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Medium-modified evolution of multiparticle production in j ets in
heavy-ion collisions

Redamy Pérez-Ramos1
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Luruper Chaussee 149, D-22761 Hamburg, Germany

Abstract: The energy evolution of medium-modified average multiplicities and multiplicity fluctuations
in quark and gluon jets produced in heavy-ion collisions is investigated from a toy QCD-inspired model.
In this model, we use modified splitting functions accounting for medium-enhanced radiation of gluons
by a fast parton which propagates through the quark gluon plasma. The leading contribution of the
standard production of soft hadrons is found to be enhanced by the factor

√
Ns while next-to-leading

order (NLO) corrections are suppressed by1/
√

Ns, where the nuclear parameterNs > 1 accounts
for the induced-soft gluons in the hot medium. The role of next-to-next-to-leading order corrections
(NNLO) is studied and the large amount of medium-induced soft gluons is found to drastically affect
the convergence of the perturbative series. Our results forsuch global observables are cross-checked and
compared with their limits in the vacuum and a new method for solving the second multiplicity correlator
evolution equations is proposed.
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1 Introduction

The properties of quark and gluon jets are strongly established and carefully studied through well known

QCD evolution equations [1] ine+e−, ep and hadron collision experiments. In the case of high en-

ergy nucleus-nucleus collisions, hard jets propagate in a medium with different properties from those

of the vacuum. Recent experiments at the Relativistic HeavyIon Collider (RHIC) have established a

phenomenon of strong high-transverse momentum hadron suppression [2,3], which supports the picture

that hard partons going through dense matter suffer a significant energy loss prior to hadronization in the

vacuum (for recent review see [4]).

Since little is known so far on jet evolution in QCD media, predictions for multiparticle production in

such reactions could be carried out by using a toy QCD-inspired model introduced by Borghini and

Wiedemann in [5]; it allows for analytical computations andmay capture some important features

of a more complete QCD description. In this model, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

(DGLAP) splitting functionsq → gq̄ andg → gg [1] of the QCD evolution equations were distorted so

that the role of soft emissions was enhanced by multiplying the infra-red singular terms by the medium

factorNs:

Φg
g(Ns, x) =

Ns

x
− (1 − x)[2 − x(1 − x)], Φg

q(Ns, x) =
CF

Nc

(

Ns

x
− 1 +

x

2

)

,

wherex is the fraction of the outgoing jet energy carried away by a single gluon. Thus, the lead-

ing singular terms of the splitting functions play a more important role; from the theoretical point of

view it could be considered as a result of some effective Lagrangian, which would be responsible for

processes in a dense nuclear environment. In the approach [6], the medium-modified splitting func-

tions are directly related to the medium-induced gluon spectrum dImed/dxdE [8], whereE is the initial

energy of the emitting parton going through the medium. As compared to the Borghini-Wiedemann

model, the medium modifications explicitly depend on the parton virtuality through the enhanced in-

duced gluon spectrum. However, we use the simpler interpretation of the induced-medium modification

of the Borghini-Wiedemann model [5], which was further discussed and used on the description of final

state hadrons produced in heavy-ion collisions [7].

In this paper we are concerned with multiparticle production in quark and gluon jetsA = q, g, pro-

duced in nucleus-nucleus collisions at very high energy. Wemake predictions at NLO and NNLO for

the average multiplicitiesNA, for the ratior = Ng/Nq and finally for the second multiplicity correlators

〈NA(NA − 1)〉/N2
A, which defines the width of the multiplicity distribution. Such observables are of

great importance and have been largely studied in the vacuumfrom both theoretical [10–13] and experi-

mental [14–19] points of view. The problem of medium-modified multiparticle production has also been

considered in [21,22] with fixed coupling constant.

The starting point of our analysis is the NLO or Modified-Leading-Logarithmic-Approximation (MLLA)

evolution equations [1], which determine the jet properties at all energies together with the initial condi-

tions at threshold at smallx. Their solutions with medium-modified splitting functionscan be resummed

in powers of
√

αs/Ns and the leading contribution can be represented as an exponential of the medium-

modified anomalous dimension, which takes theNs-dependence:

NA ≃ exp

{∫ Y

γmed(αs(Y )) dY

}

,

1



whereγmed(αs) can be expressed as a power series of
√

αs/Ns in the symbolic form:

γmed(αs) ≃
√

Ns ×
√

αs

(

1 +

√

αs

Ns
+

αs

Ns
+ . . .

)

.

Within this logic, the leading double logarithmic approximation (DLA,O(
√

Nsαs)), which resums both

soft and collinear gluons, and NLO (MLLA,O(αs)), which resums hard collinear partons and accounts

for the running of the coupling constantαs, are complete. The DLA takes into account, as expected,

the medium modification by enhancing the soft multiparticleproduction by a factor∝
√

Ns, the MLLA

terms, which areNs-independent, takes into account the energy balance in the hard collinear parton split-

ting region as in the absence of the nuclear modification. However, this result depends on the definition of

the medium-modified splitting functions. The next terms, which are NNLO or next-to-MLLA (NMLLA,

O(α
3/2
s /

√
Ns)) are not complete but they include an important contribution, which takes into account

energy conservation and provide an improved behavior near threshold. With medium modification, the

NMLLA terms takeNs-dependence, but this will be explained in the main core of the paper. This logic

applies to each vertex of the cascade and the solution represents the fact that successive and independent

partonic splittings inside the shower, which in this case concern both vacuum and medium-induced soft

gluons, exponentiate with respect to theevolution-time variable Y (dY = dΘ/Θ), whereΘ ≪ 1 is the

angle between outgoing couples of partons. The choice ofY ≃ ln(Θ) follows from Angular Ordering

(AO) in intra-jet cascades; furthermore, the tree Feynman diagrams describing the process are at the heart

of theparton shower picture [1]. Thus, the solutions of the equations incorporate the Markov chains of

sequential angular ordered decays andγmed determines, in this case, the rate of multiparticle production

in the dense medium.

At the end of the cascading process inside the medium, partons hadronize in the vacuum. In order to

obtain the hadronic spectra, we advocate for the Local Parton Hadron Duality (LPHD) hypothesis [23]:

global and differential partonic observables can be normalized to the corresponding charged hadronic

observables via a certain constantK that can be fitted to the data, i.e.Nh
A = K× NA.

The paper is organized as follows:

• Section 2 presents a system of evolution equations with medium-modified splitting functions,

which allows for the computation of the medium-modified average multiplicity and the medium-

modified gluon to quark average multiplicity ratio at NLO andNNLO. We give predictions for the

valuesNs = 1.6 andNs = 1.8, which may be realistic for RHIC and LHC phenomenology [5].

Moreover, we compare our results with previous predictionsin the vacuum;

• in Section 3 we study the medium-modified second multiplicity correlator at NLO and NNLO.

