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Abstract: The energy evolution of medium-modified average multifie and multiplicity fluctuations
in quark and gluon jets produced in heavy-ion collisionsngstigated from a toy QCD-inspired model.
In this model, we use modified splitting functions accougpfior medium-enhanced radiation of gluons
by a fast parton which propagates through the quark gluosnma The leading contribution of the
standard production of soft hadrons is found to be enhangatiebfactor/N, while next-to-leading
order (NLO) corrections are suppressed Ih/N,, where the nuclear parametdf, > 1 accounts
for the induced-soft gluons in the hot medium. The role oftriexnext-to-leading order corrections
(NNLO) is studied and the large amount of medium-induced glions is found to drastically affect
the convergence of the perturbative series. Our resulsuidn global observables are cross-checked and
compared with their limits in the vacuum and a new methoddbrisg the second multiplicity correlator
evolution equations is proposed.
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1 Introduction

The properties of quark and gluon jets are strongly estaddisand carefully studied through well known
QCD evolution equations [1] imTe™, ep and hadron collision experiments. In the case of high en-
ergy nucleus-nucleus collisions, hard jets propagate irediim with different properties from those
of the vacuum. Recent experiments at the Relativistic HeamyCollider (RHIC) have established a
phenomenon of strong high-transverse momentum hadromesgipn [2, 3], which supports the picture
that hard partons going through dense matter suffer a signifienergy loss prior to hadronization in the
vacuum (for recent review see [4]).

Since little is known so far on jet evolution in QCD media, giotions for multiparticle production in
such reactions could be carried out by using a toy QCD-iedpinodel introduced by Borghini and
Wiedemann in [5]; it allows for analytical computations am@y capture some important features
of a more complete QCD description. In this model, the DaksiiGribov-Lipatov-Altarelli-Parisi
(DGLAP) splitting functionsy — ¢gg andg — gg [1] of the QCD evolution equations were distorted so
that the role of soft emissions was enhanced by multiplyireginfra-red singular terms by the medium
factor NVg:

Ns CF NS x
g — g — d
PY(Ns,z) = . (1-z)2—-2(1-2)], ®I(Ns ) N, < . 1+ 2> ,

where z is the fraction of the outgoing jet energy carried away byrgls gluon. Thus, the lead-
ing singular terms of the splitting functions play a more ortpnt role; from the theoretical point of
view it could be considered as a result of some effective &magian, which would be responsible for
processes in a dense nuclear environment. In the approfcthgémedium-modified splitting func-
tions are directly related to the medium-induced gluon spetd/ ™Y/ dzdE [8], whereE is the initial
energy of the emitting parton going through the medium. Asgared to the Borghini-Wiedemann
model, the medium modifications explicitly depend on thegawirtuality through the enhanced in-
duced gluon spectrum. However, we use the simpler intexfioet of the induced-medium modification
of the Borghini-Wiedemann model [5], which was further dissed and used on the description of final
state hadrons produced in heavy-ion collisions [7].

In this paper we are concerned with multiparticle produciio quark and gluon jetsl = ¢, g, pro-
duced in nucleus-nucleus collisions at very high energy. nWe&e predictions at NLO and NNLO for
the average multiplicitiesV 4, for the ratior = N, /N, and finally for the second multiplicity correlators
(Na(Na — 1))/N3%, which defines the width of the multiplicity distribution.uéh observables are of
great importance and have been largely studied in the vaduwmboth theoretical [10—13] and experi-
mental [14—19] points of view. The problem of medium-modifiaultiparticle production has also been
considered in [21, 22] with fixed coupling constant.

The starting point of our analysis is the NLO or Modified-LeadLogarithmic-Approximation (MLLA)
evolution equations [1], which determine the jet properteall energies together with the initial condi-
tions at threshold at smatl. Their solutions with medium-modified splitting functiooan be resummed
in powers of\/m and the leading contribution can be represented as an exjanef the medium-
modified anomalous dimension, which takes Medependence:

Na = exp { / " Jmea(@x(Y) dY} |
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whereymed(as) can be expressed as a power serieg/of, /N, in the symbolic form:

Ymed(@s) =/ Ns X /o <1+1/%+%+...>.

Within this logic, the leading double logarithmic approxition (DLA, O(v/Nsas)), which resums both
soft and collinear gluons, and NLO (MLLA)(«;)), which resums hard collinear partons and accounts
for the running of the coupling constant, are complete. The DLA takes into account, as expected,
the medium maodification by enhancing the soft multipartfmleduction by a factotc /Ny, the MLLA
terms, which aréV,-independent, takes into account the energy balance irattieclollinear parton split-
ting region as in the absence of the nuclear modification. é¥ew this result depends on the definition of
the medium-modified splitting functions. The next termsjalilare NNLO or next-to-MLLA (NMLLA,
0(053/ 2 /+/Ny)) are not complete but they include an important contrilytiwhich takes into account
energy conservation and provide an improved behavior meastiold. With medium modification, the
NMLLA terms take N;-dependence, but this will be explained in the main core efpiper. This logic
applies to each vertex of the cascade and the solution meethe fact that successive and independent
partonic splittings inside the shower, which in this caseceon both vacuum and medium-induced soft
gluons, exponentiate with respect to telution-time variable Y ¢Y = dO©/0), where® <« 1 is the
angle between outgoing couples of partons. The choidé of In(©) follows from Angular Ordering
(AO) inintra-jet cascades; furthermore, the tree Feynniagredms describing the process are at the heart
of the parton shower picture [1]. Thus, the solutions of the equations incorporate thelkglachains of
sequential angular ordered decays apgdjdetermines, in this case, the rate of multiparticle produact

in the dense medium.

At the end of the cascading process inside the medium, mahadronize in the vacuum. In order to
obtain the hadronic spectra, we advocate for the Local Radtaron Duality (LPHD) hypothesis [23]:
global and differential partonic observables can be ndeedlto the corresponding charged hadronic
observables via a certain const&hthat can be fitted to the data, i = K x N4.

