N

N

Digraphs Exploration with Little Memory

Pierre Fraigniaud, David Ilcinkas

» To cite this version:

Pierre Fraigniaud, David Ilcinkas. Digraphs Exploration with Little Memory. STACS 2004, Mar 2004,
Montpellier, France. pp.246-257, 10.1007/978-3-540-24749-4 22 . hal-00339719

HAL Id: hal-00339719
https://hal.science/hal-00339719
Submitted on 18 Nov 2008

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-00339719
https://hal.archives-ouvertes.fr

Digraphs Exploration with Little Memory

Pierre Fraigniaud and David Ilcinkas

CNRS, LRI, Université Paris-Sud, 91405 Orsay, France.

{pierre,ilcinkas}@lri.fr

Abstract. Under the robot model, we show that a robot needs £2(n log d)
bits of memory to perform exploration of digraphs with n nodes and
maximum out-degree d. We then describe an algorithm that allows ex-
ploration of any n-node digraph with maximum out-degree d to be ac-
complished by a robot with a memory of size O(ndlog n) bits. Under the
agent model, we show that digraph exploration cannot be achieved by an
agent with no memory. We then describe an exploration algorithm for an
agent with a constant-size memory, using a whiteboard of size O(log d)
bits at every node of out-degree d.

1 Introduction

A mobile entity (e.g., a software agent or a robot) has to explore a graph by
visiting all its nodes and traversing all edges, without any a priori knowledge
of the topology of the graph nor of its size. Once exploration is completed,
the mobile entity has to stop. We also consider the more demanding task of
exploration with return in which the entity has to return to its original position,
and the auxiliary easier task of perpetual exploration in which the entity has to
traverse all edges of the graph but is not required to stop. The task of visiting all
nodes of a network is fundamental in searching for data stored at unknown nodes
of a network, and traversing all edges is often required in network maintenance
and when looking for defective components. Perpetual exploration may be of
independent interest, e.g., if regular control of a network for the presence of
faults is required, and all edges must be periodically traversed over long periods
of time.

If nodes and edges have unique labels, exploration can be easily done (e.g., by
depth-first search). However, in some navigation problems in unknown environ-
ments such unique labeling may not be available, or limited sensory capabilities
of the mobile entity may prevent it from perceiving such labels. Hence it is impor-
tant to be able to program the entity to explore anonymous graphs, i.e., graphs
without unique labeling of nodes or edges. Arbitrary graphs cannot be explored
under such weak assumptions, as witnessed by the case of a cycle: without any
labels of nodes and without the possibility of putting marks on them, it is clearly
impossible to explore a cycle of unknown size and stop. Hence, we assume, as
in [5, 6,11], some ability of marking nodes. More precisely we consider two differ-
ent models. In the robot model, the mobile entity is given the ability of dropping
and removing indistinguishable pebbles at nodes. This model aims to capture the



behavior of a robot in a labyrinth. In the agent model, the mobile entity is given
the ability to read and write messages at memory locations available at each
node, called whiteboards. This model aims to capture the behavior of a software
agent in a computer network. Observe that the robot model is weaker than the
agent model since a robot that is given k pebbles acts as a software agent in a
network with whiteboards of size one bit, in which at most & whiteboards can
simultaneously contain a 1.

Clearly the robot has to be able to locally distinguish ports at a node: oth-
erwise it is impossible to explore even the star with 3 leaves (after visiting the
second leaf the robot cannot distinguish the port leading to the first visited leaf
from that leading to the unvisited one). Hence we make a natural assumption
that all ports at a node are locally labeled 1,...,d, where d is the degree of the
node. No coherence between those local labelings is assumed.

In many applications, robots and mobile agents are meant to be simple, often
small, and inexpensive devices which limits the amount of memory with which
they can be equipped. As opposed to numerous papers that imposed no restric-
tions on the memory of the robot and sought exploration algorithms minimizing
time, i.e., the number of edge traversals, we investigate the minimum size of the
memory of the robot that allows exploration of graphs of given (unknown) size,
regardless of the time of exploration. That is, we want to find an algorithm for
a mobile entity performing exploration using as little memory as possible, i.e.,
we want to minimize the memory of the robot in the robot model, and we want
to minimize both the amount of information transported by the agent and the
size of the whiteboards in the agent model. In the latter case, our specific goal
is to design an exploration algorithm for an agent with constant memory size,
using small whiteboards.