Accordingly, we give predictions for the same values ofNs and compare such predictions with the

equivalent for the vacuum limitNs = 1;

• in Section 4 we present our conclusions.
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2 Evolution of the average multiplicity and gluon to quark average mul-

tiplicity ratio with energy loss

At MLLA the evolution of quantities with jet energyE and jet opening angleΘ is given by an evolution

equation for the azimuthally averaged generating functional in the jet [1]. The evolution involvesαs, the

running coupling constant of QCD:

αs ≡ αs(Q) =
2π

4Ncβ0 ln
(

Q
Λ

) , β0 =
1

4Nc

(

11

3
Nc −

4

3
TR

)

, (1)

whereQ = EΘ is the maximum transverse momentum of the jet,Λ ≡ ΛQCD is the intrinsic scale of

QCD,β0 is the first term in the perturbative expansion of theβ−function,Nc is the number of colors and

TR = nf/2, wherenf is the number of quark flavors. In the leading DLA,αs is linked to the anomalous

dimensionγ0 of twist-2 operators by the formula:

γ2
0 ≡ γ2

0(Q) = 2Nc
αs(Q)

π
=

1

β0(Y + λ)
, Y = ln

Q

Q0
, λ = ln

Q0

Λ
, (2)

whereQ0 is the collinear cut-off parameterkT = EΘ > Q0. The results depend on energy and angle

only through the variableY . For the sake of simplicity we also setY ′ = Y + λ in the following. The

average multiplicity is obtained by integrating the one-particle single differential inclusive cross section

over the energy fractionx = e/E

NA(Y ) =

∫

dx

(

1

σ

dσ

dx

)

.

For the medium-modified evolution of the average multiplicity in quark and gluon jets one obtains as a

consequence of AO at MLLA, the coupled system of two evolution equations

d

dY
Ng(Y ) =

∫ 1

0
dx γ2

0(x)
[

Φg
g(Ns, x) (Ng(Y + ln x) + Ng(Y + ln(1 − x)) − Ng(Y ))

+nfΦq
g(Ns, x) (Nq(Y + ln x) + Nq(Y + ln(1 − x)) − Ng(Y ))

]

, (3)

d

dY
Nq(Y ) =

∫ 1

0
dx γ2

0(x)
[

Φg
q(Ns, x) (Ng(Y + ln x) + Nq(Y + ln(1 − x)) − Nq(Y ))

]

(4)

with medium-modified splitting functions as suggested in [5] in the Borghini-Wiedemann model

Φg
g(Ns, x) =

Ns

x
− (1 − x)[2 − x(1 − x)], Φq

g(Ns, x) =
1

4Nc
[x2 + (1 − x)2], (5)

Φg
q(Ns, x) =

CF

Nc

(

Ns

x
− 1 +

x

2

)

, (6)

which accounts for energy loss in the medium by enhancing thesingular terms likeΦ ≈ Ns/x asx → 0.

Theg → qq̄ splitting function as well as the regular parts ofg → gg andq → gq̄ splitting functions are

hard and provide collinear corrections, that is why these terms do not takeNs dependence.
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2.1 MLLA evolution of the average multiplicity in the medium

For Y ≫ ln x ∼ ln(1 − x), N(Y + ln x) (N(Y + ln(1 − x))) can be replaced byN(Y ) in the hard

partonic splitting regionx ∼ 1 (1 − x ∼ 1) (non-singular or regular parts of the splitting functions),

while the dependence onlnx is kept on the singular oneΦ(x) ≈ Ns/x as it is performed in the vacuum.

Furthermore, the integration overx can be replaced by the integration overY (x) = ln
(

xEΘ
Q0

)

∫ 1

γ2
0(x)

dx

x
=

∫ Y

γ2
0(Y (x))dY (x). (7)

After applying the differential operatorddY to both members of the system (3,4) above, one is left with

the approximate system of coupled equations,

d2

dY 2
Ng(Y ) = γ2

0

(

Ns − a1
d

dY

)

Ng(Y ), (8)

d2

dY 2
Nq(Y ) =

CF

Nc
γ2
0

(

Ns − ã1
d

dY

)

Ng(Y ), (9)

with the initial conditions at thresholdNh
A(0) = 1 andN

′h
A (0) = 0 and the hard constants

a1 =
1

4Nc

[

11

3
Nc +

4

3
TR

(

1 − 2
CF

Nc

)]

, ã1 =
3

4
.

The quantum corrections∝ a1, ã1 in (8,9) arise from the integration over the regular part of the splitting

functions, they areO(
√

αs) suppressed andpartially account for energy conservation as happens in

the absence of the dense medium. Since only the DLA terms are medium-enhanced in (8,9), the hard

constants areNs-independent.

These equations can be solved by applying the inverse Mellintransform:

Ng(Y ) =

∫

C

dω

2πi
eωY ′

Ng(ω) (10)

to the self-contained gluonic equation (8), where the contour C lies to the right of all singularities of

NG(ω) in the complex plane. The running of the coupling constantαs(Y ), Eq. (2), is taken into account

through the identity

∫

C

dω

2πi
Y ′eωY ′

Ng(ω) = −
∫

C

dω

2πi
eωY ′

(

2ωNg(ω) + ω2 d

dω
Ng(ω)

)

.

Consequently, one is left with the following differential equation in Mellin space

1

Ng

d

dω
Ng(ω) = − Ns

β0ω2
+

(

a1

β0
− 2

)

1

ω
. (11)

Solving (11) and using (10), one obtains

Ng(Y ) ≃
∫

C

dω

2πi
ω

a1

β0
−2

exp

(

ωY ′ +
Ns

β0ω

)

. (12)

The exact solution of (12) together with the initial conditions leads to a linear combination of two kinds

of Bessel functions which resums the perturbative series atall powers of
√

αs [1]. However, in this

paper we are concerned with the asymptotic solution of the equation asY ≫ 1 (EΘ ≫ Q0), that is

4



the high energy limit. Therefore, the Mellin transform (12)can be estimated by the steepest descent

method. Indeed, the large parameter isY ′ and the function in the exponent presents a saddle point at

ω0 =
√

Ns/(β0Y ′), such that the asymptotic solution reads

Nh
g (Y ) ≃ K × Y ′−

σ1

β0 exp

√

4Ns

β0
Y ′, (13)

where

σ1 =
a1

2
− β0

4
.