The paper is organized as follows:

e Section[R presents a system of evolution equations with unednodified splitting functions,
which allows for the computation of the medium-modified aggr multiplicity and the medium-
modified gluon to quark average multiplicity ratio at NLO a\NLO. We give predictions for the
valuesN,; = 1.6 and N, = 1.8, which may be realistic for RHIC and LHC phenomenology [5].
Moreover, we compare our results with previous predictiorthe vacuum;

e in Section[B we study the medium-modified second multiplicibrrelator at NLO and NNLO.
Accordingly, we give predictions for the same values\gfand compare such predictions with the
equivalent for the vacuum limiv, = 1;

e in Section} we present our conclusions.



2 Evolution of the average multiplicity and gluon to quark average mul-
tiplicity ratio with energy loss

At MLLA the evolution of quantities with jet energl and jet opening angl® is given by an evolution
equation for the azimuthally averaged generating funationthe jet [1]. The evolution involves,, the
running coupling constant of QCD:

2 1 11 4
s=as(Q) = ——7 5=—<—Nc——T>, 1
« 04( ) 4Ncﬁ0]n(%) 0 4Nc 3 3 R ()

where@ = EO is the maximum transverse momentum of the jet= Agcp is the intrinsic scale of
QCD, 5 is the first term in the perturbative expansion of thefunction, V.. is the number of colors and
Tr = nys/2, wheren is the number of quark flavors. In the leading DL, is linked to the anomalous
dimensiomny, of twist-2 operators by the formula:

2 2 as(Q) 1 o Q )
Y0 VO(Q)_2NC e _ﬂO(Y‘i‘)\)’ Y_anO’ A=In A’ (2)

where(Q)q is the collinear cut-off parametérr = FO© > Qy. The results depend on energy and angle
only through the variabl@”. For the sake of simplicity we also st = Y + \ in the following. The
average multiplicity is obtained by integrating the onetipke single differential inclusive cross section

over the energy fractiom = e/E
1do

For the medium-modified evolution of the average multipfieh quark and gluon jets one obtains as a
consequence of AO at MLLA, the coupled system of two evolugquations

1
ding(Y) :/ dmyg(x) [@g(Ns,:E) (Ng(Y +1Inz) + Ng(Y +In(1 — x)) — Ng(Y))
0

+np®I(Ng, ) (Ng(Y +1Inz) + Ny(Y +1In(1 — x)) — Ng(Y))] , (3)

d

1
V) = [ do B @8N, 2) (Ny(Y 1) + Ny(Y +In(1 —2) = Ny(¥))] (@
0

with medium-modified splitting functions as suggested inrfghe Borghini-Wiedemann model

BY(Nya) = 0 (12 el —w), WNuw) = -2 ©)
BI(N,, ) = % (N? —14 g) , (6)

which accounts for energy loss in the medium by enhancingitigular terms likeb ~ N, /z asx — 0.
Theg — ¢q splitting function as well as the regular partsgof~ gg andg — ¢q splitting functions are
hard and provide collinear corrections, that is why thesmdedo not takeV, dependence.



2.1 MLLA evolution of the average multiplicity in the medium

ForY > Inz ~ In(1 — ), N(Y +Inz) (N(Y + In(1 — z))) can be replaced by (Y) in the hard
partonic splitting regionz ~ 1 (1 — z ~ 1) (non-singular or regular parts of the splitting functipns
while the dependence dnz is kept on the singular on®(z) ~ N,/z as it is performed in the vacuum.

Furthermore, the integration overcan be replaced by the integration o¥&fz) = In (5”5—(?)

1 o Y
[ @ = [ ey @

After applying the differential operatofi- to both members of the systeff}[{3,4) above, one is left with
the approximate system of coupled equations,

d? d

7NV =38 (M- ) () ©
d? C . d

ENal) = 508 (N~ g ) M), ©

with the initial conditions at threshol®; (0) = 1 and N'}*(0) = 0 and the hard constants

1 (11, 4 Cp 3
- N+ -Th(1-22E =2
“ 4NC{3 °t3 R( N)} M=y

The quantum corrections a;, a; in (g[9) arise from the integration over the regular partefplitting
functions, they are)(\/a,) suppressed anpartially account for energy conservation as happens in
the absence of the dense medium. Since only the DLA terms adtum-enhanced irf](8,9), the hard
constants aré&v,-independent.

These equations can be solved by applying the inverse Madlinsform:

N,(Y) = d—w,e“’Y,Ng(w) (10)

c 27

to the self-contained gluonic equatidf (8), where the aaméd lies to the right of all singularities of
Ng(w) in the complex plane. The running of the coupling constaytt”), Eq. (2), is taken into account
through the identity

dw / dw ) d
Yl wY N — _ WY 2wN 2_N )
[y nye) = - [ e (2, ) + 2N (o)

Consequently, one is left with the following differentiajuation in Mellin space
1 d N aq 1
— N =% — -2 11
Ng dw g(W) /Bowz + (/30 > Cd ( )
Solving (11) and usind (10), one obtains

Ny
/ —wﬁo exp wY' + . (12)
27 Bow

The exact solution of (12) together with the initial conalits leads to a linear combination of two kinds
of Bessel functions which resums the perturbative seriesl ggowers of./a, [1]. However, in this
paper we are concerned with the asymptotic solution of th@atson asY” > 1 (E© > Qo), that is
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the high energy limit. Therefore, the Mellin transforfn](k&n be estimated by the steepest descent
method. Indeed, the large parametel’isand the function in the exponent presents a saddle point at

wo = v/Ns/(BoY’), such that the asymptotic solution reads

_o1 4N,
NMY) = K x V'™ % exp 2 (13)
0
where
b1 Po
LT Ty

We also introduced, as stressed in the introduction, theRbirmalization constankt [23], which
accounts for hadronization effects outside the medium. ddrestanto; is N,-independent because
it resums vacuum corrections. Therefore, the productiorofif gluons in a dense medium becomes
exp [2(\/Ws — 1)%} higher than the standard production of soft gluons in thewac[1] and the
factor /N, in (I3) underlines the presence of the nuclear medium; &sslts has first been reported
in [24]. From {1B) one obtains the first and second logarithderivatives ofV,:

1 dN, 1 dN, 5, 1 d>N, 1 d>N, 5
= = v/ Nsy0 — , = =N, 14

N, dvy2 ~ N, dyz 0

The expression on the left hand side pf](14) is nothing butMh&A rate of multiparticle production
with respect to thevolution-time variableY ~ In(©) in the medium, which we define as the medium-
modified MLLA anomalous dimension:

1 dN, 5
med¥) = 55 = VR [L- T 0 (1)) (15)
g s s

where N, only affects, as expected, the leading double logarithmimt From [IB) and[(15), one
recovers the ansatz

NAYJ:em></7mMOﬁdY>, (16)

which we further improve in the next paragraph by adding éigsrder corrections. Finally, usinfy {13)
and ($[P), one obtains the solution 5}

N, (V) = % [1 + (a1 — @) \/7—]2[_} N,(Y)+ 0O (XZ—S> . (17)

Therefore, we can introduce the medium-modified MLLA gluomuark average multiplicity ratio =
Ny /Ny = N'/N} in the form

2
r=rg [1—7‘1\/7]0784—(9(7\[—2)], roz%, r=ai — ai, (18)
where the suppression factof+/Nj restricts the production of hard collinear partons\as> 1. We
notice that[(1]8) is identical to the expression with fixedgling constanty;(Y'), whereY = In (Q/Qo)
and@ = FE© is the virtuality of the jet produced in the nucleus-nuclesction. This factor is found to
suppress the hard correcti@(v,) and thereforey approaches its asymptotic DLA limiy = N./CFr
when the coherent radiation of soft gluons is enhanced.in§et; = 1 in (L§), one recovers the
appropriate limits in the vacuum [1,11,25]. The constantering in [1B) and[(18) are the same as those
obtained in the vacuum and their values are displayed irefhbl
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ny T1 g1

3 0.185 0.280
4 0.191 0.297
5 0.198 0.314

Table 1: Coefficients; ando; .

2.2 Medium-modified equations and solutions at Next-to-MLIA

Previous MLLA results for the average multiplicities canifmproved by further pushing the perturbative
series in[[{}4). We can include NNLO or NMLLA corrections ofler O (o), which are known to better
account for energy conservation in the vacuum [12, 17, 26t.tHis purpose, we replac¥ (Y + Inx)

(N (Y +1n(1—2)) by the Taylor expansioV (Y)+ -4 N (Y) Inz+... (N(Y)+ 4 N(Y) In(1-2)+...)
and, as in sectioh 3.1, we integrate over the non-singulds péathe splitting functions. We thus obtain
the medium-modified NMLLA approximate system of two-coupéyolution equations

d—ZNY—zN— i—52+(Nd—2NY (19)
dY?2 9( )_ Y0 s ai dY Y0 az S)dY2 9( )7

d2 CF 2 -~ d 2 - d2
qu(Y) = N0 <Ns —a <d_Y - ﬁ%) + az@@m) Ny(Y), (20)
with the new/N,-dependent constants

2 = 2
_67 ™ 13TRCF QTRCF(CLl al) &2(NS)_ +%<§ s >

3 "6 18N.N. 3N.N. N, ' T8 N.\8 "6

The dependence ab anda, on N, follows from the singular term in the integral, fol df In(l—x) =
—NS%Q which also enhances (see below) the induced soft gluontradiat the NNLO level. The term
o 1/4/Ns in aa(N,) was obtained by replacin§ {17) in the single logarithmicpie N, in (§), while
the terme NV, in the equations (1P,R0) enhances the role of the leading Bt i [§P). As expected,
one recovers the constanig(N; = 1) = ay andas(Ns; = 1) = ay obtained in the vacuum [20] when
N, = 1. The terms proportional to these constants are known terb&ttount for energy conservation
in the partonic shower in the vacuum. Also note that the dautions < a5y and a3y cannot be
neglected when performing predictions with running caupltoupling constant.

The system[(19,20) can be solved by inserting the angdtar(b@xh sides of[(19) with

2 3
YmedY) = v/Nsvo [1 — o \/’Y]%_ - UQ(NS)% +0 (’Y_O>] , (21)

whereos (V) is the unknown coefficient to be determined. The medium-fre’iNMLLA anomalous
dimension|[(31) has been inspired from the MLL/A](15) wherehdth cases, we make appear the rescal-
ing of the coupling constant, — a/N; in the series. After equating terms2 in the left and right
hand sides of{(19) we obtain the following value

1/1

1 3
o3(Ns) = =35 (5alﬁo + 701 + Naaa(N) + 1—66§> : (22)

ag(Ns)
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such that after integrating (21) according [fo] (16), the medimodified NMLLA average multiplicity
takes the simple form

AN, 209(Ny)
Bo VNsB3Y!
The termec o2(N;) in (3) provides the NMLLA correction tdV/. As N; increasesgs(N;) follows

the leading behavioes(N;) ~ N2 (and the second factor in the exponent [of] (23)N§’/2) which
enhances the production of induced soft gluons in the medaiuthne NNLO level. SettingV, = 1 in

NIY) ~ K x V'™ exp (23)

. . =3 . :
(3) one recovers the value of this constant in the vacou, = 1) "7 _0.378 as given in [12].
Furthermore, setting, = 0 in (£3), the appropriate limit with fixed coupling constant = const can
be deduced.