1.1 Our results

Under the robot model, we first prove a lower bound of £2(n log d) bits of memory
for perpetual exploration of n-node digraphs with maximum out-degree d. This
lower bound holds even if the robot is given a linear amount of pebbles. We
then present two algorithms for exploration with stop in digraphs. One requires
O(ndlogn) bits of memory, and uses one pebble. This algorithm is only O(logn)
away from the optimal in constant-degree digraphs. Its time performance is
however exponential (again, time is measured by the number of edge traversals).
Hence, we also describe another algorithm, which performs exploration with
stop in polynomial time, but requires O(n2dlogn) bits of memory, and uses
O(loglogn) pebbles. This latter algorithm is a variant of the algorithm in [5],
designed for the purpose of compressing the robot memory. Note that it has
been proved [5] that 2(loglogn) pebbles are required to explore in polynomial
time, thus our algorithm is optimal with regard to the number of pebbles.
Under the agent model, we first prove that exploration with stop cannot
be achieved by an oblivious agent, i.e., an agent carrying no information when
moving from one node to another. However, we describe an algorithm for an
agent with constant size memory. It performs exploration with return in all



digraphs, using a whiteboard of size O(logd) at every node of out-degree d.
Note that 2(logd) bits is a lower bound for the size of the whiteboards when
using an agent with constant-size memory. Indeed, an agent with a memory of
size k = O(1) and a whiteboard of size k' = o(log d) generate at most 2F+% < d
states, and hence not all out-going edges can be distinguished. Our algorithm is
also optimal according to the following criteria. We mentioned before the lower
bound of 2(nlogd) bits of memory for exploration in digraphs under the robot
model. Therefore our algorithm under the agent model demonstrates that the
memory of the robot can be optimally distributed among the n nodes of the
digraph. This is in contrast with other contexts (e.g., compact routing) in which
there is a penalty for the distribution of a centralized data structure.

1.2 Related work

Exploration and navigation problems for robots in an unknown environment
have been extensively studied in the literature (cf. [14]). There are two groups
of models for these problems. In one of them a particular geometric setting is
assumed. Another approach is to model the environment as a graph, assuming
that the robot may only move along its edges. The graph setting can be further
specified in two different ways. In [1, 5,6, 9] the robot explores strongly connected
directed graphs and it can move only in the direction from head to tail of an
edge, not vice-versa. In [2,7,10-12,16] the explored graph is undirected and
the robot can traverse edges in both directions. (See also [13] an the references
therein where parallel search is investigated.) In the graph setting it is often
required that apart from completing exploration the robot has to draw a map
of the graph, i.e., output an isomorphic copy of it.

Graph exploration scenarios considered in the literature differ in an impor-
tant way: it is either assumed that nodes of the graph have unique labels which
the robot can recognize, or it is assumed that nodes are anonymous. It is impos-
sible to explore arbitrary anonymous graphs if no marking of nodes is allowed.
Hence the scenario adopted in [5,6] was to allow pebbles which the robot can
drop on nodes to recognize already visited ones, and then remove them and drop
in other places. The authors concentrated attention on the minimum number of
pebbles allowing efficient exploration and mapping of arbitrary directed n-node
graphs. (In the case of undirected graphs, one pebble suffices for efficient explo-
ration [11].) In [6] the authors compared exploration power of one robot with
pebbles to that of two cooperating robots. In [5] it was shown that, to perform
exploration in polynomial time, one pebble is enough if the robot knows an
upper bound on the size of the graph. However, without the knowledge of any
bound on the size of the graph, ©(loglogn) pebbles are necessary and sufficient
for exploration in polynomial time.

