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Robust Independent Component Analysis for Blind Source Separation
and Extraction with Application in Electrocardiography

Vicente Zarzoso and Pierre Comon

Abstract— The problems of signal separation and signal
extraction arise in a wide variety of applications in biomed-
ical engineering and other areas. Under the source statistical
independence assumption, these problems can be solved by
independent component analysis (ICA) methods. A simple
ICA technique, referred to as RobustICA, has recently been
proposed that shows interesting features such as very fast con-
vergence, local-extrema escaping capabilities and the possibility
of avoiding prewhitening. The present contribution explains
how RobustICA can easily be modified to target particular
sources according to their impulsive character as measured by
the kurtosis sign. This new feature makes it possible to extract
the sources of interest only, or a subspace thereof, with the
subsequent reduction in computational complexity and error
accumulation. The performance of this modification is illus-
trated on signal recordings issued from electrocardiography.

I. INTRODUCTION

Extracting signals of interest from the observation of
corrupted measurements is a fundamental signal processing
problem arising in numerous applications including, but
not limited to, biomedical engineering. Instances of this
problem are found in electrocardiography. During pregnancy,
the non-invasive measurement of the fetal heartbeat signal
from maternal cutaneous recordings can provide more details
about the child’s well-being than currently employed tech-
niques, mainly based on Doppler ultrasound heart-rate mon-
itoring [1]. Unfortunately, the low-amplitude fetal cardiac
signal is contaminated by the stronger maternal cardiac signal
and other artifacts. In atrial fibrillation, the most prevalent
arrhythmia encountered by physicians, the electrical signal
generated in the atria contains useful information about the
condition. Its dominant frequency is closely related to the
refractory period of atrial myocardium cells, and thus to the
stage and degree of organization of the disease; in particular,
the lower the main frequency, the higher the probability
of spontaneous cardioversion [2]. The non-invasive analysis
of the atrial activity signal calls for the suppression of the
ventricular complexes as well as other interference and noise
contributing to the surface electrocardiogram (ECG).

Traditional approaches to signal extraction include fre-
quency filtering and Wiener’s optimal filtering [3]. However,
in many practical scenarios like the above examples, the
signal of interest and the interference often overlap in the
frequency spectrum, and obtaining pure reference signals un-
correlated with the signal of interest may be a difficult task.
The blind source separation (BSS) approach, introduced now
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over two decades ago, provides a more general framework.
In its instantaneous linear mixture formulation, BSS assumes
that the desired and interfering signals, so-called sources,
may possibly have overlapping spectra and may all appear
mixed together in each of the observations. The estimation
of an appropriate extracting filters, and thus the estimation
of the source waveforms from the observed mixtures, is
achieved by recovering a known or assumed property of the
sources. The assumption of statistical independence is very
plausible in many applications like those recalled earlier. A
mixture with arbitrary structure can be inverted regardless
of the source spectra by imposing independence beyond
second-order decorrelation, an operation referred to as inde-
pendent component analysis (ICA) [4]. Most ICA algorithms
proposed in the literature are based on non-Gaussianity
measures such as the fourth-order statistics (cumulants), and
can separate sources with non-zero kurtosis, regardless of its
sign [4], [5], [6], [7]. Others can only separate sources with
positive or negative kurtosis (respectively, super-Gaussian
or sub-Gaussian sources), or with kurtoses verifying certain
conditions [8]. The method of [7] exploits the prior knowl-
edge of the source kurtosis signs to reduce the permutation
ambiguity inherent to ICA. Basically, all the above methods
aim at the joint separation of the source signals, although
they may also be adapted to sequential extraction.

A simple technique called RobustICA has recently been
presented in [9], [10] for sequential extraction of non-
Gaussian sources. The method is based on a general contrast
function, the normalized kurtosis, which is maximized via
a computationally efficient iterative search technique with
an optimal step size. The present contribution shows how
this method can easily be adapted to specifically target sub-
Gaussian or super-Gaussian sources. This feature enables
the extraction of sources of interest when their Gaussianity
character is known in advance, thus sparing a full separation
of the observed mixture and the consequent unnecessary
complexity and increased estimation error. The comparative
performance of the modified algorithm is illustrated on a real
ECG recording of atrial fibrillation.