We proceed to determine the medium-modified NMLLA gluon taruaverage multiplicity ratio by
subtracting [(30) from[(19), one has

d? N, .. d . dzN
T (Mo G2, ) = a1 — )L 03N — @) - VR @9

Applying the operators&d? and% to (29) and dropping corrections contributing beyond NML lwe
obtain respectively

d N, &N, Ld2N, ,d?N, N, d'N,
N, N, a N2 < d 25
dY(% 0) = Cpays T s e N g T Cp Ayt (25)

where we keep track of the nuclear factgr and the running ofv, (Y ()) in such a way tha{ (24) can
be rewritten in the form

N Nc (al—dl) qu NC <&1(a1—d1) (dg(N) CLQ( ))> d N

Ny=_CtN,— e MW 2a e
9= T o, N, dy Cp\ Nz N, a2’

after reassembling terms dYq andx dY; Using (14) together with the initial conditions at thresho
yields forr = N, /N, with NNLO accuracy

3
_ B Yo 70 Y0
r=ry|l—r N T2(N)NS+O<N83/2>], (26)
where the coefficient, is explicitly dependent oV, through the formula
r2(Ns) = (a1 — o1) r1 + (a2(Ns) — az(Ns))Ns. (27)

The dependence of(N;) on 3, in (28) underlines the account of the running coupling camistsetting
Bo = 0 the appropriate fixed coupling solution can be deduced N0t 1, the appropriate limits in the
vacuum are recovered [12], for example

ro(Ny = 1) = (@1 — 01) 71 + (a2(1) — as(1)) "=" 0.426.

We give the NMLLA coefficientsry(N,) andry(N,) defined in [2B) and[(26) as a function df, in
Table[?.

As N increases, th€(vy/+/N5) correction decreases, while the o2 /N;) becomes sizable and
decreases likee —N,. That is why it might be wondered whether the convergencé@fperturbative
series could be reached at a certain level of accuracy. $eceeries widely oscillate at low energy
scales, large terms 72 in ay(N,) andas(N,) might spoil or drastically affect the trends obtained at
MLLA. This kind of behavior has first been noticed in the Kddaelsen-Olsen (KNO) problem [28] in
the vacuum.



ny r2(Ns) o2(N;)

3 0.087 — 0.027y/N; — 0.548N, + 0.914N2  —0.337 — 0.014\/N; — 0.850N, + 0.822N?
4 0.087 — 0.038y/N, — 0.494N, + 0.914N?  —0.319 — 0.019\/N; — 0.823N, + 0.822N?

5 0.087 — 0.049/Ns — 0.441Ng + 0.914N2?  —0.302 — 0.024y/N; — 0.797N; + 0.822N?

Table 2: Coefficients,(Ns) andoy(Ns).
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Figure 1: MLLA (I3) and NMLLA (2B) average multiplicity as arfiction ofQ = E© in the vacuum
(Ns = 1) and in the medium/i; = 1.6 and N, = 1.8).

2.3 NLO and NNLO results onNg andr

Settingn; = 3, we display in Fig[]1 our results for the medium-modified MLI{E}) and NMLLA
(23) average multiplicity. We plodV; in the rangel0 < Q(GeV) < 500, whereQ = EO is the total
virtuality of the jet related td” in (B). We compare our results in the medium féy = 1.6 and N, = 1.8
(see [5]) with predictions in the vacuunV( = 1), we setQ)y = Agcp = 0.23 GeV in the limiting
spectrum approximation [12], anld = 0.2 is taken from [12]. The valued’; = 1.6 and N, = 1.8

in the medium may be realistic for RHIC and LHC phenomenol{&)26]; the jet energy subrange
10 < Q(GeV) < 50 displayed in Fig[]1 has been recently considered by the STARImration, which
reported the first measurements of charged hadrons andlgadéntified fragmentation functions from
p+p collisions [27] at /sy = 200 GeV. Finally, the jet energy range in the same figure, in paldr for
those values ap) > 50 GeV, will be reached at the LHC, i@ = 100 GeV is an accessible value in this
experiment (see [5] and references therein).

Notice that at NMLLA, the increase dVgh with N, is more substantial than at MLLA. The former is
driven by the leading contribution t@,(N;): it increases likera(N;) ~ N2 (see Tabld]2) in the sub-
leading piece of[(23). In both resummations schemes we finelxpected from our calculations, that the
production of soft hadrons increasesMs > 1, which implies that the available phase space becomes
restricted for the production of harder collinear hadrons.
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Figure 2: MLLA (I8) and NMLLA (26) gluon to quark average niplicity ratio as a function of) =
EO inthe vacuum {V; = 1) and in the medium/{; = 1.6 and N, = 1.8).

In Fig.2, we display the medium-modified MLLA ratio = N,/N, (@8) and the medium-modified
NMLLA ratio as a function ofQ = E©. As expected from[(18), a¥ increases, thé& () correction

is suppressed by//N;, the ratio approaches the DLA asymptotic regige= N./Cr = 9/4. At
NMLLA, the previous trend goes in the opposite direction:edras indeed-ry(N,) ~ —N2 (see
Table[2) in theO(+2/N;) piece of [2b), which is negative and sizableMsincreases and, therefore,
spoils the behavior obtained at MLLA signaling difficultiasth perturbative theory in the medium.
Indeed, sizable oscillations have been noticed in the getive series [13] and it turns out that they
are wider in the medium than in the vacuum. For example, theLNMcorrection tor is ~ 10%
for Ny = 1, and for N, = 1.8 itis ~ 40%. It should be noticed that every logarithmic derivative
of NQ provides a half power ofV, to successive terms in the series in the f(%’é% R (Nsas)”/2

(n =1 — MLLA, n =2 — NMLLA...), such that the perturbative approach shoulddaihigher order
terms are incorporated. Former statements suggest thatbgporating NMLLA and next-to-NMLLA
(NNMLLA, see paragraph 3.4) corrections on an equal footthg MLLA behavior can be recovered.
We conclude from this analysis that MLLA provides a moreisti@l physical picture of the softening of
jets than NMLLA. Therefore, either the incorporation of NMMA terms or the exact numerical solution
of the evolution equations [7, 29], which exactly accoumtsthe running ofx, and the energy balance,
is required. In [21], a numerical solution of the equatioresyerovided with fixed coupling constatg,
and the results are shown to follow our MLLA expectationsVasncreases.