The efficiency measure adopted in most papers dealing with graph explo-
ration is the completion time of this task, measured by the number of edge
traversals. On the other hand, there are no restrictions imposed on the memory
of the robot. Minimizing the memory of the robot for the exploration of anony-
mous non-directed graphs has been addressed in, e.g., [8,10,16,17]. Most of



previous works deal with perpetual exploration. For instance, it is shown in [17]
that, with no pebble, no finite set of finite automata can perform perpetual ex-
ploration of all cubic planar graphs. Using a pebble, exploration with stop of
undirected graphs is much facilitated by the ability of backtracking. In particu-
lar, it is easy to design an exploration algorithm for a robot with O(D logd) bits
of memory, where D denotes the diameter of the graph. Also, a simple variant
of the algorithm in [11] yields a bound O(nlogd) bits. Better bounds are known
for specific families of graphs. For instance, it is shown in [10] that exploration
with stop in n-node trees requires a robot with memory size {2(logloglogn), and
that exploration with return in n-node trees can be achieved by a robot with
O(log® n) bits of memory. Our paper focuses on directed graphs.

It is worth mentioning that our work has connections with derandomized
random walks (cf. [10] and the references therein). There, the objective is to
produce an explicit universal traversal sequence (UTS), i.e., a sequence of port
labels, such that the path guided by this sequence visits all edges of any graph.
However, without the a priori knowledge of n, non of these UTS allows the
robot to stop. Moreover, even if bounds on the length of these sequences have
been derived, they provide little knowledge on the minimum number of states
for graph exploration by a robot. For instance, sequences of length 2(nlogn)
are required to traverse all degree 2 graphs with n nodes [3], although a 2-state
robot can explore all degree-2 graphs.

2 Terminology and models

An anonymous graph (resp., digraph) with locally labeled ports is a connected
graph (resp., strongly connected digraph) whose nodes are unlabeled, and edges
incident to a node v have distinct labels 1,...,d, where d is the degree of v. Thus
every undirected edge {u,v} has two labels which are called its port numbers
at u and at v. Port numbering is local: there is no relation between labels at u
and at v. In digraphs, edges out-going from a node v have distinct labels 1,...,d,
where d is the out-degree of v. Edges incoming to a node v are not labeled at v.

We are given a mobile entity traveling in an anonymous (di)graph with locally
labeled ports. The graph and its size are a priori unknown to the entity. We
consider the two following models.

Robot model. The mobile entity is called a robot. A robot with k-bit memory is
a finite automaton of K = 2F states among which a specified state Sy is called
initial and some specified states are called final. The robot is originally given a
source of indistinguishable pebbles. If the robot is in a node v in a non-final state
S, this state determines a local port number p, and the decision of dropping a
pebble at v, removing a pebble from v (if such a pebble is currently present at
v), or doing nothing. Then the robot leaves the node by port p. Upon traversing
the corresponding edge, the behavior of the robot differs depending whether the
graph is directed or not.

In graphs, the robot reads the port number i at the node it enters, and the
degree d of this node. It also detect the presence or not of a pebble at this node,



b = 0 if no pebble, and b = 1 otherwise. The triple (i,d, b) is an input symbol
that causes the transition from state S to S’.

In digraphs, the robot reads the out-degree d of the node it enters, and check
the presence or not of a pebble at this node. The pair (d,b) is an input symbol
that causes the transition from state S to S’.

In both cases, the robot continues moving in this way until it enters a final
state for the first time. Then it stops.

Agent model. The mobile entity is called agent. An agent with k-bit memory is
a pair (P, M) where P is a constant size program, and M is a memory of size k
bits. In the agent model, every node is given computing facilities, including CPU
and ¢ bits of local memory. The local memory is called whiteboard. Initially, all
whiteboards are empty, and the agent memory contains an initial k-bit binary
string so. Every pair agent-node forms a system that acts as a finite automaton
of 2%+4 states. A state of the system is a pair S = (s,w) where s is the content
of the agent memory, and w is the content of the whiteboard. This includes
some specified states called final. When the system is in a non-final state S,
the agent is operated as follows. The state S determines a local port number p,
a k-bit binary string s, and a ¢-bit binary string w. Then w is written on the
whiteboard, s is stored in the agent memory, and the agent is sent through port
p. Upon reception of the agent by a node, the operation performed by that node
differs depending whether the graph is directed or not.