II. BLIND SOURCE SEPARATION AND
EXTRACTION VIA ICA

A. Signal Model and Basic Assumptions

In its instantaneous linear mixture formulation, BSS con-
siders the signal model:

x(t) = Hs(t) =
n∑

k=1

hksk(t) (1)



where vector x(t) = [x1(t), x2(t), . . . , xm(t)]T con-
tains the observed signal mixtures, vectors(t) =
[s1(t), s2(t), . . . , sn(t)]T the unknown source signals, and
H is the unknown (m × n) mixing matrix, assumed full
column rank, whose coefficienthij = [H]ij represents the
contribution of sourcej onto observationi. Symbol (·)T is
the transpose operator. In what follows, time indext will
be dropped for convenience. Depending on the application,
the sources and the mixture may take values in the real or
in the complex field. Source separation is carried out by
estimating a separating matrixW such that the separator
output y = WHx contains an estimate of the sources, up
to admissible scale and permutation indeterminacies, where
symbol (·)H denotes the conjugate-transpose operator. Each
column ofW represents a spatial filter for the extraction of
a single source,yk = wH

k x.
Prewhitening. Principal component analysis (PCA) is

probably the simplest approach to BSS under the indepen-
dence assumption. This method exploits second-order statis-
tics only and is generally unable to perform the separation.
However, it reduces the problem to a set of whitened signals
related to the sources through a unitary transformation:
z = Qs. Matrix Q needs to be identified in a second step
involving higher-order statistics. The prewhitening process
introduces a bound on the achievable separation performance
and may yield poor results in the presence of spatially-
correlated noise with unknown covariance matrix.

B. Contrast Functions, Cumulants and Non-Gaussianity

The first thorough mathematical framework for BSS and
ICA was established by Comon in [4]. A key concept in
this formulation was the definition ofcontrast function, a
functional Ψ(y) in the distribution of the separator output
quantifying the degree of separation. By virtue of three es-
sential properties (invariance, domination and discrimination)
characterizing a contrast, its optimization is achieved if and
only if the sources are separated up to scale and permutation.
Under the statistical independence assumption, the mutual
information of the separator output is shown to constitute
a valid contrast [4], and later found to be related to the
maximum likelihood criterion [11], with the advantage of
sparing the knowledge of the source distributions.

Approximations of information-theoretical contrasts lead
to practical algorithms involving higher-order statistics (cu-
mulants), easier to compute and to deal with. At fourth order,
the minimization of mutual information is shown to be equiv-
alent, under unitary transformations, to the maximization
of the sum of square kurtoses of the separator output [4],
[12]. The higher-order marginal cumulants of a Gaussian
variable being null, this criterion is naturally connected to
the maximization of non-Gaussianity of the separator output
components. The Contrast Maximization (CoM2) method
[4] maximizes this contrast iteratively by applying a planar
Givens rotation to every signal pair until convergence, as in
the Jacobi technique for matrix diagonalization.

C. Sequential Extraction

The above family of methods estimate all sources jointly
or simultaneously. An alternative approach is to extract one
source after another, a process known as sequential extraction
or deflation [13]. In the real-valued case, it was proved in
[13] that the maximization of criterion

|ΨKM(y)|, with ΨKM(y) =
κy

σ4
y

(2)

is a valid contrast for the extraction of any source with non-
zero kurtosis from model (1), with the extractor output given
by y = qTz and the unitary extracting vectorq by the
corresponding column ofQ. The kurtosis of a zero-mean
random variabley is defined as

κy = cum(y, y∗, y, y∗) = E{|y|4} − 2E2{|y|2} − |E{y2}|2.
(3)

Symbolσ4
y denotes the square variance of the extractor out-

put. After convergence of search algorithm, the contribution
of the estimated source to the observations can be computed
via the minimum mean square error solution to the linear
regression problemx = ĥŝ, given by:

ĥ = arg max
h

E{‖x− hŝ‖2} = E{xŝ∗}/E{|ŝ|2}. (4)

The observations are then deflated asx ← (x − ĥŝ)
before re-initializing the algorithm in the search for the next
source. This regression-based deflation is a procedure to
avoid extracting the same source more than once.

