to explore all
finite one-component labyrinths (i.e., where the set L of forbidden cells is finite
and connected), and asked whether there exists a universal finite automaton,
i.e., one able to explore every finite labyrinth. Budach proved (see the sketch
in [13] and the complete version in [15]) that no finite automaton can explore
all finite labyrinths. The same result holds for co-finite labyrinths. In [11], Blum
and Sakoda have shown that there exists a finite automaton able to explore all
finite labyrinths using 4 pebbles (the automaton is universal for all labyrinths if
7 pebbles are allowed). Blum and Kozen [10] proved that a finite automaton with
only 2 pebbles can explore all co-finite labyrinths. The problem was finally closed
by Hoffmann [26] who showed that a finite automaton with a unique pebble
cannot explore all finite labyrinths. Again, the same result holds for co-finite
labyrinths. Furthermore, a trap for a finite automaton (using no pebble) can be
constructed such that L has only three connected components (cf. [30]). Finally,
for any finite set of non-cooperative automata, there exists a finite labyrinth that
these automata cannot explore [2].

It is worth mentioning that our work has connections with derandomized
random walks. There, the objective is to produce an explicit universal traversal
sequence (UTS), i.e., a sequence of port labels, such that the path guided by this
sequence visits all edges of any graph. However, even if bounds on the length of
these sequences have been derived, they provide little knowledge on the minimum
number of states for graph exploration by a robot. For instance, sequences of
length 2(nlogn) are required to traverse all degree 2 graphs with n nodes [6],
although a 2-state robot can explore all degree 2 graphs.

2 Terminology and model

An anonymous undirected graph with locally labeled ports is a graph whose
nodes are unlabeled and where the edges incident to a node v have distinct
labels 1,...,d,, where d, is the degree of v. Thus every undirected edge {u,v}
has two labels which are called its port numbers at u and at v. Port numbering
is local, i.e., there is no relation between port numbers at v and at v. Unless
specified otherwise, all considered graphs are supposed to be connected.

We are given a mobile entity traveling in an anonymous graph with locally
labeled ports. The graph and its size are a priori unknown to the entity. The
mobile entity is referred to as a robot. More precisely, a K-state robot is a finite
Moore automaton R = (X,Y,S,6, A, So) where X C N?, Y CN, Sis a set of K
states among which is a specified state Sy called the initial state, § : Sx X — S,



Graph Exploration by a Finite Automaton 5

and A : § — Y. Initially the robot is at some node wug in the initial state Sy € S.
So determines a local port number p = A(Sp) € Y, by which the robot leaves
ug. When incoming to a node v, the behavior of the robot is as follows. It reads
the number ¢ of the port through which it entered v and the degree d, of v. The
pair (i,d,) € X is an input symbol that causes the transition from state S to
state S’ = 6(S, (i,dy,)). S' determines a local port number p = A(S’), by which
the robot leaves v. The robot continues moving in this way, possibly infinitely.

As mentioned before, we consider the task of “perpetual” exploration in
which the robot has to traverse all edges of the graph but is not required to
stop. That is, it is not required that a final state be in S. A robot is said to
perform an ezploration of a graph G, if starting at any node of G in the initial
state Sp, it completes traversing all edges of G in finitely many steps.

3 Traps and lower bounds

In order to prove lower bounds for the exploration problem, we first study the
maximum size of graphs that a given robot can explore. Let R be a robot. A
trap for R is a pair (G, ug) where G = (V, E) is a graph, ug € V, and starting
at vertex ug the robot R fails to explore G, i.e., there exists an edge e € E
such that, for any ¢ > 0, the robot has not traversed e during the first ¢ steps
of the exploration. Given a K-state robot R (hence with [log K| memory bits),
we construct a trap for this robot. Our objective is to construct small traps, or
traps with small diameter.

For the purpose of constructing traps, let us introduce some tools. A graph
G of maximum degree d is edge-colored if every edge of G is given a color,
every two incident edges have different colors, and there are d colors used in
total. There is a clear correspondence between regular edge-colored graphs and
regular edge-labeled graphs in which the labels at the two extremities of each
edge are identical.

Definition 1. A sequence L of labels is a pseudo-palindrome if any of the fol-
lowing two conditions is satisfied: (1) L =0, or (2) L = L' o (¢,£) o L", where
L' o L" is a pseudo-palindrome, £ is a label, and o denotes concatenation. In
particular, a palindrome is a pseudo-palindrome precisely if its length is even.