Finally, in both MLLA and NMLLA, the gluon jets are still moractive than the quark jets in producing
secondary particles and the shape of the curves are rowtghitiéal; however, these characteristics prove
not to be very sensitive téy,.

3 Medium-modified evolution for the second multiplicity correlator

The second multiplicity correlator was first consideredlid][at MLLA and later in [13] at NMLLA.
It is defined in the formN'{? = (N4(N4 — 1)) in gluon (4 = g) and quark d = ) jets. The
normalized second multiplicity correlator defines the widf the multiplicity distribution and is related



to its dispersionD% = (N4 (N4 — 1)) — N3 by the formula

D? = (Ay — 1)N% + Na. (28)
The second multiplicity correlators normalized to theimosgquared average multiplicity are
(29)

inside a gluon and a quark jet respectively. These observadie obtained by integrating the double
differential inclusive cross section over the energy fiadzy = e;/E andxy = e/ FE

(Na(Ng — 1)) = // dz1dzs (é djjgl"z)A.

The correlators arE-independent and provide a pure test of multiparticle dyinanHowever, important
disagreements with™ e~ data [16] indicates that non-trivial hadronization effegtay play a significant
role. The treatment of this observable with full account eftprbative and non-perturbative ingredients
is not available yet. Therefore, we study the variation @ tibservable ad&', > 1 with respect to the
limit in the vacuumN, = 1 and do not compare our results withe™ data [16]. The medium-modified
system of two-coupled evolution equations for this obdale/éollows from the MLLA master equation
for the azimuthally averaged generating functional andk@awritten in the convenient form

d 1
(NP = N) = /0 dzr3@g [NP (¥ +Ina)+ (NP +In(1 - 2)) - NP (V)

+<Ng(Y +Inz) = Ny(¥)) (Ng(¥ +1n(1 - 2)) Ng(Y)>]
+nf/01 dar3®Y [2 (Nq@)(y +1Inz)— N2(Y +In x)) - (NQ(Q)(Y)—NQQ(Y))

+ (2Nq(Y tlnz) - Ng(Y)) (2Nq(Y +In(l - z)) — Ng(Y)ﬂ , (30)

d 1
NP - N2) = /0 drn3® [NV + )+ (NP(Y + (1 - 2)) — NP (7))

+2 (Ng(Y +lnz) - Nq(Y)) (Nq(Y +In(l—2)) — Nq(Y)>] . (31)

which proves to be more suitable for obtaining analyticdlitsons in the following. We use a new
method to compute solutions at MLLA and NMLLA by replacimgﬁf) = A2 N3 on both sides of the
expanded equations at~ 1 — x ~ 1. This observable is less inclusive than the average migitigl

it can indeed be derived from the two-particle four-momantcorrelation [30] in the shower. The
medium-modified formulag (IL6)] (18) ar{d|(26) will be used is tinalysis.

3.1 MLLA approximation

ForY > Inz ~ In(1 — z) in the system abovg (0]31y,(Y +1Inz) (N(Y +1In(1 —))) andN® (Y +
Inz) (N®(Y 4 In(1 — z))) can be replaced by (Y') and N(?) (Y') respectively in the hard partonic
splitting regionz ~ 1 — z ~ 1, while the dependence dn z is kept on the singular one: (— 0).
The medium-modified MLLA approximate system of two-couptalution equations for the second

10



multiplicity correlator reads

> @) 2 2 d @) d 2

7 (Ng — Ng> =7 | Ns — a1 v Ny¥ + (a1 — by )2 dYN (32)
d? C d

el (2 _ N2) = ZE.2 _ (2)

2 (Nq Nq> G (Ns i dy> N} (33)

where the new hard constant is:

1 |11 Tk Cr
by = —N.—4=2(1-222
U7 UN, [3 N, ( Nc>

The constantV, only affects the leading double logarithmic term of the emues. The terms propor-
tional toa;, (a1 — b1) anda, are hard vacuum corrections whiphrtially account for energy conser-
vation, indeedyg% ~ /N3 and the relative correction to DLA i9(+/as/N5). As before, the hard
constants are, as expectéd,-independent. Moreover, these sub-leading contributieme the same
form as those describing the two-particle correlation [30]

3.1.1 Medium-modifiedG2 at MLLA and expansion in O(~o/+v/Ns)

SettingNg(z) GQN2 in (32), the system can be solved iteratively by considetamms up ta0 (o 3/2)
in the left and right hand sides df {32). Thus, the .h.s[ @) 8rites in the form
d? d’G dGs d d?
() _ a2\ — 2 \r2 a2 A 2 2
Ty (N = N7) = Gy NG + 252 G5 NG + (Ga = 1) g NG, (34)
Hereafter, in all sub-leading terms, we can repléeby a constantG, = GPY* = const, while the
terms involvingN, should be computed by usinig [13), thus

d2
— <Né2) _ N;) = 2N, (Go — 1) [4 — (day — Bo) \/'YJOV_} N? (35)
while the r.h.s. reads
d d
[(NS’YS - al’Ygd—Y> G2+ (a1 — bl)’Ygd—Y} N, = (36)
YENs(Gy — 1)N2 + Ny |1 — gal +oby ) 10| N2,
g 3 /Ns g
Equating [(35) and (36) the exact MLLA solution ¢f|32) reads
70
1—-6;
Gy —1= T VWJX (37)
0

where

2
01 = <§a1 + 2b1> ;02 = (4ar — o).