In its original definition, the popular FastICA algorithm [6]
aimed at the maximization of contrast (2). Some simplifica-
tions finally lead to the following update rule for extracting
vectorq:

q′ = q− 1
3
E

{(
zTq

)3
z
}

. (5)

Vector q′ is then projected on the subspace orthogonal to
the previously estimated extracting vectors, and normalized
to keep the denominator of (2) constant. This approach to
sequential extraction is called deflationary orthogonalization
[6]. Equation (5) represents the FastICA method with cubic
non-linearity, and is shown to have (asymptotically, for
large sample size) global cubic convergence. Nevertheless,
update rule (5) turns out to be a gradient-descent algorithm
with constant step size [9]. Under analogous simplifications
than its real-valued counterpart, the extension of FastICA
with cubic non-linearity to the complex-valued scenario [14]
neglects the non-circular part in the definition of kurtosis (3)
and is thus restricted to circular source distributions.

III. ROBUSTICA

A. Optimal Step-Size Optimization

Despite the simplifying assumptions (e.g,. prewhitening,
real-valued sources and mixtures, circular complex sources
etc.) made in previous works, criterion (2) is actually quite
general. Indeed, it is a valid contrast for the extraction of
a non-zero kurtosis source from mixture (1) whatever the
type (real- or complex-valued) of sources and mixtures,
and regardless of whether prewhitening has been carried



out. More interestingly, this contrast can be maximized
by an effective, computationally efficient search algorithm.
Assuming an extractor outputy = wHx, a quite natural
update rule for the extracting vectorw along an appropriate
search directiong (e.g., the gradient) is given by

w′ = w + µg (6)

where the real-valuedµ is the step size or adaption coeffi-
cient. In conventional search algorithms,µ is set to a constant
or possibly time-varying value trying to balance a difficult
trade-off between convergence speed and accuracy. Rather,
we are interested in the value ofµ that globally maximizes
the normalized kurtosis contrast in the search direction:

µopt = arg max
µ
|ΨKM(y + µg)| (7)

whereg = gHx. However,∂ΨKM(y + µg)/∂µ is a rational
function inµ with a fourth-degree polynomial as numerator.
Hence,µopt can be computed algebraically by finding the
roots of this polynomial in the step size. Its coefficients,
obtained in [9], [10], are functions of the observed data
fourth-order statistics and the current values of the extracting
vector and the search direction. The optimal step size is the
root maximizing (7). The resulting method is referred to as
RobustICA.

In the preliminary numerical results of [9], [10], Ro-
bustICA demonstrates a very fast convergence measured
in terms of source extraction quality against number of
operations. The optimal-step size update rule provides the
method with some robustness to saddle points and spurious
local extrema in the contrast function, which may appear
when short data blocks are processed [15]. The generality of
contrast (2) guarantees that RobustICA is able to separate
real and complex (possibly non-circular) sources without
any modification. In addition, the method does not require
prewhitening, thus avoiding the associated performance lim-
itations and increasing the robustness to spatially-coloured
noise. Deflation is then carried out through linear regression,
as in (4). Prewhitening can also be used, in conjunction
with regression, or with deflationary orthogonalization as in
FastICA.

B. Extraction of Sources with Known Kurtosis Sign

The method described above aims at maximizing the ab-
solute normalized kurtosis, and is thus able to extract sources
with positive or negative kurtosis. In many applications, some
information may be known in advance about the source(s)
of interest. For example, the atrial activity signal in atrial
fibrillation, and especially in atrial flutter episodes, typically
lies in the sub-Gaussian source subspace. In the separation
of the fetal ECG from maternal skin recordings, the sources
of interest, the fetal heartbeat signals, are usually impulsive
and thus super-Gaussian. In these cases, separating the whole
mixture would incur an unnecessary computational cost and,
in the case of sequential extraction, an increased source
estimation inaccuracy due to error accumulation through
successive deflation stages. A more judicious alternative is
extracting the desired type of sources alone.

