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Abstract—The solution of the Zakai equation provides the
complete conditional probability density of the state, given
the observations. Numerical solution of this equation by the
finite difference method usually leads to large systems of
equations which have to be solved at each time step,
especially when the dimension of state space is more than
two. We propose in this paper, for the first time to our best
knowledge, a grid-based four dimensional algorithm to
solve the Zakai equation. Our approach is based on an
adaptive local grid refinement method and is illustrated
with a bearings-only target motion analysis example. '*
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1. INTRODUCTION

Conceptually, the basic problem in bearings-only tracking
is to estimate the trajectory of a target (i.e. position and
velocity) from noise-corrupted sensor bearing data. In the
case of a single-sensor problem, these bearing data are
obtained from a single-moving observer (ownship). We
have then a four dimension state space problem:
(x,y,u,v), where (x,y) and (u,v) are the position and
velocity components, respectively. Contrary to Kalman type
filters which calculate only the expected value and
covariance matrix of the state system, the Zakai equation, a
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stochastic partial differential equation (PDE) whose
solution is a conditional law given the past available
observations, permit us not only to obtain an optimal non
linear filter, but also to have a probability distribution in
both position and velocity fields (confidence regions) at
every time step. Tracking with hard constraints is not only
possible but also inherent to the method. Important
progresses have been made in the numerical resolution of
this equation, for instance by using particle filters. In this
article, we are interested in a grid-based approach.

In the literature, there exist five different methods for
bearing-only tracking filtering: Kalman type filters [4] [8],
particle filtering [14], convolution method [1] [7],
quantization method [11] and Zakai filter [2]. In the first
three approaches the system is considered discrete in time
and continuous in state space; in the fourth approach, both
time and state space is discrete; in our method, we consider
that the system is continuous both in time and in state
space.

In spite of the development of computer capability in the
recent years, grid-based approximation has found little
application in tracking problems. The question of how to
solve the Zakai equation efficiently, so as to satisfy as many
real-time constraints as possible, still remains, in particular
when the space dimension is greater than two. Just like the
difficulty encountered in 3-D fluid dynamic computation,
the principal problem for multidimensional applications is
that a large-scale system has to be solved at each time step.
It makes the approach unusable, because the number of
points in a multidimensional regular grid is considerable.

The basic remark that we are going to exploit is that in
most applications, in particular when the observation noise
is small, the conditional density is well localized in some
small region in the state space. This is our motivation for
using local refinement techniques. To track the solution of
noisy state equations, whose shape may be arbitrary and in
general could not be predicted in advance, we use an a
posteriori criterion. In order to overcome the resulting
programming difficulties and optimize software efficiency,
we have used the C++ programming language and
convenient data structure.



The paper is organized as follows: first, a discretization
scheme is presented for numerical approximation. An Euler
implicit scheme proposed by Le Gland [9] is used for time
discretization and an up-wind finite difference scheme due
to Kushner [5] [6] is applied on a composite grid for space
discretization. Second, the problem of bearings-only
tracking is modeled by the Zakai equation; a fast adaptive
composite multigrid algorithm will be detailed. Then, using
a typical testing scenario, some numerical results are
presented and compared with an Unscented Kalman Filter
(UKF). Numerical experiments confirm feasibility and
efficiency of the method. z

2. THE ZAKAI EQUATION AND DISCRETIZATION

Let's consider the following model, with state equation

dX,=b(X)dt +o(X,)dw, (1)
and observation process

dY, = h(X,)dt +dv,
@

Here, {Xt,t > 0} and {K,tz O} take values in R™ and

R respectively with X, distributed as p,(x)dx .
{Wt,t > 0} and {Vt,t > O} are independent Wiener
processes with the appropriate dimensions and non-
singular covariance matrix /(identity) and R respectively.
Let y, =0(Y,,0 < s < t) denote the T-field generated by
the observations up to time #. The objective is to compute
at each time 7, the conditional density p,(x) of the state

X,, given the past available observations y,, so as to
compute

E[@X )| y1=c, O] @x)p,(x)dx

for any test function ¢ (here ¢, is a normalization
constant).

Under broad assumptions, the conditional density p,(x) is

the unique solution of the following stochastic PDE, called
the Zakai equation [15]

dpt =L tdt + pthDR_ldYt (3)

where [ is the transpose operator, L is the infinitesimal
generator associated with the diffusion process X, i.e

L=%Zm:a

ij

dw.x 2 4)
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with a=(a, J.)=0'0£ . For basic references about

nonlinear filtering and the Zakai equation, see [3], [12] and
[13].