We also introduced, as stressed in the introduction, the LPHD normalization constantK [23], which

accounts for hadronization effects outside the medium. Theconstantσ1 is Ns-independent because

it resums vacuum corrections. Therefore, the production ofsoft gluons in a dense medium becomes

exp
[

2(
√

Ns − 1)
√

Y ′/β0

]

higher than the standard production of soft gluons in the vacuum [1] and the

factor
√

Ns in (13) underlines the presence of the nuclear medium; this results has first been reported

in [24]. From (13) one obtains the first and second logarithmic derivatives ofNg:

1

Ng

dNg

dY
≡ 1

Nq

dNq

dY
=
√

Nsγ0 − σ1γ
2
0 ,

1

Ng

d2Ng

dY 2
≡ 1

Nq

d2Nq

dY 2
= Nsγ

2
0 . (14)

The expression on the left hand side of (14) is nothing but theMLLA rate of multiparticle production

with respect to theevolution-time variableY ≃ ln(Θ) in the medium, which we define as the medium-

modified MLLA anomalous dimension:

γmed(Y ) ≡ 1

Ng

dNg

dY
=
√

Nsγ0

[

1 − σ1
γ0√
Ns

+ O
(

γ2
0

Ns

)]

, (15)

whereNs only affects, as expected, the leading double logarithmic term. From (13) and (15), one

recovers the ansatz

Ng(Y ) ≃ exp

(∫

γmed(Y )dY

)

, (16)

which we further improve in the next paragraph by adding higher order corrections. Finally, using (13)

and (8,9), one obtains the solution forNh
Q:

Nq(Y ) =
CF

Nc

[

1 + (a1 − ã1)
γ0√
Ns

]

Ng(Y ) + O
(

γ2
0

Ns

)

. (17)

Therefore, we can introduce the medium-modified MLLA gluon to quark average multiplicity ratior =

Ng/Nq = Nh
g /Nh

q in the form

r = r0

[

1 − r1
γ0√
Ns

+ O
(

γ2
0

Ns

)]

, r0 =
Nc

CF
, r1 = a1 − ã1, (18)

where the suppression factor1/
√

Ns restricts the production of hard collinear partons asNs > 1. We

notice that (18) is identical to the expression with fixed coupling constantαs(Y ), whereY = ln (Q/Q0)

andQ = EΘ is the virtuality of the jet produced in the nucleus-nucleusreaction. This factor is found to

suppress the hard correctionO(γ0) and therefore,r approaches its asymptotic DLA limitr0 = Nc/CF

when the coherent radiation of soft gluons is enhanced. Setting Ns = 1 in (18), one recovers the

appropriate limits in the vacuum [1,11,25]. The constants entering in (13) and (18) are the same as those

obtained in the vacuum and their values are displayed in Table 1.
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nf r1 σ1

3 0.185 0.280

4 0.191 0.297

5 0.198 0.314

Table 1: Coefficientsr1 andσ1.

2.2 Medium-modified equations and solutions at Next-to-MLLA

Previous MLLA results for the average multiplicities can beimproved by further pushing the perturbative

series in (3,4). We can include NNLO or NMLLA corrections of orderO(αs), which are known to better

account for energy conservation in the vacuum [12, 17, 20]. For this purpose, we replaceN(Y + ln x)

(N(Y +ln(1−x)) by the Taylor expansionN(Y )+ d
dY N(Y ) ln x+. . . (N(Y )+ d

dY N(Y ) ln(1−x)+. . .)

and, as in section 2.1, we integrate over the non-singular parts of the splitting functions. We thus obtain

the medium-modified NMLLA approximate system of two-coupled evolution equations

d2

dY 2
Ng(Y ) = γ2

0

(

Ns − a1

(

d

dY
− βγ2

0

)

+ a2(Ns)
d2

dY 2

)

Ng(Y ), (19)

d2

dY 2
Nq(Y ) =

CF

Nc
γ2
0

(

Ns − ã1

(

d

dY
− βγ2

0

)

+ ã2(Ns)
d2

dY 2

)

Ng(Y ), (20)

with the newNs-dependent constants

a2(Ns) =
67

36
− Ns

π2

6
− 13

18

TR

Nc

CF

Nc
+

2

3

TR

Nc

CF

Nc

(a1 − ã1)√
Ns

, ã2(Ns) =
7

8
+

CF

Nc

(

5

8
− Ns

π2

6

)

.

The dependence ofa2 andã2 onNs follows from the singular term in the integralNs

∫ 1
0

dx
x ln(1− x) =

−Ns
π2

6 which also enhances (see below) the induced soft gluon radiation at the NNLO level. The term

∝ 1/
√

Ns in a2(Ns) was obtained by replacing (17) in the single logarithmic piece∝ Nq in (3), while

the term∝ Ns in the equations (19,20) enhances the role of the leading DLAas in (8,9). As expected,

one recovers the constantsa2(Ns = 1) = a2 andã2(Ns = 1) = ã2 obtained in the vacuum [20] when

Ns = 1. The terms proportional to these constants are known to better account for energy conservation

in the partonic shower in the vacuum. Also note that the contributions∝ a1β0 and ã1β0 cannot be

neglected when performing predictions with running coupling coupling constant.

The system (19,20) can be solved by inserting the ansatz (16)in both sides of (19) with

γmed(Y ) =
√

Nsγ0

[

1 − σ1
γ0√
Ns

− σ2(Ns)
γ2
0

Ns
+ O

(

γ3
0

N
3/2
s

)]

, (21)

whereσ2(Ns) is the unknown coefficient to be determined. The medium-modified NMLLA anomalous

dimension (21) has been inspired from the MLLA (15) where, inboth cases, we make appear the rescal-

ing of the coupling constantαs → αs/Ns in the series. After equating terms∝ γ2
0 in the left and right

hand sides of (19) we obtain the following value

σ2(Ns) = −1

2

(

1

2
a1β0 +

1

4
a2

1 + Nsa2(Ns) +
3

16
β2

0

)

, (22)
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such that after integrating (21) according to (16), the medium-modified NMLLA average multiplicity

takes the simple form

Nh
g (Y ) ≃ K × Y ′−

σ1

β0 exp

[
√

4Ns

β0
Y ′ +

2σ2(Ns)
√

Nsβ3
0Y ′

]

. (23)

The term∝ σ2(Ns) in (23) provides the NMLLA correction toNh
G. As Ns increases,σ2(Ns) follows

the leading behaviorσ2(Ns) ≃ N2
s (and the second factor in the exponent of (23)≃ N

3/2
s ) which

enhances the production of induced soft gluons in the mediumat the NNLO level. SettingNs = 1 in

(23) one recovers the value of this constant in the vacuumσ2(Ns = 1)
nf =3
= −0.378 as given in [12].

Furthermore, settingβ0 = 0 in (22), the appropriate limit with fixed coupling constantαs = const can

be deduced.