A sequence L' is a reduction of L if L' = Ao B and L = Ao L" o B where
L" is a nonempty pseudo-palindrome, and A and B are two arbitrary sequences
(possibly empty). A sequence is said pp-free if it has no reduction. A sequence
L' is the pp-reduction of a sequence L if L' is pp-free and obtained from L
by successive reductions. One can easily check that the pp-reduction of a se-
quence is unique (cf., e.g., Section 1.7 in [15]). For instance the pp-reduction
of 1122121121322331131332311221 is 1231. Obviously, given any d-regular edge-
colored graph G = (V, E) and any node u € V, each sequence L of edge labels
defines a path P from w in G. If L is a pseudo-palindrome then P starts and
ends at u. (If G is a tree, L is a pseudo-palindrome if and only if P starts and
ends at u.)



6 P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg

Theorem 1. For every K-state robot and every d > 3, there exists a planar
graph of mazimum degree d with at most K + 1 nodes that the robot cannot
explore.

Proof. Let T; be the infinite edge-colored regular tree of degree d. Let ug be
any node. Assume that the robot starts from wg in state Sp. After at most K
steps (hence after visiting at most K + 1 nodes), the robot has been twice in the
same state. Let S be such a state, and let u and «' be the first occurrences of
two nodes where the robot is in state S. The robot R is at u at step ¢t and at '
at step t'. Since the robot is in an edge-colored regular graph, the sequence of
states becomes periodic after t. Let p = t' — ¢ be the period, and let u” be the
node reached by R at step t + 2p = ¢’ + p. At this step, the robot is again in
state S. Finally, let L be the ordered sequence of labels of the edges traversed
by the robot from step t + 1 to step ', and let L' be its pp-reduction.

Intuitively, to construct a trap based on Ty, we modify T; by merging two
nodes so that the robot is trapped in a periodic movement in the modified graph.
More precisely, we proceed according to the pp-reduction L' of the sequence of
labels L visited while going from u to u’ in Ty. First we define an intermediate
graph G", whose definition differs according to the structure of L'.

Case 1: L' is not a palindrome (in particular, L' is not empty). Then L' describes
the simple path from u to «' in Ty. Since L' is not a palindrome, it can be written
as L' = (I1,...,1g,0,.. ., U, 1g, ..., 1) with I # I'. Moreover, since L' is pp-free,
we have also I’ # I;. Let v (resp., v') be the node reached from w (resp., ') after
following the sequence of edge labels Iy, ...,1, (see Figure 1). Note that we may
have v = v and v' = v/, but not v = v'. Let w be the neighbor of v’ such that
{w,v'} is labeled I'. Since L' is not a palindrome, we have w # v. We construct
G" as follows. We delete edges labeled I’ incident to v and to w, and we replace
these two edges by an edge between v and w. This edge is labeled I’. Note that
G" has exactly three connected components.

Fig. 1. Construction of G” in the case where L’ is not a palindrome. The dotted edges
(v, 2) and (w,v") are removed and the dashed edge (v, w) is added instead.

We prove that the behavior of the robot becomes periodic in G"”. For that
purpose, let us first recompute a starting node of the robot R such that R is at
u in state S at step ¢t in G”. (Note that the original starting node ug may be in
a connected component different from the one of v and v. However, u and v are
in the same component because I; # I'.) To do that, let L' be the sequence of



Graph Exploration by a Finite Automaton 7

edge labels corresponding to the walk of the robot from wg to u in Ty. Starting
from w, let vy be the node reached when the robot traverses the edges labeled
by L" in the reverse order. The robot starts in vy and, by construction, reaches
u in state S at step t. Let us consider the next p steps of the exploration. Since
the connected component of G"” containing v is a regular graph of degree d, the
sequence of robot’s states is the same in G as in Ty;. Thus, at step ¢’ the robot is
in state S in G". Any pseudo-palindrome defines a closed walk in G"”. Recall that
the pp-reduction L' of L can be written L' = (l1,...,1g, 1, ..., 1", U, 14,... ., lh).
The sequence (li,...,1l;) leads from u to v, and the sequence (I,...,l") leads
from v to w. Indeed, the modification of Ty does not modify the path from u
to w because ' # 1, and I' # l. From w, the robot takes the edge labeled !,
which is the edge that was added between v and w during the construction of
G". Hence, the robot is back at v in G”. Finally (I, ...,{1) leads back from v
to u, and R is in state S at u at step t'. The robot’s behavior is thus periodic
in G", as claimed.