In graphs, let ¢ be the port number through which the agent enters the current
node. Let d be the degree of that node, and let s and w be the current contents of
the agent memory and the node whiteboard. The pair (i,d) is an input symbol
that causes transition of the system from state S = (s,w) to S’ = (s',w') by
application of program P.

In digraphs, the out-degree d is an input symbol that causes the transition
from state S = (s,w) to S’ = (s',w") by application of program P. (There is no
access to the input port number.)

In both cases, the agent continues moving in this way until it enters a final
state for the first time. Then it stops.

Remark. Most of our exploration algorithms under the robot model actually
perform in the weakest version of the model, i.e., when the robot is given a
unique pebble.

We consider three tasks of increasing difficulty: perpetual exploration in which
the mobile entity has to traverse all edges of the (di)graph but is not required
to stop, exploration with stop (often simply called ezploration in this paper) in
which starting at any node of the graph, the entity has to traverse all edges and
stop at some node, and exploration with return in which starting at any node
of the graph, the entity has to traverse all edges and stop at the starting node.
An entity is said to perform one of the above tasks in a (di)graph, if starting at
any node of this graph in the initial state, it completes this task in finitely many
steps. (Notice that in the case of perpetual exploration, completing this task
after finitely many steps means only traversing all edges, not necessarily stopping



after it.) We compute the memory requirement of an exploration algorithm by
measuring either the size of the robot memory in the robot model, or both the
size of the agent memory and the size of the whiteboards in the agent model.

Terminology. A one-to-one and onto mapping f between the two sets of nodes
V and V' of two edge-labeled graphs G = (V, E) and G' = (V', E') is an isomor-
phism if, for every two nodes z and y in V: (z,y) € E & (f(z), f(y)) € E', and
the two edges have the same label. In the map drawing problem, the robot (resp.,
the agent) has to compute an edge-labeled graph G such that G is isomorphic to
X where X is the unknown edge-labeled graph that the robot (resp., the agent)
is exploring. Given two digraphs G and X, and two nodes u and x of G and X,
respectively, we note (G,u) = (X, z) if there exists an isomorphism f between
G and X, such that f(u) = .

3 Exploration of directed graphs under the robot model

We first prove a lower bound on the size of the robot memory. The proof uses
the digraph combination lock (see, e.g., [15]) defined as follows.

Definition 1. The combination lock L4, is a regular digraph of out-degree d,
and order n. The n nodes ug,uy,---,u, 1 are connected as follows. For every
1 < n—1, node u; has one out-going edge pointing to u;y1, and d — 1 out-going
edges pointing to ug. Node un,—1 has all its d out-going edges pointing to ug.

Theorem 1. Perpetual exploration in n-node digraphs of maximum out-degree
d > 2 cannot be accomplished by a robot with less than 2(nlogd) bits of memory,
even if it is given up to n pebbles. For d = 2, the result holds even if the robot is
given up to n/2 pebbles.

Proof. Let us given d and n, and a robot able to explore all n-node digraphs
of maximum out-degree d, thus including all distinct edge-labeled combination
locks Lg,,. Assume that the robot is given k pebbles, £ > 1. A full run of the
robot in Lg, is a run of the robot along the path ug,u1,...,us—1. For every
edge-labeled combination lock, place the robot at node ug, and let us consider
the state of the robot at ug before its first full run. (For each exploration, there
are at least d full runs since node u,_; must be reached at least d times to
traverse its d out-going edges.) Since the n nodes w;, ¢ = 0,...,n — 1, look
identical to the robot up to the presence of a pebble, the ability to perform a
full run is determined by the state of the robot just before leaving node ug, and
by the positions of the k pebbles. There are d”~! different labelings of the edges
(wirtiiy1),i=0,...,n—2,and p= Y% (1) possible positions for the pebbles.
Therefore, the robot must be able to be in at least d”~1/p different states at ug.
Thus it must have at least [(n — 1)logd — log p] bits of memory. Since p < 2™,
the result follows for d > 2. For d = 2, we use the fact that () < (4¢)° for
0 < a < b, where Ine = 1. Since k¥ < n/2, we have p < k(%e)", and thus
logp < logk +nlog(£). We have k < n/2 < 2n/e, thus logp < logn + an with
a < 1, which completes the proof. O



Note that our exploration algorithms use much less than O(n) pebbles. One
of them uses only one pebble, and the other uses O(loglogn) pebbles. We first
sketch the description of an exploration algorithm, called Test-all-maps, sat-
isfying the following:

Theorem 2. Under the robot model, Algorithm Test-all-maps accomplishes
exploration with stop in any digraph with a robot using one pebble, and whose
memory does not exceed O(ndlogn) bits in n-node digraphs of mazimum out-
degree d.