We proceed to determine the medium-modified NMLLA gluon to quark average multiplicity ratio by

subtracting (20) from (19), one has

d2

dY 2

(

Ng −
Nc

CF
Nq

)

= −(a1 − ã1)
d

dY
(γ2

0Ng) − (ã2(Ns) − a2(Ns))γ
2
0

d2Ng

dY 2
. (24)

Applying the operatorsd
dY and d2

dY 2 to (20) and dropping corrections contributing beyond NMLLA, we

obtain respectively

Ns
d

dY
(γ2

0Ng) =
Nc

CF

d3Nq

dY 3
+ ã1γ

2
0

d2Ng

dY 2
, Nsγ

2
0

d2Ng

dY 2
=

Nc

CF

d4Nq

dY 4
, (25)

where we keep track of the nuclear factorNs and the running ofαs(Y (x)) in such a way that (24) can

be rewritten in the form

Ng =
Nc

CF
Nq−

Nc

CF

(a1−ã1)

Ns

dNq

dY
− Nc

CF

(

ã1(a1−ã1)

N2
s

+
(ã2(Ns)−a2(Ns))

Ns

)

d2Nq

dY 2
,

after reassembling terms∝ dNq

dY and∝ d2Nq

dY 2 . Using (14) together with the initial conditions at threshold

yields forr = Ng/Nq with NNLO accuracy

r = r0

[

1 − r1
γ0√
Ns

− r2(Ns)
γ2
0

Ns
+ O

(

γ3
0

N
3/2
s

)]

, (26)

where the coefficientr2 is explicitly dependent onNs through the formula

r2(Ns) = (ã1 − σ1) r1 + (ã2(Ns) − a2(Ns))Ns. (27)

The dependence ofr2(Ns) onβ0 in (26) underlines the account of the running coupling constant, setting

β0 = 0 the appropriate fixed coupling solution can be deduced. ForNs = 1, the appropriate limits in the

vacuum are recovered [12], for example

r2(Ns = 1) = (ã1 − σ1) r1 + (ã2(1) − a2(1))
nf =3
= 0.426.

We give the NMLLA coefficientsσ2(Ns) andr2(Ns) defined in (23) and (26) as a function ofNs in

Table 2.

As Ns increases, theO(γ0/
√

Ns) correction decreases, while the oneO(γ2
0/Ns) becomes sizable and

decreases like≃ −Ns. That is why it might be wondered whether the convergence of the perturbative

series could be reached at a certain level of accuracy. Sincethe series widely oscillate at low energy

scales, large terms∝ π2 in a2(Ns) and ã2(Ns) might spoil or drastically affect the trends obtained at

MLLA. This kind of behavior has first been noticed in the Koba-Nielsen-Olsen (KNO) problem [28] in

the vacuum.
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nf r2(Ns) σ2(Ns)

3 0.087 − 0.027
√

Ns − 0.548Ns + 0.914N2
s −0.337 − 0.014

√
Ns − 0.850Ns + 0.822N2

s

4 0.087 − 0.038
√

Ns − 0.494Ns + 0.914N2
s −0.319 − 0.019

√
Ns − 0.823Ns + 0.822N2

s

5 0.087 − 0.049
√

Ns − 0.441Ns + 0.914N2
s −0.302 − 0.024

√
Ns − 0.797Ns + 0.822N2

s

Table 2: Coefficientsr2(Ns) andσ2(Ns).
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Figure 1: MLLA (13) and NMLLA (23) average multiplicity as a function ofQ = EΘ in the vacuum

(Ns = 1) and in the medium (Ns = 1.6 andNs = 1.8).

2.3 NLO and NNLO results onNh
g

and r

Settingnf = 3, we display in Fig. 1 our results for the medium-modified MLLA(13) and NMLLA

(23) average multiplicity. We plotNh
g in the range10 ≤ Q(GeV) ≤ 500, whereQ = EΘ is the total

virtuality of the jet related toY in (2). We compare our results in the medium forNs = 1.6 andNs = 1.8

(see [5]) with predictions in the vacuum (Ns = 1), we setQ0 = ΛQCD = 0.23 GeV in the limiting

spectrum approximation [12], andK = 0.2 is taken from [12]. The valuesNs = 1.6 andNs = 1.8

in the medium may be realistic for RHIC and LHC phenomenology[5, 26]; the jet energy subrange

10 ≤ Q(GeV) ≤ 50 displayed in Fig. 1 has been recently considered by the STAR collaboration, which

reported the first measurements of charged hadrons and particle-identified fragmentation functions from

p+p collisions [27] at
√

sNN = 200 GeV. Finally, the jet energy range in the same figure, in particular for

those values atQ ≥ 50 GeV, will be reached at the LHC, i.eQ = 100 GeV is an accessible value in this

experiment (see [5] and references therein).

Notice that at NMLLA, the increase ofNh
g with Ns is more substantial than at MLLA. The former is

driven by the leading contribution toσ2(Ns): it increases likeσ2(Ns) ≃ N2
s (see Table 2) in the sub-

leading piece of (23). In both resummations schemes we find, as expected from our calculations, that the

production of soft hadrons increases asNs > 1, which implies that the available phase space becomes

restricted for the production of harder collinear hadrons.
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Figure 2: MLLA (18) and NMLLA (26) gluon to quark average multiplicity ratio as a function ofQ =

EΘ in the vacuum (Ns = 1) and in the medium (Ns = 1.6 andNs = 1.8).

In Fig. 2, we display the medium-modified MLLA ratior = Ng/Nq (18) and the medium-modified

NMLLA ratio as a function ofQ = EΘ. As expected from (18), asNs increases, theO(γ0) correction

is suppressed by1/
√

Ns, the ratio approaches the DLA asymptotic regimer0 = Nc/CF = 9/4. At

NMLLA, the previous trend goes in the opposite direction: one has indeed−r2(Ns) ≃ −N2
s (see

Table 2) in theO(γ2
0/Ns) piece of (26), which is negative and sizable asNs increases and, therefore,

spoils the behavior obtained at MLLA signaling difficultieswith perturbative theory in the medium.

Indeed, sizable oscillations have been noticed in the perturbative series [13] and it turns out that they

are wider in the medium than in the vacuum. For example, the NMLLA correction to r is ∼ 10%

for Ns = 1, and forNs = 1.8 it is ∼ 40%. It should be noticed that every logarithmic derivative

of Nh
A provides a half power ofNs to successive terms in the series in the formdnN

dY n ≈ (Nsαs)
n/2

(n = 1 → MLLA, n = 2 → NMLLA. . . ), such that the perturbative approach should failas higher order

terms are incorporated. Former statements suggest that by incorporating NMLLA and next-to-NMLLA

(NNMLLA, see paragraph 3.4) corrections on an equal footing, the MLLA behavior can be recovered.

We conclude from this analysis that MLLA provides a more realistic physical picture of the softening of

jets than NMLLA. Therefore, either the incorporation of NNMLLA terms or the exact numerical solution

of the evolution equations [7, 29], which exactly accounts for the running ofαs and the energy balance,

is required. In [21], a numerical solution of the equations was provided with fixed coupling constantαs,

and the results are shown to follow our MLLA expectations asNs increases.

Finally, in both MLLA and NMLLA, the gluon jets are still moreactive than the quark jets in producing

secondary particles and the shape of the curves are roughly identical; however, these characteristics prove

not to be very sensitive toNs.

3 Medium-modified evolution for the second multiplicity correlator

The second multiplicity correlator was first considered in [11] at MLLA and later in [13] at NMLLA.

It is defined in the formN
(2)
A = 〈NA(NA − 1)〉 in gluon (A = g) and quark (A = q) jets. The

normalized second multiplicity correlator defines the width of the multiplicity distribution and is related
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to its dispersionD2
A = 〈NA(NA − 1)〉 − N2

A by the formula

D2
A = (A2 − 1)N2

A + NA. (28)

The second multiplicity correlators normalized to their own squared average multiplicity are

G2 =
〈Ng(Ng − 1)〉

N2
g

, Q2 =
〈Nq(Nq − 1)〉

N2
q

, (29)

inside a gluon and a quark jet respectively. These observables are obtained by integrating the double

differential inclusive cross section over the energy fractionsx1 = e1/E andx2 = e2/E

〈NA(NA − 1)〉 =

∫∫

dx1dx2

(

1

σ

d2σ

dx1dx2

)

A

.