Let G’ be the graph consisting of all edges traversed by the robot in G" when
starting from vo. More precisely, G’ is the graph composed of all nodes and edges
that the robot traverses at least once during its journey from vy in G”. Since
the robot’s behavior is periodic in G”, G’ is a finite graph. Actually, G’ has at
most K nodes. Indeed, after ¢' steps, the robot is trapped in a cycle. Thus, it
does not visit new nodes after step ¢'. During the first ¢' steps, the robot visits
at most ¢’ + 1 nodes. However, it is at the same node u at step t and ¢'. Hence,
the robot visits at most ' < K nodes.

To complete the construction of the trap, we add edges to make the degrees
of every node in G' exactly d, so that the sequence of robot’s states is the same
in G' as in Ty. Since G" is infinite and d-regular, and G’ is a finite subgraph of
G", there are necessarily some nodes in G’ with degree less than d. Thus, we now
complete G’ by pairing nodes (possibly including self-loops) until every node of
G' (i.e., visited by the robot) is of degree exactly d.

More precisely, let z be a node that needs r additional incident edges. If r is
even, we create r/2 self-loops around z. If r is odd, we create (r —1)/2 self-loops
around z. Then every node needs at most one additional edge. G' is a tree, so
one can match these nodes, adding one edge for each pair, so that the resulting
graph remains planar. After that, there remains at most one unmatched node.
We connect this node to an additional (new) node y of degree 1. (As y is never
visited by the robot, its degree is immaterial). Therefore, we obtain a planar
graph G with at most K + 1 nodes (recall that G' has at most K nodes). The
added edges are labeled locally. This labeling can be chosen arbitrarily because
these edges are not traversed by the robot anyway (the robot only traverses edges
of G"). Since exploration means traversing all edges, the robot fails to explore
G, and thus (G, vg) is a trap for R.

Case 2: L' is a palindrome. There are two subcases.

Subcase 2.1: L' is empty (i.e., L is a pseudo-palindrome). Then u = «'. The
behavior of the robot R becomes periodic in T, because v = u' and the robot is
in the same state at u in steps ¢ and t'. Hence, G' is defined as in the previous



8 P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg

case, i.e., as the graph consisting of all edges traversed by the robot in Ty when
starting from wug. G' is then transformed into G as before. Since, for the same
reasons as for the general case, G' has at most K nodes, we get that G has at
most K + 1 nodes. Not all edges of G are visited. Thus (G, ug) is a trap for R.

Subcase 2.2: L' is a nonempty (odd length) palindrome. Then L’ concatenated
with itself is a pseudo-palindrome, and thus v = u”. As in the previous cases, the
behavior of the robot becomes periodic in T;. However, unlike what happened in
the previous cases, the period is 2p, and the end of the first period occurs at step
t' + p, instead of step t'. Hence a graph G’ defined as in the previous cases may
have more than K nodes. To keep G’ small, we slightly change the definition
of G" compared to the previous cases. During the 2p steps following step ¢, the
robot starts and ends at u in Ty. Since T} is a tree, the robot visits every edge
at least twice, and thus it visits at most p edges and p + 1 nodes. Thus in total,
the robot visits at most t + p + 1 = t' + 1 nodes. Since ¢’ < K, at most K + 1
nodes are visited. If the robot actually visits at most K nodes of Ty, then we set
(}” =T,. If R visits exactly K + 1 nodes of Ty, then we modify T as follows. Let
L be the sequence of edge labels seen by the robot during the first ¢ + 2p steps
of its journey. Note that L contains at least two different labelsA(i.e., it is not
a sequence (I,1,...,10)). Indeed, K > d > 3 and thus a sequence L = (I,1,...,1)
would imply that some edge is visited at least three times. Therefore the robot
would have visited at most K nodes, a contradiction with our assumption that
R visits exactly K + 1 nodes. Let L= (1,1, ..., lg42p). Choose the first ¢ > 1
such that I; # ii+1. For every j, let 4; be the node reached by the robot at
the end of step j. We merge 4;—1 and 441 by constructing two parallel edges
between 4;_1 and 4;, one of which is labeled I;, while the other is labeled ;1.
The resulting graph is denoted G"'. Clearly, the robot visits at most K nodes in
G". We now define G' and G as in the previous cases. G' has at most K nodes,
and thus G has at most K + 1 nodes. In spite of the double edge, the behavior of
the robot is periodic in G" because the sequence LL is a pseudo-palindrome and
thus it defines a closed walk in any edge-colored graph. For the same reasons as
in the previous cases, not all edges of G are traversed by R, and thus (G, ug) is
a trap for R, which completes the proof of Theorem 1. O

We can rephrase Theorem 1 as follows:

Corollary 1. A robot that explores all n-node planar graphs requires at least
[logn] memory bits.