We first sketch the description of Algorithm Test-all-maps and later prove
that it satisfies the statement of Theorem 2.

Algorithm Test-all-maps. The robot successively tries every value for n, start-
ing at n = 1. For a fixed n, the robot tries all possible maps of edge-labeled
digraphs of order n. For a given map G = (V,E), with V = {uv1,...,0,},
the robot proceeds as follows. Let x be the current position of the robot in
the unknown digraph X, and assume that the robot holds the pebble. The
robot chooses node vy € V, and tests whether it is standing on node v; of
G, i.e., whether (G,v1) = (X, z). This is done thanks to the use of Procedure
Check-Consistency that will be detailed later in the text. This procedure takes
as input a graph G and a node v of G, and tests whether the robot is currently
standing at v in G. If the test succeeds, then the exploration stops. Otherwise, the
robot chooses another node v2 € V, and tests whether (G, v2) = (X, z). Observe
that during Procedure Check-Consistency, the robot moves in the graph X,
and thus, since the procedure failed for vy, there is no guarantee that the robot
is yet standing at node z of X. Hence, the robot uses a linear array position,
of size n, such that position[i] is the index j of the node v; € V where the
robot would be now standing if the original position x of the robot would satisfy
z = v;. Assuming x is node vy of G, the robot would now stand on node vj,
j = position[2]. The robot thus executes procedure Check-Consistency with
input (G,v;). If the procedure succeeds, then the exploration stops. Otherwise,
the robot chooses the next node vz, and tests whether (G,vs) = (X, z). The
robot thus executes procedure Check-Consistency with input (G,v;) where
j = position[3]. This process is carried on until either a test is eventually sat-
isfied, or all nodes of G have been exhausted. In the latter case, the robot picks
the next map, and repeats the same scenario until if finds the map of the a priori
unknown explored digraph. Now, we describe procedure Check-Consistency.

Procedure Check-Consistency(G,u). Given the map of an edge-labeled graph
G = (V, E), with n nodes and maximum out-degree d, and given a node u of G,
Procedure Check-Consistency checks whether the robot is currently standing
at node u of G, i.e., whether (G, u) = (X, z) where z is the current position of the
robot in the unknown digraph X . The procedure borrows from [5] the technique
of marking nodes of a cycle. However, this technique is implemented without the



use of a large data-structure. More precisely, the robot assigns numbers, from 1 to
m, to all the m < nd edges of the map G, with the additional condition that the
edge labeled 1 is out-going from u, and the edge labeled m is incoming to u (such
an edge does exist because G is strongly connected). Thus E = {ey,...,en}.
For every ¢ € {1,...,m — 1}, the robot computes a shortest path P; in the map
G starting from the head of edge e; to the tail of edge e;+1. During Procedure
Check-Consistency, the paths P;’s are computed on-line, and at most one path
is stored at any given time in the robot memory. Let C' be the following closed
walk starting and ending at u: C = e1, P1,...,em—1, Pm—1, €m. This walk will be
traversed several times during the execution of Procedure Check-Consistency.
C' is thus recomputed several times by the robot, and when P; is computed, the
robot forgets about path P;_;.