The correlators areK-independent and provide a pure test of multiparticle dynamics. However, important

disagreements withe+e− data [16] indicates that non-trivial hadronization effects may play a significant

role. The treatment of this observable with full account of perturbative and non-perturbative ingredients

is not available yet. Therefore, we study the variation of this observable asNs > 1 with respect to the

limit in the vacuumNs = 1 and do not compare our results withe+e− data [16]. The medium-modified

system of two-coupled evolution equations for this observable follows from the MLLA master equation

for the azimuthally averaged generating functional and canbe written in the convenient form

d

dY
(N (2)

g − N2
g ) =

∫ 1

0
dxγ2

0Φg
g

[

N (2)
g (Y + lnx)+

(

N (2)
g (Y + ln(1 − x)) − N (2)

g (Y )
)

+
(

Ng(Y + ln x) − Ng(Y )
)(

Ng(Y + ln(1 − x)) − Ng(Y )
)]

+nf

∫ 1

0
dxγ2

0Φq
g

[

2
(

N (2)
q (Y + ln x)−N2

q (Y + ln x)
)

−
(

N (2)
g (Y )−N2

g (Y )
)

+
(

2Nq(Y + ln x) − Ng(Y )
)(

2Nq(Y + ln(1 − x)) − Ng(Y )
)]

, (30)

d

dY
(N (2)

q − N2
q ) =

∫ 1

0
dxγ2

0Φg
q

[

N (2)
g (Y + lnx)+

(

N (2)
q (Y + ln(1 − x)) − N (2)

q (Y )
)

+2
(

Ng(Y + ln x) − Nq(Y )
)(

Nq(Y + ln(1 − x)) − Nq(Y )
)]

, (31)

which proves to be more suitable for obtaining analytical solutions in the following. We use a new

method to compute solutions at MLLA and NMLLA by replacingN
(2)
A = A2N

2
A on both sides of the

expanded equations atx ∼ 1 − x ∼ 1. This observable is less inclusive than the average multiplicity,

it can indeed be derived from the two-particle four-momentum correlation [30] in the shower. The

medium-modified formulæ (16), (18) and (26) will be used in this analysis.

3.1 MLLA approximation

ForY ≫ ln x ∼ ln(1−x) in the system above (30,31),N(Y +lnx) (N(Y +ln(1−x))) andN (2)(Y +

ln x) (N (2)(Y + ln(1 − x))) can be replaced byN(Y ) andN (2)(Y ) respectively in the hard partonic

splitting regionx ∼ 1 − x ∼ 1, while the dependence onln x is kept on the singular one (x → 0).

The medium-modified MLLA approximate system of two-coupledevolution equations for the second
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multiplicity correlator reads

d2

dY 2

(

N (2)
g − N2

g

)

= γ2
0

(

Ns − a1
d

dY

)

N (2)
g + (a1 − b1)γ

2
0

d

dY
N2

g , (32)

d2

dY 2

(

N (2)
q − N2

q

)

=
CF

Nc
γ2
0

(

Ns − ã1
d

dY

)

N (2)
g , (33)

where the new hard constant is:

b1 =
1

4Nc

[

11

3
Nc − 4

TR

Nc

(

1 − 2
CF

Nc

)2
]

.

The constantNs only affects the leading double logarithmic term of the equations. The terms propor-

tional toa1, (a1 − b1) and ã1 are hard vacuum corrections whichpartially account for energy conser-

vation, indeedγ2
0

dN
dY ≈

√
Nsγ

3
0 and the relative correction to DLA isO(

√

αs/Ns). As before, the hard

constants are, as expected,Ns-independent. Moreover, these sub-leading contributionshave the same

form as those describing the two-particle correlation [30].

3.1.1 Medium-modifiedG2 at MLLA and expansion in O(γ0/
√

Ns)

SettingN
(2)
g = G2N

2
g in (32), the system can be solved iteratively by consideringterms up toO(α

3/2
s )

in the left and right hand sides of (32). Thus, the l.h.s. of (32) writes in the form

d2

dY 2

(

N (2)
g − N2

g

)

=
d2G2

dY 2
N2

g + 2
dG2

dY

d

dY
N2

g + (G2 − 1)
d2

dY 2
N2

g . (34)

Hereafter, in all sub-leading terms, we can replaceG2 by a constantG2 = GDLA
2 = const, while the

terms involvingNg should be computed by using (13), thus

d2

dY 2

(

N (2)
g − N2

g

)

= γ2
0Ns(G2 − 1)

[

4 − (4a1 − β0)
γ0√
Ns

]

N2
g (35)

while the r.h.s. reads
[(

Nsγ
2
0 − a1γ

2
0

d

dY

)

G2 + (a1 − b1)γ
2
0

d

dY

]

N2
g = (36)

γ2
0Ns(G2 − 1)N2

g + Nsγ
2
0

[

1 −
(

2

3
a1 + 2b1

)

γ0√
Ns

]

N2
g .

Equating (35) and (36) the exact MLLA solution of (32) reads

G2 − 1 =

1 − δ1
γ0√
Ns

3 − δ2
γ0√
Ns

, (37)

where

δ1 =

(

2

3
a1 + 2b1

)

, δ2 = (4a1 − β0).

Settingγ0/
√

Ns → 0 in (37) one recovers the DLANs-independent valueGDLA
2 = 4/3. Then, expand-

ing (37) in the form1 + γ0/
√

Ns , one recovers the result from [11] forNs = 1

G2 − 1 ≈ 1

3
− c1

γ0√
Ns

+ O
(

γ2
0

Ns

)

, (38)

where the linear combination of color factors reads

c1 = −2

9
a1 +

1

9
β0 +

2

3
b1 =

1

4Nc

(

55

9
− 4

TR

Nc
+

112

9

TR

Nc

CF

Nc
− 32

3

TR

Nc

C2
F

N2
c

)

. (39)
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3.1.2 Medium-modifiedQ2 at MLLA and expansion in O(γ0/
√

Ns)

Inserting (37),N (2)
q = Q2N

2
q and using the MLLA expression for the ratio (17) in (33), it isstraightfor-

ward to obtain
Q2 − 1

G2 − 1
=

Nc

CF

[

1 +
3

2
(b1 − a1)

γ0√
Ns

+ O
(

γ2
0

Ns

)]

. (40)

Expanding (40) in the form1 + γ0/
√

Ns and settingNs = 1, one recovers the result from [11] in the

vacuum. Indeed,

Q2 − 1 ≈ Nc

CF

(

1

3
− c̃1

γ0√
Ns

)

+ O
(

γ2
0

Ns

)