RobustICA can easily be modified to deal with these
situations by targeting a source with specific kurtosis signε.
After computing the roots of the step-size polynomial, one
simply needs to replace (7) by

µopt = arg max
µ

εΨKM(y + µg) (8)

as best root selection criterion. If no source exists with
the required kurtosis sign, the algorithm may converge to
a non-extracting local extrema, but will tend to produce
components with maximal or minimal kurtosis from the
remaining signal subspace whenε = 1 or ε = −1,
respectively. The algorithm can also be run by combining
global line maximizations (7) and (8) for sources with known
and unknown kurtosis sign, respectively, in any desired order.
An implementation of the RobustICA algorithm including
this feature is freely available in [16].

The method of [7] exploits the prior knowledge on the
source kurtosis signs and, although originally designed for
joint separation, it can easily be adapted to perform sequen-
tial extraction. Note, however, that it requires prewhitening.

IV. EXPERIMENTAL RESULTS

Fig. 1(a) displays lead V1 of a standard 12-lead surface
ECG recorded from an atrial fibrillation patient.1 Only 5 s are
shown out of a 12 s segment sampled at 1 kHz. We apply
the spatio-temporal BSS technique of [17] on these data.
This technique consists of an initial ICA stage followed by
a second-order refinement on the subspace spanned by the
sources with the lowest kurtosis values (below a threshold
empirically set at 1.5). This second stage, carried out by
means of the SOBI algorithm [18], exploits the narrowband
character of the atrial activity signal in order to improve its
extraction from near-Gaussian sources. SOBI performs the
joint approximate diagonalization of the whitened sensor-
output correlation matrices at different time lags. Fig. 1(b)
shows the results provided by the ICA-based joint separation
CoM2 method of [4]. FastICA with deflationary orthogo-
nalization followed by SOBI estimates a very similar atrial
contribution, as shown in Fig. 1(c). Finally, we run Robus-
tICA [16] under the same working conditions as FastICA,
but aiming for 6 sub-Gaussian sources only (ε = −1).
The application of SOBI on the obtained minimal-kurtosis
source subspace provides the estimated atrial activity signal
of Fig. 1(d), which seems a more accurate (less noisy) fit to
the actual atrial activity observed in lead V1.

Fig. 2 displays the power spectra, estimated as in [17],
of the signals in Fig. 1. The vertical axis of each plot is
normalized with respect to the maximum amplitude of the
corresponding spectrum in the 0–10 Hz frequency interval.
Also shown is the frequency of the main peak,fp, that
all compared methods agree on estimating at 5.86 Hz. The
spectral concentration is computed as the percentage of
signal power contained in the0.82fp to 1.17fp frequency
band [17]. This measure can be considered as an objective

1ECG recording courtesy of F. Castells and J. Millet from the Polytechnic
University of Valencia, Spain.
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Fig. 1. (a) Lead V1 of an atrial fibrillation ECG. (b) Atrial activity
contribution estimated by CoM2+SOBI. (c) Atrial activity contribution
estimated by FastICA+SOBI. (d) Atrial activity contribution estimated by
RobustICA+SOBI.

index of atrial activity extraction quality. According to this
parameter, the proposed technique clearly outperforms the
other methods.

Although not shown here due to lack of space, the applica-
tion of RobustICA withε = 1 on a pregnant woman’s surface
ECG seems to allow the recovery of the fetal heartbeat
subspace from two of the first five to six extracted sources.

V. CONCLUSIONS

The separation and extraction of independent non-
Gaussian sources can be carried out by algebraic exact
line search optimization of the normalized kurtosis contrast,
without simplifying assumptions. The resulting method is
cost-effective, can escape spurious local extrema and does
not require prewhitening. Prior knowledge on the kurtosis
signs can easily be incorporated to aim for specific sources
without separating the whole mixture. This leads to further
savings in complexity and reductions in the accumulated
estimation errors propagating through successive deflation
stages. Results on real biomedical data have demonstrated
the benefits of RobustICA, but are only illustrative; a more
significant comparison should involve a complete recording
database. In particular, the dimension of the minimal-kurtosis
source subspace enabling the subsequent improvement in
atrial activity estimation needs to be examined in more detail.
The same algorithm can also deal with complex-valued
possibly non-circular sources. Current research is exploring
the exploitation of this interesting possibility in a biomedical
context.
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