The next result links the number of states of a robot with the maximum
diameter of the graphs that it can explore.

Theorem 2. For every K -state robot and every d > 3, there exists a planar
graph of mazimum degree d and diameter at most 4[log,_; K| + 2 that the robot
cannot explore.

Proof. We start from the intermediate graph G’ defined in the proof of Theo-
rem 1. We complete G' so that all nodes of G' are of degree d as follows. G’



Graph Exploration by a Finite Automaton 9

has at most K nodes and for each node there are at most d — 1 missing edges.
Hence, we consider the d-regular tree B of depth h = [log,;_; K. B has at least
d(d —1)""! > K leaves. We add edges from every node of G’ to different leaves
of B, so that all visited nodes (the nodes of G') are of degree exactly d. The
added edges are labeled locally arbitrarily. The resulting graph is denoted by G.
Clearly, the pairing between the nodes of G' and the nodes of B can be done
so that G is planar. To compute an upper bound on the diameter of G, let us
consider an arbitrary node z of G'. During the construction of G, we used Ty,
and we constructed G" in which at most two nodes were modified. Therefore,
since d > 3, at least one edge leads in G" from z to a node r which is the root of
an unmodified infinite subtree T of T;. At distance at most h from node r, there
are at least (d — 1)" nodes in T'. Since (d — 1)* > K, we get that there is a node
of T', at distance at most h from r, that is in G but not in G'. Therefore, there
exists a node in G, at distance at most h — 1 from r, that has degree smaller
than d in G'. This node is connected to the tree B in G. Thus, any node of G’
is at distance at most h + 1 from a node of B. The diameter of B is 2h. Thus,
the diameter of G is at most (h + 1) + 2h + (h + 1) = 4h + 2, which completes
the proof. (As in Theorem 1, the graph G is a trap for R because the vertices
of B are not visited by the robot.) O

As a direct consequence of Theorem 2, we have:

Corollary 2. A robot that explores all graphs of diameter D and mazimum
degree d requires at least 2(D logd) memory bits.

By Corollary 2, the best that a k-bit memory robot can do is to explore all
graphs of diameter D and maximum degree d such that k = 2(Dlogd). In the
next section, we show that this goal can be achieved.

4 An exploration algorithm

In this section, we present an algorithm called Increasing-DFS, that enables a
robot to explore all graphs of sufficiently small diameter and maximum degree.
Roughly speaking, exploration is achieved by using a sequence of depth-first
search (DFS) operations at increasing depths from the initial position ug of the
robot. The robot keeps in memory the current sequence of port numbers leading
back to ug in the DFS tree. At Phase ¢, ¢ > 1, the robot performs a DFS of
depth bounded by i. In the case where one is given a robot R with ¥ memory
bits, we use the variant k-Increasing-DFS, that is Increasing-DFS in which
the robot perpetually checks the size of the currently allocated memory. If this
size exceeds k bits, then the robot stops.

Theorem 3. Algorithm Increasing-DFS allows a robot to explore every graph.
Moreover, Algorithm k-Increasing-DFS explores all graphs of diameter D and
maximum degree d, whenever k > aD logd, for some positive constant «.



10 P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg

Proof. Let the robot R start from node ug in graph G. After R has performed
a DFS of depth ¢, it has visited all nodes at distance at most 7 from ug. Let
i =D + 1 where D is the diameter of G. Thus, after the ith phase of Algorithm
Increasing-DFS, all edges have been traversed, and thus exploration has been
completed. If ¥ > aDlogd, then a stack of D + 1 elements on logd bits, and
a constant number of scalar variables, can be stored in the robot’s memory, for
a = 0(1) large enough. Thus, when ¢ = D+1, the exploration is completed using
no more than k bits. Hence any graph of diameter D and maximum degree d
can be explored. O

A direct consequence of Theorem 3 is the following:

Corollary 3. All graphs of diameter D and mazimum degree d can be explored
by a robot using O(D logd) memory bits.

The bound of Corollary 3 is tight (cf. Corollary 2).