, (41)

where, in agreement with [11], we obtain the combination of color factors

c̃1 =
5

18
a1 +

1

6
b1 +

1

9
β0 =

1

4Nc

(

55

9
+

4

9

TR

Nc

CF

Nc
− 8

3

TR

Nc

C2
F

N2
c

)

. (42)

In Table 3 we displaỹc1 together withc1 (39) for nf = 3, 4, 5. As for the medium-modified MLLA

nf c1 c̃1

3 0.485 0.495

4 0.477 0.491

5 0.469 0.486

Table 3: Coefficientsc1 andc̃1.

expressionr = Ng/Nq (18), hard corrections to the MLLA second multiplicity correlatorsG2 andQ2

are suppressed by the factor1/
√

Ns, while the leading double logarithmic terms (γ0/
√

Ns → 0) remain

unchanged and equal the vacuum result

A2 = 1 +
Nc

3CA
, A = g (Cg = Nc), A = q (Cq = CF ). (43)

Thus, our MLLA predictions for the medium-modified second multiplicity correlators follow the char-

acteristics of the jet quenching.

3.2 Next-to-MLLA evolution equations for the multiplicity correlator

To obtain the equations we proceed like in paragraph 2.2 and use results from subsection 3.1. Indeed,

by further pushing the perturbative series, one can improvethe account of the energy balance. We

replace, in the hard splitting regionY ≫ ln x ∼ ln(1 − x), N(Y + ln x) (N(Y + ln(1 − x))) and

N (2)(Y + ln x) (N (2)(Y + ln(1− x))) by N(Y ) + d
dY N(Y ) ln x . . . (N(Y ) + d

dY N(Y ) ln(1− x) . . .)

andN (2)(Y ) + d
dY N (2)(Y ) ln x . . . (N (2)(Y ) + d

dY N (2)(Y ) ln(1 − x) . . .) respectively in the system

(30,31), while the dependence onlnx is kept on the singular pieceNs/x. After integrating the regular
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terms overx, the medium-modified NMLLA approximate system of two-coupled evolution equations

for the gluon and quark multiplicity correlator reads

d2

dY 2

(

N (2)
g − N2

g

)

= γ2
0

(

Ns − a1

(

d

dY
− β0γ

2
0

)

+ a′2(Ns)
d2

dY 2

)

N (2)
g (44)

+ γ2
0

(

(a1 − b1)

(

d

dY
− β0γ

2
0

)

+ b2(Ns)
d2

dY 2

)

N2
g

+ γ3
0 b3(Ns)

d

dY

(

N (2)
g − N2

g

)

,

d2

dY 2

(

N (2)
q − N2

q

)

=
CF

Nc
γ2
0

(

Ns − ã1

(

d

dY
− β0γ

2
0

)

+ ã2(Ns)
d2

dY 2

)

N (2)
g , (45)

where the term∝ b3 follows from the MLLA result (40),

N (2)
q − N2

q =
CF

Nc

[

1 +

(

1

2
a1 − 2ã1 +

3

2
b1

)

γ0√
Ns

]

(

N (2)
g − N2

g

)

.

The constants are the following:

a′2(Ns) = a2(Ns) −
2TR

3Nc

CF

Nc

r1√
Ns

, (46)

b2(Ns) =
TR

3Nc

CF

Nc

[

13

3

(

1 − CF

Nc

)

− 2

(

1 − 2
CF

Nc

)

r1√
Ns

]

, (47)

b3(Ns) =
TR

3Nc

CF

Nc

(

r1√
Ns

+ 3
(b1 − ã1)√

Ns

)

. (48)

The terms∝ a1β0, a′2(Ns), (a1 − b1)β0, b2(Ns), b3(Ns) in (44) and the ones∝ ã1β0, ã2(Ns)

in (45) areO(γ2
0) corrections which better account for energy conservation.We remind thatd

nN
dY n ≃

O((Nsαs)
n/2) and that terms∝ β0 arise from the running of the coupling constantαs(Y ). Moreover,

these constants takeNs-dependence for the reasons explained in section 2.2.

3.2.1 Medium-modifiedG2 at NMLLA and expansion in O(γ0/
√

Ns)

SettingN
(2)
g = G2N

2
g in (44), the equation can be solved iteratively by making useof (21), the MLLA

formula (38) forG2 and the leading DLA limitGDLA
2 = 4/3; moreover, we expand the series up to terms

O(α2
s). The l.h.s. of (44) can therefore be written in the form,

l.h.s. = γ2
0(G2 − 1)

[

4Ns − (8σ1 + β0)
√

Nsγ0 + 2 (σ1(2σ1 + β0) − 4σ2(Ns)) γ2
0

]

N2
g (49)

+ 2β0c1γ
4
0N2

g .

The r.h.s. reads

r.h.s. = γ2
0

[

Ns(G2 − 1) + Ns − 2

(

1

3
a1 + b1

)

√

Nsγ0 +

(

1

3
a1 + b1

)

(2σ1 + β0)γ
2
0 (50)

+ 2

(

1

3
b3(Ns) + a1

c1√
Ns

)

√

Nsγ
2
0 + 4

(

4

3
a′2(Ns) + b2(Ns)

)

Nsγ
2
0

]

N2
g .

Equating (49) and (50) we find the new exact NMLLA solution of (44),

G2 − 1 =

1 − δ1
γ0√
Ns

+ δ3(Ns)
γ2
0

Ns

3 − δ2
γ0√
Ns

+ δ4(Ns)
γ2
0

Ns

, (51)
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where the following combinations of color factors have beenwritten in the form

δ3(Ns) =

(

1

3
a1 + b1

)

(2σ1 + β0) + 2

(

1

3
b3(Ns) +

c1√
Ns

(a1 − β0)

)

√

Ns (52)

+ 4

(

4

3
a′2(Ns) + b2(Ns)

)

Ns, (53)

δ4(Ns) = 2 (σ1(2σ1 + β0) − 4σ2(Ns)) . (54)

When the MLLA coefficientsδ1, δ2 and NMLLA δ3(Ns) andδ4(Ns) are evaluated in the vacuum (Ns =

1) for nf = 3, we find respectivelyδ1 = 2.453, δ2 = 2.991, δ3(1) = 2.818 andδ4(1) = 3.766. In

particular,δ1 ∼ δ3(1) while the NMLLA δ4(1) becomes bigger than the MLLAδ2. It was shown in

the KNO problem that MLLA corrections increase like∼ k
√

αs (k = 2) while NMLLA like ∼ k2αs

(k2 = 4) as the rank of the correlator, which coincides with the number of particles triggered in the

shower, increases [28]. It may be the reason why sizable NMLLA coefficients are found in this picture.

Moreover, as the rankk of the correlator increases,O(
√

αs) corrections become of the same order of

magnitude than the leading DLA and perturbation theory fails. Therefore and in general, MLLA and

NMLLA corrections for the less inclusive multiplicity correlator of any rankk are more sizable than

those of the more inclusive average multiplicity. That is the reason for, the exact numerical solution of

the evolution equations [7,29] becomes interesting.