There are at most n phases in Procedure Check-Consistency, one for every
node of G. (The procedure assumes that the robot holds the pebble. Otherwise,
the robot runs Procedure Find-Pebble described later.) For every phase there is
a new considered node. During Phase ¢, the robot leaves u with the pebble, and
follows the edges of C' until it visits a node v in G that has not yet been considered
during the i — 1 previous phases. This node is marked considered on the map of
G, and the pebble is dropped there. (Hence the first considered node is node w.)
Then the robot carries on its walk guided by C until, according to the map, it is
back at u. Now, the robot traverses C' again. During its way along C, it checks
the following property P: the token is at the current node z if and only if z is the
considered node v, according to the map of G. If property P is satisfied for every
node of C, then the robot follows C' once again to bring the pebble back to u. If
there is yet another node to be considered, then the next phase proceeds with this
node. Otherwise the robot completes Procedure Check-Consistency as follows.
It executes a last journey along C' to check whether there is equality between
the degree of each node in the map G, and the degree of the corresponding node
in the explored graph X. If so, the robot returns success. The robot turns into
state failure as soon as it detects a problem at any step (e.g., the pebble is not
where it should be, the pebble is where it should not be, the degree-sequences
are different in the map and in the explored graph, etc.). As in [5], we have:

Lemma 1. Given a robot at node z of an anonymous digraph X, Procedure
Check-Consistency returns success for (G,u) if and only if (G,u) = (X, x).

If the robot loses the pebble during the execution of Procedure Check-Con-
sistency(G,u), then either the map G is not correct, or it is correct but the
robot was not at u. The robot then looks for the pebble by running the following
procedure:

Procedure Find-Pebble. The robot computes a (non necessarily simple) closed
path P in the map G, visiting all nodes {v1,...,v,} of G. P is computed on-
line, e.g., P is a sequence of sub-paths P; from v; to v;41, 4 = 1,...,n — 1,
and the P;’s are computed one after the other. The robot traverses the path P
several times, successively assuming that it starts from a node v; of the map,



i =1,...,n, and using an array position as in Procedure Test-all-maps. If
the robot does not find the pebble, then the current map G is for sure not a
map of the explored digraph X. Therefore the robot considers the next map,
and looks for the pebble in this new map using the same strategy as above. The
robot proceeds this way until it finds the pebble when considering some map
H. Once the pebble is found, the robot returns to the execution of Procedure
Test-all-maps, and tests the current map H.

Proof of Theorem 2. We prove that the algorithm Test-all-maps can be imple-
mented so not to use more than O(ndlogn) bits of memory in n-node digraphs of
maximum out-degree d. It is easy to list all edge-labeled digraphs with at most
n nodes and maximum out-degree d using an array of O(ndlogn) bits. Since
the cycle C = ey, P1,e2, Ps,...,em—1, Pp—_1, €, visiting all edges of a given map
is computed on the fly, and since any path P; can be encoded by a sequence
of at most D labels, where D is the diameter of G, we get that Procedure
Check-Consistency requires O(Dlogd) < O(nlogd) bits of memory for the
storage of C'. The same holds in Procedure Find-Pebble for the storage of P.
Thus the robot does not use more than O(ndlogn) bits of memory in total. O

The algorithm Test-all-maps performs exploration in exponential time in
the worst case (recall that time is counted as the number of edge traversals). Nev-
ertheless, we can describe a variant of Algorithm Explore-and-Map presented
in [5]. Although polynomial in time, Explore-and-Map is costly in term of mem-
ory space: a rough analysis shows that it requires a memory of O(ndlogn) bits.
Our variant is called Compacted-Explore-and-Map. We summarize its perfor-
mances by the following:

Theorem 3. For any n-node digraph of maximum out-degree d, Algorithm Com-
pacted-Explore-and-Map accomplishes exploration with stop in polynomial time
under the robot model, with a robot using O(loglogn) pebbles and a memory of
size O(n?dlogn) bits.

4 Exploration of directed graphs under the agent model

This section is dedicated to the agent model, i.e., nodes are given whiteboards
on which the agent can read, erase, and write messages. The goal is to limit the
sizes of both the agent memory, and the nodes’ whiteboards. We first observe
that exploration is impossible with an agent that performs obliviously, that is
carrying no information from node to node.

Theorem 4. Under the agent model, exploration with stop cannot be achieved
by an agent with zero bit of memory.