Settingyo/v/Ns — 0 in (B]) one recovers the DLA/;-independent value€®-* = 4/3. Then, expand-
ing @B7) in the forml + ~,/+/N; , one recovers the result from [11] foé, = 1

1 Y0 %
-1~ - - - 38
Gs 5l ENS+O<NS ) (38)

where the linear combination of color factors reads

2 1 2 1 (55 Tr 112TRCrp 32TpC%
cl o0 TP+ 3b 4Nc<

39
9 N 9 N.N. 3 N.N? (39)
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3.1.2 Medium-modified@2 at MLLA and expansion in O(~o/+/Ns)

Inserting ),Nq(Q) = @2 N7 and using the MLLA expression for the rat{o](17) [n](33), istsaightfor-
ward to obtain o )
2—1 Nc 3 0 Y0
=142y — T 40
Gy 1 O { +2(b1 ap) TVS—FO(NS (40)

Expanding [(40) in the formi + ~o/+/N, and settingV, = 1, one recovers the result from [11] in the
vacuum. Indeed,

o Ne (1o i
Q2 1NCF<3 Clm>+O<Ns , (41)

where, in agreement with [11], we obtain the combinationadbicfactors

5 1 1
1 = — —b — —
¢1 18a1+6 1—1-950

1 (55 4Tr Cr 8TR0%>

AN, \9 "9N.N. 3N.N?

42
9 O9N.N. 3N.N? (42)

In Table[B we display; together withc; (B9) forn; = 3,4,5. As for the medium-modified MLLA

ny C1 C1

3 0485 0.495
4 0477 0491
5 0.469 0.486

Table 3: Coefficients; andé; .

expression = N, /N, (L8), hard corrections to the MLLA second multiplicity celiatorsG, and @
are suppressed by the factofr,/ N, while the leading double logarithmic termg(+/ N, — 0) remain
unchanged and equal the vacuum result

N,
As =1+ , A=g(Cy=N.), A=q(Cy=CF). (43)
3C4

Thus, our MLLA predictions for the medium-modified secondltiplicity correlators follow the char-
acteristics of the jet quenching.

3.2 Next-to-MLLA evolution equations for the multiplicity correlator

To obtain the equations we proceed like in paragfaph 2.2 aadesults from subsecti¢n 3.1. Indeed,
by further pushing the perturbative series, one can imptheeaccount of the energy balance. We
replace, in the hard splitting regidfi > Inz ~ In(1 — z), N(Y + Inz) (N(Y + In(1 — z))) and
NOY +Inz) (NO(Y +In(1 —2) by N(Y) + AZNY)Inz... (N(Y) + ANY)In(1-2)...)
andN?(Y) + LNO Y )nz... (NO(Y) + LN (Y)In(1 — 2)...) respectively in the system
B0[31), while the dependence bnz is kept on the singular piec¥ /z. After integrating the regular

12



terms overz, the medium-modified NMLLA approximate system of two-caglevolution equations
for the gluon and quark multiplicity correlator reads

@’ (2) _ N2 2 d 2 / &’ (2)
ays (V57 = Ng) =8 (M- (G ) + a0 3 ) V) @y
2 d > 2
+75 ( (a1 —b1) v — Bot +b2(Ns)m Ny
d
(2) _ n2

+ 5 b3 (V. )dY (N Ng)’
d? 2 2 Cr o P d G d’ 2
ayz (VP - N7) = AL (NS (dY 5070) +a2(NS)W> Ny, (49)

where the termx b3 follows from the MLLA result [4D),

CF 1 - 3 o
2 2 2 2
Né)—Nq [1+<—a1—2a1+—b1> ](N;)—N>.

N,

The constants are the following:

(V) = an(N) — ST (46)
Tr CF Cr Cr !

ho(Ny) = L F [3 <1_E>_2<1_2NC> NJ, (7)
Tr Cp (1 (b1 —a1)

ba(Ne) = 33 <m+3 N > (48)

The termsx a16y, a5(Ns), (a1 — b1)Bo, b2(Ns), b3(Ns) in (B4) and the onesc @16y, aa(N;)

in (f8) areO(+3) corrections which better account for energy conservatidfe remind thatgyfx ~

O((Nyos)™/?) and that termsx 3, arise from the running of the coupling constan{(Y’). Moreover,
these constants také,-dependence for the reasons explained in setipn 2.2.

3.2.1 Medium-modifiedG2 at NMLLA and expansion in O(~o/+v/Ns)

SettingN(z) = G2N2 in (@4), the equation can be solved iteratively by makingafs@l), the MLLA
formula (38) forG, and the leading DLA limiGB** = 4/3; moreover, we expand the series up to terms
O(a?). The L.h.s. of [44) can therefore be written in the form,

Lh.s. = 73(Gz = 1) [AN, = (81 + fo)v/Nyo + 2 (01(201 + fo) — 40a(N)) 98| N2 (49)
+ 260c175 N,

The r.h.s. reads
1 1
rh.s. =2 {NS(GQ — 1)+ Ns—2 <§a1 + b1> vV Nsvyo + <—a1 + bl) (201 +Bo)s  (50)

3
<3b3( “+ a1

) VIR 44 (G + ta() ) Mg | N

Equating [49) and ($0) we find the new exact NMLLA solution[@4),

2
1628 4 55N, 0

Gy—1=— VI Al (51)
Yo Y0
-0 04(Ng) ==
8= 02+ a1
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where the following combinations of color factors have beeitten in the form

53(N,) = <3a1 + b1> (201 + o) + 2 <1b3<NS> N S 50)) VN, (52)

3 3 VN,
+ 4 (%aé(Ns) + bz(Ns)> N, (53)
54(Ns) :2(0'1(20'1 —|—ﬁo) —40’2(NS)). (54)