As a final remark, observe that algorithm Increasing-DFS uses an infinite
memory to explore some graphs of bounded size. Nevertheless, this phenomenon
cannot be overcome by any exploration algorithm. Indeed, surprisingly, any infi-
nite automaton that explores all graphs is required to use an infinite amount of
memory to explore some finite graphs. In particular, for d > 0, let G4 be the set
of all edge-colored d-regular graphs (G4 # 0 as witnessed by, e.g., the hypercube
Q4, or two nodes linked by d parallel edges). We have the following:

Theorem 4. For any (infinite deterministic) automaton R that explores all
graphs, and for any G € G4, R uses infinitely many memory states when ez-
ploring G.

Proof. Let R be an automaton that explores all graphs, and let G € G4. As a
consequence of Theorem 1, R is an infinite automaton (X,Y,S,d, A, Sp), i.e., [S]
is unbounded. Assume, for the purpose of contradiction, that R uses K states of
S when executed in G, starting from some node, say ug. Let R’ be the automaton
obtained by restricting R to the diagram induced by these K states of S. More
precisely, R = (X,Y, 8,8, N, So) where S’ is the set of the K states visited
by R when exploring G starting from ug, A’ is A restricted to &', and &' is ¢
restricted to 8’ x X. Let G4(R') be the set of pairs (H,vg) where H = (V, E)
is an edge-labeled graph and vy € V, such that, starting at vy in H, R' visits
only nodes of degree d and traverses only edges that have identical labels at
their two extremities. Let (H,vg) be the trap for R' constructed in the proof
of Theorem 1. By our construction, we have (H,vg) € G4(R'). Moreover, since
G € Gg, we also have (G,ug) € G4(R'). Let (S;)i>0 be the sequence of states
of R' when exploring G starting from ug. By construction of R’, (S;)i>0 is also
the sequence of states of R when exploring G starting from wug. In fact, we have
{Sz',l' > 0} = Sl, and S’i+1 = 5'(51,/\1(51,(1)) = 5(51,/\(5,,61)) Therefore, the
sequence (S;);>o is independent of any instance (graph, starting node) € G4(R'),
and is independent of which automaton R or R' is exploring that instance. In
particular, the sequence (S;);>o is the same for R and R' in (H,wp). Therefore,



Graph Exploration by a Finite Automaton 11

the sequences of nodes visited by R and R’ when exploring H starting from wvg
are identical. Since (H,vg) is a trap for R’, this latter fact is in contradiction
with the fact that R is universal, and thus explores all graphs, including H.
Hence R uses an infinite number of states when exploring G. O

5 Conclusion and future work

As mentioned in the introduction, Rollik [34] proved that no finite set of finite
automata can separately (i.e., non-cooperatively) explore all undirected graphs.
For his proof, Rollik constructed a trap for ¢ robots of K states each, that
is, a graph that none of the ¢ robots explores completely. This trap is of size
O(K?). Thus, an interesting direction of research is to look for smaller traps.
In particular, we raise the question of whether there exists a trap of polynomial
size for any set of ¢ robots of K states each.

References

1. S. Albers and M. R. Henzinger. Exploring unknown environments. SIAM J. Com-
puting 29:1164-1188, 2000.

2. H. Antelmann, L. Budach and H.A. Rollik. On universal traps. Elektronische
Informationsverarbeitung und Kybernetic, EIK 15(3):123-131, 1979.

3. G. Asser. Bemerkungen zum Labyrinth-Problem. Elektronische Informationsver-
arbeitung und Kybernetic, EIK 13(4-5):203-216, 1977.

4. B. Awerbuch, M. Betke, R. Rivest and M. Singh. Piecemeal graph learning by a
mobile robot. In 8th Conf. on Comput. Learning Theory, pages 321-328, 1995.

5. E. Bar-Eli, P. Berman, A. Fiat and R. Yan. On-line navigation in a room. J.
Algorithms 17:319-341, 1994.

6. A. Bar-Noy, A. Borodin, M. Karchmer, N. Linial, and M.Werman. Bounds on
universal sequences. SIAM J. Computing 18(2):268-277, 1989.

7. M. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan. The power of a
pebble: Exploring and mapping directed graphs. In 30th Ann. Symp. on Theory
of Computing (STOC), pages 269-278, 1998.

8. M. Bender and D. Slonim. The power of team exploration: Two robots can learn
unlabeled directed graphs. In 35th Ann. Symp. on Foundations of Computer Sci-
ence (FOCS), pages 75-85, 1994.