Proof. Assume for the purpose of contradiction that exploration with stop can
be achieved by an agent with zero bit of memory. Then consider regular digraphs
of out-degree d > 2. The content w; of the whiteboard of a node u at the ith visit
of that node by the agent is independent of u. Therefore w;+1 = f(w;), where



10

f is a function that is uniquely defined by the program P of the agent. Thus
the decision to stop depends only of the number of times the agent visits the
same node. Let k be the smallest integer such that wy, is a final state. Let Lg ;41
be the combination lock of out-degree d and order k + 1. To traverse all edges
incoming to the first node ug of Lg 41, the agent must visit node ug at least
k + 1 times. Since it stops at the kth visit, not all edges have been traversed,
and thus exploration is not completed, a contradiction. O

Theorem 5. Under the agent model, Algorithm DFS accomplishes exploration
with return in any digraph using an agent with O(1) bits of memory. DFS uses
O(logd) bits of memory per node of out-degree d.

We first describe Algorithm Next-Port that performs perpetual exploration
in any digraph.

Algorithm Next-Port.

1. If the current node whiteboard is empty, then the agent writes 1 on it, and
leaves the node through port 1;

2. Otherwise let ¢ be the integer written on the whiteboard, and let d be the
out-degree of the node. The program erases the whiteboard, writes j =
(1 mod d) + 1 on it, and the agent leaves the node through port j;

Lemma 2. Algorithm Next-Port accomplishes perpetual exploration of any di-
graph using an agent with zero bit of memory, and uses O(log d) bits of memory
per node of out-degree d.

Remark. Algorithm Next-Port is used several times as a sub-routine in Algo-
rithm DFS, and thus will be called with non-empty whiteboards. Nevertheless,
it was shown [4] that Algorithm Next-Port is self-stabilizing and thus does not
require the whiteboards to be initially empty to eventually perform correctly.

Algorithm DFS. Algorithm DFS performs a depth-first search (DFS) in the graph,
using Algorithm Next-Port as a sub-routine. Nodes visited during the DFS are
marked visited on their whiteboards. The last visited node is marked last.
There is at most one node marked last during the execution of DFS. When ex-
ploration starts, the node on which is placed the agent is marked visited and
last. It is also marked root. The path from the root to the last node is main-
tained thanks to port numbers that are stored on the whiteboards during the
exploration. This path is called the main path. The agent leaves the root through
port number 1. The DFS will proceeds by successively traversing incident edges
of any node u in order 1,2,...,d where d is the out-degree of u. Before leaving
the last node u, the port number through which the agent leaves is stored on u’s
whiteboard. Assume that the agent then reaches node v. There are two cases,
depending on whether node v has been visited or not.

If v has not yet been visited, it is marked visited. The agent then starts
Algorithm Next-Port to find the root. From Lemma 2, this task will eventually



11

succeed. From the root, the agent follows the main path and eventually reaches
the last node u. There, the mark last is erased from w’s whiteboard. The agent
then leaves u by the port whose number is stored on u’s whiteboard, to reach
v again. Node v is marked last. This sequence of instructions is repeated until
the agent reaches a node v that has been previously visited during the DFS.

If the agent reaches a node v that is marked visited, it runs Algorithm
Next-Port to find the root, and follows the main path from the root to the last
node u. Once back at u, there are two sub-cases. If the port number p of the
edge leading to v is smaller than the out-degree d of u, then the agent leaves u
through port p + 1, and repeats the same sequence of instructions as described
before. If p = d, then the agent aims to backtrack. For that purpose, it runs
Algorithm Next-Port to return to the root. The goal of the agent is to find
the node of the main path that stands just before the node marked last. It
marks the root as next, and proceed as follows. From the node marked next,
the agent goes down one step along the main path to reach some node w. If w
is not marked last, the agent goes back to the root, follows the main path to
the node marked next, erases next from the whiteboard of that node, moves
to w, and mark w as next. This is repeated until the agent finds the last node.
Then it erases the mark last from the whiteboard of that node, goes back to
the root using Next-Port, follows the main path until the node marked next,
and replaces the mark next by last.

The process above is repeated until all edges out-going from the root have
been visited, and the last backtrack leads to the root. Then the robot stops.