When the MLLA coefficients, 6o and NMLLA §3(Ns) andds(Ns) are evaluated in the vacuunv{ =

1) for ny = 3, we find respectively; = 2.453, d, = 2.991, 63(1) = 2.818 andd,(1) = 3.766. In
particular,d; ~ d3(1) while the NMLLA ¢64(1) becomes bigger than the MLLAy. It was shown in
the KNO problem that MLLA corrections increase like kv/a, (k = 2) while NMLLA like ~ k2

(k* = 4) as the rank of the correlator, which coincides with the nemtf particles triggered in the
shower, increases [28]. It may be the reason why sizable NMtdefficients are found in this picture.
Moreover, as the rank of the correlator increases)(\/a,) corrections become of the same order of
magnitude than the leading DLA and perturbation theorysfaifherefore and in general, MLLA and
NMLLA corrections for the less inclusive multiplicity calator of any rankk are more sizable than
those of the more inclusive average multiplicity. That is thason for, the exact numerical solution of
the evolution equations [7, 29] becomes interesting.

Expanding[(31) inyy/+/N5 in the form1 + ~0/+/N5 + 73 /N, we obtain

TR S 7_3 %
Go—1= 3 c1 \/]Ts + CQ(NS)NS + O Ng’/z (55)
where )
ca(Ny) = > (62(N5)? — 364(Ng) — 381 (Ns)d2(Ns) + 953(Ny)) . (56)

Setting N, = 1 in (58) and taking»; = 3,4,5, we recover the values,(1) = 0.0372,0.0609, 0.0838
obtained in the vacuum [13]. Moreover, in](55), the sign afcassive terms change as higher order cor-
rections are added to the series. Consequently, it shoulkbhdered whether this result can drastically
be affected as higher order terms are incorporated to thessar current energy scales. The highest
energy scales reached at the LHC and measured by the ALICEERI®I experiments at CERN will
provide more reliable comparisons with our predictionsitbarrent experimental studies at RHIC.

3.2.2 Medium-modified@2 at NMLLA and expansion in O(~o/+v/Ns)

The solution of [[45) can also be obtained by setﬂmﬁ) = @2 N7 in the equation, usind (51) and taking
the MLLA formula for G5 (#1), one has

N, _
Lh.s. = 200 5=8170 NG +16(Q2 = 1) (4N = 023/ Novo + 0a(No)g — 4Bor1o3 ) N2, (57)
and
CF 2 8 ~ 2 ~ ~ 8 ~ 2 2
r.h.s. = F% NG9y — §N/Nsa170 + 2 §a1(201 + Bo) + a1 + §a2(Ns)Ns Y | Nyg- (58)

After equating [(§7) and ($8) we obtain the new exact anaysolution of [4p)

. . 9
Gy — 6L +<53(Ns)ﬁ 2

N, VN Ny | r
Q1= i = | (59)
4-39 o4(Ng)-2 | 70
U, O,
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where (se€[(26))

T, 0 "o
o 1 Tlm TQ(NS)NS.
Moreover,
. 8. .
01 = 3= 2, 0y =09, (60)
~ 2 - - 8.
93(Ns) =2 <§a1(201 + Bo) + aic1 — Poci + §a2(Ns)Ns> , (61)
04(Ng) = 04(Ns) — 4for1, (62)

andG5 should be taken fronf (b1). As before, the size of NMLLA coéits i3 (N, ) andd(N,) in the
vacuum are quite sizable, far; = 3 one has indeed (1) = 3.598 andd,(1) = 3.210, which are close
to k2 = 4, wherek = 2 labels the rank of the second multiplicity correlator.

Performing the same expansiomjgy/ /N we obtain the result

e Ne(Log s v i
Q2 INCF <3 Clm+02(Ns)NS + 0O ng/z , (63)
where the expression fas(N,) follows from (59):
~ _ 1 (BN J2(Ns) 8
v = 35 (25 - dwy) - 28 (e 24 B (64
1 ~ 1
o+ (eaNVe) + 35(N,)) + T (en +2) = 5 (2ra(V:) 7). (65)

Accordingly, settingV, = 1 in (64), we find the values in the vacuumm(1) = 0.215,0.222,0.229
respectively fom s = 3,4, 5 like in [13]. The sign of successive terms added to the s@@sshows the
wide oscillating property. We give the values@f N;) andés (V) in Table[$.

Tlf CQ(NS)

¢2(Ny)

3  —0.258 — 0.016y/N; + 2.505N5 — 2.193N?2
4 —0.236 — 0.022y/N; + 2.513N,; — 2.193N?

5 —0.215 — 0.029y/N; + 2.521 N, — 2.193N?2

—0.168 + 0.005y/N; + 1.962N; — 1.584 N2
—0.146 + 0.007\/N; + 1.946 N, — 1.584N?

—0.126 + 0.009y/N; + 1.930N; — 1.584 N2

Table 4: Coefficientsy (NNs) andéa(Ns).

3.3 NLO and NNLO results onG, and Q-

The MLLA and NMLLA predictions forG»(Q) (B3) andQ-(Q) (63) are depicted respectively in Fip. 3
and Fig[$#. At MLLA, the second multiplicity correlator ireases a8'; > 1 and approaches the asymp-
totic regimeA, = 1 + 31&. Indeed, as for the MLLA ratie(N;) ([L8), the hard correction®(,) are
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Figure 3: MLLA (88) and NMLLA (55) second multiplicity cortator inside a gluon jet as a function of
Q = EO inthe vacuum {V; = 1) and in the medium/{; = 1.6 and N, = 1.8).

suppressed by//N;, such that the production of soft and collinear hadrons eoed, while that
of hard collinear hadrons is more restricted. As beforesghesults provide evidence for the softening
of jets in the nuclear medium. However, the NMLLA results|, & follow the behavior described in
section[2]3 forr(N,). As N, > 1, the correlators decrease, one finds indeed the rough depesnd
ca(Ng) ~ —N2, &(Ny) ~ —N? (see Tablg]4), which in both cases leads to the unavoidableatse of
A, asN; increases. This result follows from the wide oscillatinggerty of the perturbative series: itis
wider in the medium than in the vacuum. That is the reason thieymore physical MLLA trends can be
recovered either by incorporating higher order terms or doperically solving the evolution equations
B4[31) like in [7,29].