9. A. Blum, P. Raghavan and B. Schieber. Navigating in unfamiliar geometric terrain.
SIAM J. Computing 26:110-137, 1997.

10. M. Blum and D. Kozen. On the power of the compass (or, why mazes are easier
to search than graphs). In 19th Symposium on Foundations of Computer Science
(FOCS), pages 132-142, 1978.

11. M. Blum and W. Sakoda. On the capability of finite automata in 2 and 3 dimen-
sional space. In 18th Ann. Symp. on Foundations of Computer Science (FOCS),
pages 147-161, 1977.

12. M. Betke, R. Rivest and M. Singh. Piecemeal learning of an unknown environment.
Machine Learning 18:231-254, 1995.

13. L. Budach. On the solution of the labyrinth problem for finite automata. Elektro-
nische Informationsverarbeitung und Kybernetic, EIK 11(10-12):661-672, 1975.



12

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg

L. Budach. Environments, labyrinths and automata. In Fund. Computat. Theory
(FCT), LNCS 56, 54-64, 1977.

L. Budach. Automata and labyrinths. Math. Nachrichten, pages 195-282, 1978.
W. Coy. Automata in labyrinths. In Fund. Computat. Theory (FCT), LNCS 56,
65-71, 1977.

X. Deng, T. Kameda and C. H. Papadimitriou How to learn an unknown environ-
ment I: the rectilinear case. J. ACM 45:215-245, 1998.

X. Deng and C. H. Papadimitriou. Exploring an unknown graph. J. Graph Theory
32:265-297, 1999.

K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree Exploration with Little
Memory. In 13th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA),
pages 588-597, 2002.

K. D6pp. Automaten in Labyrinthen. Elektronische Informationsverarbeitung und
Kybernetic, EIK 7(2):79-94 & 7(3):167-190, 1971.

G. Dudek, M. Jenkins, E. Milios, and D. Wilkes. Robotic Exploration as Graph
Construction. IEEE Transaction on Robotics and Automation 7(6):859-865, 1991.
C. Duncan, S. Kobourov and V. Kumar. Optimal constrained graph exploration.
In 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 807-814,
2001.

P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc. Collective Tree Exploration
To appear in 6th Latin American Theoretical Informatics Symposium (LATIN),
2004.

P. Fraigniaud, and D. Ilcinkas. Directed Graphs Exploration with Little Memory.
In 21st Symposium on Theoretical Aspects of Computer Science (STACS), LNCS
1996, pages 246-257, 2004.

A. Hemmerling. Labyrinth Problems: Labyrinth-Searching Abilities of Automata.
Volume 114 of Teubner-Texte zur Mathematik. B. G. Teubner Verlagsgesellschaft,
Leipzig, 1989.

F. Hoffmann. One pebble does not suffice to search plane labyrinths. In Fund.
Computat. Theory (FCT), LNCS 117, 433-444, 1981.

D. Kozen. Automata and planar graphs. In Fund. Computat. Theory (FCT),
243-254, 1979.

A. Lépez-Ortiz and S. Schuierer. On-line parallel heuristics and robot searching
under the competitive framework. In 8th Scandinavian Workshop on Algorithm
Theory (SWAT), 2002.

H. Miiller. Endliche Automaten und Labyrinthe. Elektronische Informationsver-
arbeitung und Kybernetic, EIK 7/4, 261-264, 1971.

H. Miiller. Automata catching labyrinths with at most three components. Elek-
tronische Informationsverarbeitung und Kybernetic, EIK 15(1-2):3-9, 1979.

P. Panaite and A. Pelc, Exploring unknown undirected graphs, J. Algorithms
33:281-295, 1999.

M.O. Rabin, Maze threading automata. Seminar talk presented at the University
of California at Berkeley, October 1967.

N. Rao, S. Kareti, W. Shi, and S. Iyengar. Robot navigation in unknown terrains:
Introductory survey of length,non-heuristic algorithms. Tech. Report ORNL/TM-
12410, Oak Ridge National Lab., 1993.

H.A. Rollik. Automaten in planaren Graphen. Acta Informatica 13:287-298, 1980
(also in LNCS 67, pages 266-275, 1979).

CL. E. Shannon. Presentation of a maze-solving machine. In 8th Conf. of the
Josiah Macy Jr. Found. (Cybernetics), pages 173-180, 1951.