Proof of Theorem 5. During the execution of Algorithm DFS, the agent is clearly
in a constant number of different states, hence a memory of O(1) bits is enough
for the agent. There is a constant number of marks written on each whiteboards.
However, the storage of the port numbers of the main path, as well as the local
storage used by Algorithm Next-Port (cf. Lemma 2) require whiteboards of size
O(log d) bits. O

Remark. Tt is possible to call Algorithm Next-Port only once (amortized), and
to use it to construct a tree whose edges are pointing toward the root. Then
returning to the root in Algorithm DFS takes a linear time after the first run of
Algorithm Next-Port.

5 Conclusion and Further Works

Our algorithm Test-all-maps requires the storage of a test map of the unknown
explored digraph. Graph exploration is however a weaker task than map drawing.
One may thus expect to find an algorithm using a memory smaller than the
size of a map. Another interesting direction of research is the investigation of
compact exploration under the constraint that the algorithm must perform in
polynomial time (i.e., the mobile entity must perform a polynomial number of
edge-traversals). We described an algorithm for polynomial-time exploration,



12

using a robot with a memory of size O(n2dlogn) bits. This is however far from
the 2(nlogd) lower bound, and it would be interesting to determine the exact
trade-off between time and memory space for graph exploration.

Acknowledgement. Both authors are supported by the Actions Spécifiques CNRS
“Dynamo” and “Algorithmique des grands graphes”, and by the project “PairA-
Pair” of the ACI Masses de Données.

References

1. S. Albers and M. R. Henzinger, Exploring unknown environments, SIAM Journal
on Computing 29:1164-1188, 2000.

2. B. Awerbuch, M. Betke, R. Rivest and M. Singh, Piecemeal graph learning by a
mobile robot, Proc. 8th Conf. on Comput. Learning Theory, pages 321-328, 1995.

3. A. Bar-Noy, A. Borodin, M. Karchmer, N. Linial, and M.Werman, Bounds on uni-
versal sequences, SIAM J. Computing, 18(2):268-277, 1989.

4. J. Beauquier, T. Hérault, and E. Schiller, Easy stabilization with an agent, In
5th Workshop on Self-Stabilizing Systems (WSS), Vol. 2194 of LNCS, pages 35-51,
Springer-Verlag, 2001.

5. M. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan, The power of a peb-
ble: Exploring and mapping directed graphs, Proc. 30th Ann. Symp. on Theory of
Computing (STOC), pages 269-278, 1998.

6. M. Bender and D. Slonim, The power of team exploration: Two robots can learn un-
labeled directed graphs, Proc. 35th Ann. Symp. on Foundations of Computer Science
(FOCS), pages 75-85, 1994.

7. M. Betke, R. Rivest and M. Singh, Piecemeal learning of an unknown environment,
Machine Learning 18:231-254, 1995.

8. L. Budach. Automata and labyrinths. Math. Nachrichten 86:195-282, 1978.

9. X. Deng and C. H. Papadimitriou, Exploring an unknown graph, Journal of Graph
Theory 32:265-297, 1999.

10. K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree Exploration with Little
Memory. To appear in Journal of Algorithms (see also proceedings of the 13th Annual
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 588-597, 2002).

11. G. Dudek, M. Jenkins, E. Milios, and D. Wilkes. Robotic Exploration as Graph
Construction. IEEE Transaction on Robotics and Automation 7(6):859-865, 1991.
12. C. Duncan, S. Kobourov and V. Kumar, Optimal constrained graph exploration.
In 12th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 807-814,

2001.

13. P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc. Collective Tree Exploration.
In 6th Latin American Theoretical Informatics Symposium (LATIN), Buenos Aires,
April 2004.

14. A. Hemmerling. Labyrinth Problems. Teubner-Texte zur Mathematik, Bd. 114,
Leipzig, 1989.

15. E. Moore. Gedanken-Experiments on Sequential Machines. In Automata Studies,
pages 129-153, C. Shannon and J. McCarthy (Eds.), Princeton University Press, 1956.

16. P. Panaite and A. Pelc, Exploring unknown undirected graphs, Journal of Algo-
rithms 33:281-295, 1999.

17. H.-A. Rollik. Automaten in planaren graphen. Acta Informatica 13:287-298, 1980.