Expanding (51) inγ0/
√

Ns in the form1 + γ0/
√

Ns + γ2
0/Ns, we obtain

G2 − 1 =
1

3
− c1

γ0√
Ns

+ c2(Ns)
γ2
0

Ns
+ O

(

γ3
0

N
3/2
s

)

(55)

where

c2(Ns) =
1

27

(

δ2(Ns)
2 − 3δ4(Ns) − 3δ1(Ns)δ2(Ns) + 9δ3(Ns)

)

. (56)

SettingNs = 1 in (56) and takingnf = 3, 4, 5, we recover the valuesc2(1) = 0.0372, 0.0609, 0.0838

obtained in the vacuum [13]. Moreover, in (55), the sign of successive terms change as higher order cor-

rections are added to the series. Consequently, it should bewondered whether this result can drastically

be affected as higher order terms are incorporated to the series at current energy scales. The highest

energy scales reached at the LHC and measured by the ALICE andCMS experiments at CERN will

provide more reliable comparisons with our predictions than current experimental studies at RHIC.

3.2.2 Medium-modifiedQ2 at NMLLA and expansion in O(γ0/
√

Ns)

The solution of (45) can also be obtained by settingN
(2)
q = Q2N

2
q in the equation, using (51) and taking

the MLLA formula forG2 (41), one has

l.h.s. = 2β0
Nc

CF
c̃1γ

4
0N2

Q + γ2
0(Q2 − 1)

(

4Ns − δ2

√

Nsγ0 + δ4(Ns)γ
2
0 − 4β0r1γ

2
0

)

N2
q , (57)

and

r.h.s. =
CF

Nc
γ2
0

(

NsG2 −
8

3

√

Nsã1γ0 + 2

(

2

3
ã1(2σ1 + β0) + ã1c1 +

8

3
ã2(Ns)Ns

)

γ2
0

)

N2
g . (58)

After equating (57) and (58) we obtain the new exact analytical solution of (45)

Q2 − 1 =
Nc

CF









G2 − δ̃1
γ0√
Ns

+ δ̃3(Ns)
γ2
0

Ns

4 − δ̃2
γ0√
Ns

+ δ̃4(Ns)
γ2
0

Ns









r2

r2
0

, (59)

14



where (see (26))
r

r0
= 1 − r1

γ0√
Ns

− r2(Ns)
γ2
0

Ns
.

Moreover,

δ̃1 =
8

3
ã1 = 2, δ̃2 = δ2, (60)

δ̃3(Ns) = 2

(

2

3
ã1(2σ1 + β0) + ã1c1 − β0c̃1 +

8

3
ã2(Ns)Ns

)

, (61)

δ̃4(Ns) = δ4(Ns) − 4β0r1, (62)

andG2 should be taken from (51). As before, the size of NMLLA coefficientsδ̃3(Ns) andδ̃4(Ns) in the

vacuum are quite sizable, fornf = 3 one has indeed,̃δ3(1) = 3.598 andδ̃4(1) = 3.210, which are close

to k2 = 4, wherek = 2 labels the rank of the second multiplicity correlator.

Performing the same expansion inγ0/
√

Ns we obtain the result

Q2 − 1 ≈ Nc

CF

(

1

3
− c̃1

γ0√
Ns

+ c̃2(Ns)
γ2
0

Ns

)

+ O
(

γ3
0

N
3/2
s

)

, (63)

where the expression for̃c2(Ns) follows from (59):

c̃2(Ns) =
1

12

(

δ2
2(Ns)

4
− δ̃4(Ns)

)

− δ2(Ns)

16

(

c1 + 2 +
8

3
r1

)

(64)

+
1

4
(c2(Ns) + δ̃3(Ns)) +

r1

2
(c1 + 2) − 1

3
(2r2(Ns) − r2

1). (65)

Accordingly, settingNs = 1 in (64), we find the values in the vacuum̃c2(1) = 0.215, 0.222, 0.229

respectively fornf = 3, 4, 5 like in [13]. The sign of successive terms added to the series(63) shows the

wide oscillating property. We give the values ofc2(Ns) andc̃2(Ns) in Table 4.

nf c2(Ns) c̃2(Ns)

3 −0.258 − 0.016
√

Ns + 2.505Ns − 2.193N2
s −0.168 + 0.005

√
Ns + 1.962Ns − 1.584N2

s

4 −0.236 − 0.022
√

Ns + 2.513Ns − 2.193N2
s −0.146 + 0.007

√
Ns + 1.946Ns − 1.584N2

s

5 −0.215 − 0.029
√

Ns + 2.521Ns − 2.193N2
s −0.126 + 0.009

√
Ns + 1.930Ns − 1.584N2

s

Table 4: Coefficientsc2(Ns) andc̃2(Ns).

3.3 NLO and NNLO results onG2 and Q2

The MLLA and NMLLA predictions forG2(Q) (55) andQ2(Q) (63) are depicted respectively in Fig. 3

and Fig. 4. At MLLA, the second multiplicity correlator increases asNs > 1 and approaches the asymp-

totic regimeA2 = 1 + Nc

3CA
. Indeed, as for the MLLA ratior(Ns) (18), the hard correctionsO(γ0) are
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Figure 3: MLLA (38) and NMLLA (55) second multiplicity correlator inside a gluon jet as a function of

Q = EΘ in the vacuum (Ns = 1) and in the medium (Ns = 1.6 andNs = 1.8).

suppressed by1/
√

Ns, such that the production of soft and collinear hadrons is enhanced, while that

of hard collinear hadrons is more restricted. As before, these results provide evidence for the softening

of jets in the nuclear medium. However, the NMLLA results (55,63) follow the behavior described in

section 2.3 forr(Ns). As Ns > 1, the correlators decrease, one finds indeed the rough dependence

c2(Ns) ≃ −N2
s , c̃2(Ns) ≃ −N2

s (see Table 4), which in both cases leads to the unavoidable decrease of

A2 asNs increases. This result follows from the wide oscillating property of the perturbative series: it is

wider in the medium than in the vacuum. That is the reason why,the more physical MLLA trends can be

recovered either by incorporating higher order terms or by numerically solving the evolution equations

(30,31) like in [7,29].

Another interesting feature of these observables concernsthe shape of the curves. They are roughly

identical and do not prove to depend on the medium parameterNs. Moreover, there exists evidence for

a flattening of the slopes as the jet hardnessQ = EΘ increases forNs ≥ 1 (vacuum and medium).

This kind of scaling behavior is known as the KNO scaling: it was discovered by Polyakov in quantum

field theory [31] and experimentally confirmed bye+e− measurements [16] for the second and higher

order multiplicity correlators. This phenomenon implies ajet energy independence of the normalized

multiplicity correlators, which is not affected byNs neither at MLLA nor at NMLLA.