Another interesting feature of these observables condbmshape of the curves. They are roughly
identical and do not prove to depend on the medium paraméteMoreover, there exists evidence for
a flattening of the slopes as the jet hardn€ss= E© increases forV, > 1 (vacuum and medium).
This kind of scaling behavior is known as the KNO scaling: &sadiscovered by Polyakov in qguantum
field theory [31] and experimentally confirmed bye~ measurements [16] for the second and higher
order multiplicity correlators. This phenomenon impliegienergy independence of the normalized
multiplicity correlators, which is not affected hy, neither at MLLA nor at NMLLA.

3.4 Role of higher order corrections

In this paragraph we comment on some progresses that coalttied out beyond the NMLLA approx-
imation. We take the much simpler example of the gluon tokjaserage multiplicity ratio and give the
rough dependence of the third coefficiep(V,) that can be added to the serigd (26) in the form

2 3
r=rg (1 —r \ZOV_ - r2(NS)X[—(: - rg(NS)N’?/2> : (66)
with
Ns>1 -
ra(No) & N2 as(Ns) — as(No)],
where o
as(Ny) "5 NLC(3), as(N) KT ——ENG(3). (67)
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Figure 4: MLLA (1) and NMLLA (68) second multiplicity cortator inside a quark jet as a function of
Q = EO inthe vacuum {V; = 1) and in the medium/{; = 1.6 and N, = 1.8).

These coefficients follow fron{]@,4) by further expanding erturbative series and therefore,

_Cr

Ng>1
—r3(Ng) & Ng’ <1 i
C

> ¢(3) > 0. (68)
Thus, replacing—rs(Ns) N2t N3 in (8), the third term changes its sign and therefore, thet ML
trends agV, > 1 can be recovered. However, the whole calculation requiresniplementation of the
two-loops coupling constant in the solution, and evermyudiie inclusion of the time-like sub-leading
splitting functions in the evolution equations. Neverdss, as powers aV, increase for higher or-
der terms, the perturbative approach fails and the exacerioah solution of the evolution equations
becomes necessary.

4 Conclusions

In this paper we have dealt with the medium-modified averagtipticity and the medium-modified
second multiplicity correlators in quark and gluon jets. r@alculations are based on the Borghini-
Wiedemann model [5], which models parton energy loss in a@emnclear medium. The average
multiplicity is found, after multiple re-scattering of threlativistic hard parton in the medium, to be
enhanced by the factay’ N, on the exponential leading contribution. The former leadsarticular,

to the medium-modified anomalous dimensigig (Y — Ymed = v Ns70). Corrections to the leading
double logarithmic contribution of the average multiglcarise from both the MLLA and the NMLLA,
which better account for the energy balance and for the ngnaf the coupling constant, effects as
in the vacuum. In particular, the NMLLA average multiplicidistribution is softer at NMLLA than at
MLLA (see Fig[1), such that the available phase space fatdraollinear hadronic production becomes
restricted. The increase of the average multiplicity at XINk driven by the factotxc Ns?’/ 2 (see[(2B)).

The MLLA scheme provides a more realistic picture of the jeemching through the study of these
observables: such is the case of the medium-modified glu@uaok average multiplicity ratie =
Ny/N,. Indeed, hard corrections are suppressed by the extra ft{aV,, which leads to restriction
on production of hard partons in quark and gluon jets. Tleegt- approaches its asymptotic DLA
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limit 7o = N./Cr = 9/4 when the coherent radiation of soft gluons is enhanced byngium. The
amplitude of the oscillating series turns out to be widehmmedium than in the vacuum at all energies.
Nevertheless, the shapes obtained at MLLA and NMLLA are hbuglentical but the series may require
the incorporation of higher order corrections. Furthemman both approaches, the gluon jets are still
more active than the quark jets in producing secondarygbestbut these characteristics are related to
the jet energy dependence of these observables ratheraltiaa $ensitivity to the parametéy; in the
nuclear medium.

The second multiplicity correlators in quark and gluon jetthe medium are also computed at MLLA
and NMLLA. The multiplicity fluctuations of individual evésamust be larger for quark jets as compared
to gluon jets just like in the vacuum. The MLLA correction® auppressed by/\/N;, such thatds
approaches the asymptotic DLA regime/ds > 1, reproducing the expected physics. In addition, the
KNO scaling holds at MLLA and NMLLA in heavy-ion collisionshe flattening of the slopes in both
the vacuum and the medium is roughly reached for the samelities ) > 100 GeV of the jet energy.
As before, the scaling depends on the energy s@alather than on the sensitivity to the nuclear factor
N,. At NMLLA, the behavior asV, > 1 is inverted, but this output can be cured, either by incafiog
higher order terms to the series or by exactly solving théutiom equations numerically, but this is out
of the scope of this paper.

Finally, our results might lead to more accurate presanifor the behavior of these observables in
the presence of the nuclear environment if the treatmenaxbp energy loss is improved in the future.
Furthermore, the study of parton energy loss and mediumifiaddbservables would ideally require
the re-construction of jets in heavy-ion collisions. Of sy the huge background makes this task
highly delicate. Nevertheless, thanks in particular todmgnt theoretical developments on the jet re-
constructions algorithms [32] in a high-multiplicity emvhment, future analysis at the LHC by ALICE
[33] and CMS [34] look very promising.
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