3.4 Role of higher order corrections

In this paragraph we comment on some progresses that could becarried out beyond the NMLLA approx-

imation. We take the much simpler example of the gluon to quark average multiplicity ratio and give the

rough dependence of the third coefficientr3(Ns) that can be added to the series (26) in the form

r = r0

(

1 − r1
γ0√
Ns

− r2(Ns)
γ2
0

Ns
− r3(Ns)

γ3
0

N
3/2
s

)

, (66)

with

r3(Ns)
Ns≫1∝ N2

s [a3(Ns) − ã3(Ns)] ,

where

a3(Ns)
Ns≫1∝ −Nsζ(3), ã3(Ns)

Ns≫1∝ −CF

Nc
Nsζ(3). (67)
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Figure 4: MLLA (41) and NMLLA (63) second multiplicity correlator inside a quark jet as a function of

Q = EΘ in the vacuum (Ns = 1) and in the medium (Ns = 1.6 andNs = 1.8).

These coefficients follow from (3,4) by further expanding the perturbative series and therefore,

− r3(Ns)
Ns≫1∝ N3

s

(

1 − CF

Nc

)

ζ(3) > 0. (68)

Thus, replacing−r3(Ns)
Ns≫1∝ N3

s in (66), the third term changes its sign and therefore, the MLLA

trends asNs > 1 can be recovered. However, the whole calculation requires the implementation of the

two-loops coupling constant in the solution, and eventually, the inclusion of the time-like sub-leading

splitting functions in the evolution equations. Nevertheless, as powers ofNs increase for higher or-

der terms, the perturbative approach fails and the exact numerical solution of the evolution equations

becomes necessary.

4 Conclusions

In this paper we have dealt with the medium-modified average multiplicity and the medium-modified

second multiplicity correlators in quark and gluon jets. Our calculations are based on the Borghini-

Wiedemann model [5], which models parton energy loss in a dense nuclear medium. The average

multiplicity is found, after multiple re-scattering of therelativistic hard parton in the medium, to be

enhanced by the factor
√

Ns on the exponential leading contribution. The former leads,in particular,

to the medium-modified anomalous dimensionγmed (γ → γmed ≈
√

Nsγ0). Corrections to the leading

double logarithmic contribution of the average multiplicity arise from both the MLLA and the NMLLA,

which better account for the energy balance and for the running of the coupling constantαs effects as

in the vacuum. In particular, the NMLLA average multiplicity distribution is softer at NMLLA than at

MLLA (see Fig. 1), such that the available phase space for harder collinear hadronic production becomes

restricted. The increase of the average multiplicity at NNLO is driven by the factor∝ N
3/2
s (see (23)).

The MLLA scheme provides a more realistic picture of the jet quenching through the study of these

observables: such is the case of the medium-modified gluon toquark average multiplicity ratior =

Ng/Nq. Indeed, hard corrections are suppressed by the extra factor 1/
√

Ns, which leads to restriction

on production of hard partons in quark and gluon jets. Therefore, r approaches its asymptotic DLA
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limit r0 = Nc/CF = 9/4 when the coherent radiation of soft gluons is enhanced by themedium. The

amplitude of the oscillating series turns out to be wider in the medium than in the vacuum at all energies.

Nevertheless, the shapes obtained at MLLA and NMLLA are roughly identical but the series may require

the incorporation of higher order corrections. Furthermore, in both approaches, the gluon jets are still

more active than the quark jets in producing secondary particles but these characteristics are related to

the jet energy dependence of these observables rather than to the sensitivity to the parameterNs in the

nuclear medium.

The second multiplicity correlators in quark and gluon jetsin the medium are also computed at MLLA

and NMLLA. The multiplicity fluctuations of individual events must be larger for quark jets as compared

to gluon jets just like in the vacuum. The MLLA corrections are suppressed by1/
√

Ns, such thatA2

approaches the asymptotic DLA regime asNs > 1, reproducing the expected physics. In addition, the

KNO scaling holds at MLLA and NMLLA in heavy-ion collisions,the flattening of the slopes in both

the vacuum and the medium is roughly reached for the same virtualitiesQ > 100 GeV of the jet energy.

As before, the scaling depends on the energy scaleQ rather than on the sensitivity to the nuclear factor

Ns. At NMLLA, the behavior asNs > 1 is inverted, but this output can be cured, either by incorporating

higher order terms to the series or by exactly solving the evolution equations numerically, but this is out

of the scope of this paper.

Finally, our results might lead to more accurate prescriptions for the behavior of these observables in

the presence of the nuclear environment if the treatment of parton energy loss is improved in the future.

Furthermore, the study of parton energy loss and medium-modified observables would ideally require

the re-construction of jets in heavy-ion collisions. Of course, the huge background makes this task

highly delicate. Nevertheless, thanks in particular to important theoretical developments on the jet re-

constructions algorithms [32] in a high-multiplicity environment, future analysis at the LHC by ALICE

[33] and CMS [34] look very promising.

Acknowledgments: I would like to thank B.A. Kniehl for supporting my stay at University of Hamburg,

as well as S. Albino, F. Arleo and I. Dremin for enlightening discussions and useful comments on the

manuscript.

List of Figures

1 MLLA (13) and NMLLA (23) average multiplicity as a functionof Q = EΘ in the

vacuum (Ns = 1) and in the medium (Ns = 1.6 andNs = 1.8). . . . . . . . . . . . . . 8

2 MLLA (18) and NMLLA (26) gluon to quark average multiplicity ratio as a function of

Q = EΘ in the vacuum (Ns = 1) and in the medium (Ns = 1.6 andNs = 1.8). . . . . 9

3 MLLA (38) and NMLLA (55) second multiplicity correlator inside a gluon jet as a func-

tion of Q = EΘ in the vacuum (Ns = 1) and in the medium (Ns = 1.6 andNs = 1.8). 16

18



4 MLLA (41) and NMLLA (63) second multiplicity correlator inside a quark jet as a func-

tion of Q = EΘ in the vacuum (Ns = 1) and in the medium (Ns = 1.6 andNs = 1.8). 17

19



References

[1] Yu.L. Dokshitzer, V.A. Khoze, A.H. Mueller & S.I. Troyan, Basics of Perturbative QCD, Editions

Frontières, Paris (1991).

[2] K. Adcox et al. (PHENIX Collab.), Phys. Rev. Lett.88 (2002) 022301;

S.S. Adler et al. (PHENIX Collab.), Phys. Rev. Lett.91 (2003) 072301.

[3] C. Adler et al. (STAR Collab.), Phys. Rev. Lett89 (2002) 202301.

[4] F. Arleo, hep-ph/08101193;

R. Baier, D. Schiff & B. G. Zakharov, Ann. Rev. Nucl. Part. Sci. 50 (2000) 37;

A. Kovner & U. A. Wiedemann, in Quark Gluon Plasma 3, World Scientific, Singapore, hep-

ph/0304151;

M. Gyulassy, I. Vitev, X.-N. Wang & B.-W. Zhang, nucl-th/0302077, ibid.;

A. Majumder, J. Phys. G34 (2007) S377;

For a more recent review, see also S. Peigné & A.V. Smilga, hep-ph/08105702.
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