Time Discretization

We introduce a uniform partition of the time interval
[0,+0): 0=¢,<t,<L <t <L , with constant time
step O=t,,,—,. We use the splitting-up algorithm
studied in Le Gland [9], which combines an implicit Euler
scheme for the prediction step and a Bayes formula based

on sampled observations

s 3 s 0,

for the correction step. Following [9], the conditional
density p, is approximated by pf, where the transition

from pf_l to pf is divided into the following two steps:

O Prediction step: we solve the following Fokker-Planck
equation, between times #,_, and 7,

71
@t _ LD n
=Lp
d[ t
with initial condition p = p?  at time # =¢, . The
final value at time #=/{, gives the prior estimate
o —
Pu-12 = Py,
discretized by the FEuler implicit scheme, which is
unconditionally stable, i.e. we solve

The Fokker-Planck equation is further

[[_ &]ng—l/z = pf—l

O Correction step: we use the new observation zf and the

Bayes formula, to update the prior estimate pg_l /g» LE. WE
compute

J J .0
b, _anPn Paan

where

W2(5) = oxp| = st = o,

and ¢,is a normalization constant and the notation |° |R
denotes the norm in R?associated with the definite positive

. -1 . 2 —
matrix R, i.e. |u|R =u'R'u.



Finite difference on a regular grid

On a given m -dimensional regular grid Q" with mesh
h=(h,L ,h,). we use the upwind finite difference
scheme introduced by Kushner [5] (see also Kushner and
Dupuis [6]) to approximate the partial differential operator
L defined in (4). In this scheme, the first order derivatives
are approximated as

¢(x + ez’hi) — ¢(x) 1fb(x) >0

Ok ﬂ;—e,-h,-)

i

@Ax) -

if b (x) <0

where e, denotes the unit vector in the 7 -th coordinate

direction. The central second order derivatives are
approximated as

Ax +eh) = 2¢x)+ @fx—eh,)
h?

2200

and the mixed second order derivatives as

1 {r/xx tehteh) - @xteh) @x+eh) - @x)

Zhi hj hj
+ﬂx)—ﬂx—ejhj) _ Ax —eh)— @dx —eh, —ejhj):|,
, n,
Py ifa, (x)20

O,k 1 ﬂx+eihi)—ﬂx+eihi—ejhj)_ﬂx)—ﬂx—ejhj)
2h, h. h.

J J

+ﬂx +ejhj)—ﬂx)_ Ax—eh, +ejhj)—ﬂx—eihi):|
h, h, i

J J

ifa, ;(x)<0

As a result, the infinitesimal generator L is approximated
as

Lgx) DL gx) = D L' (x,y)@y)

yod*(x)

where for all x 0Q", 4"(x) 0 N”(x)denotes the set of

points in the grid Q" which are accessible from x, i.e.
A"(x)={x+geh, +geh, forall g6, 0{0.21}.i # j}

and N”(x) denotes the set of nearest neighbours of x
including Xx itself, i.e.
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N (x) = {x tgeh L +ee b, forallg L &, D{O,il}}

m-m’ "m?

By identifying the coefficients of the matrix I, we have
for all x JQ"

1
)= hz a,,(x) - Zzhhl,,@)l h—b(x)l

i=1 J.J7i i= £
h - _ . l +
L (x,x + eihl.)— 2/’1,-2 aiyi(x) J;,- 2/’1,-/’1]- |ai'j (x) + n b; (x)

h — l +
L'\x,x+eh + ejhj)— Waiyj(x)

h
L (x,x—el_h,. Me h, ) 2hin alj(x)

L"(x,3)=0, otherwise

One can see [5] for the definition of finite difference
approximation on the boundary. In any case, we can check
that

Ox Dﬁh, Z I (x,y)= 0

yO4” (x)

and under the additional assumption

Ox OR" —al (x) - Z

2hh ‘alj(xX 0 (9

the matrix 1" satisfies

v 0Q", 2% (x,x)< 0 and L (x,) > 0 for eachy 04" (x),y # x

Therefore, under the additional assumption (), the finite

difference matrix I” obtained by this method can be
interpreted as the infinitesimal generator of a pure jump
Markov process taking values in the discretization grid

Q" In addition, the matrix [1 - 5Lh] is a M-matrix. As

a consequence, the resulting approximation to the Fokker-
Planck equation will automatically be a discrete probability
distribution, i.e. non-negative everywhere, and adding up to
one.

Finite difference on a composite grid

For simplicity, we consider the situation with two meshes: a
fine mesh 4 =(h,,L ,h,). and a coarse mesh H =2h.

We assume that a composite grid Qs given as

Q"=0"0Q

where Q! = U N'(x)

x007 refined



This defines a first partition of the composite grid Q" into
the set Q

loc
QH

loc

of fine grid points, and the set

=0\ QZ]C of coarse grid points: see Figure 1.

Figure 1 — A composite grid of two levels

h
loc

A fine grid point x [1Q
A"(x)o Q!

loc *

said to be regular it A" (x)n Q!

loc

is said to be regular if
Similarly, a coarse grid point x DQ;Zc is
=0.

This defines a second partition of the composite grid Q"

into the set Q}é of regular coarse grid points, the set Qg of
regular fine grid points, and the set Q? =Q” \Q}h2 of
interface points, where Q% = Q}é 0 Q%: see Figure 2.

L . L L
L [£ C)
L =) L L] .
L L L
] ] 0] (] [] .

Figure 2 Regular point (' ) : Q}é and Q% , coarse
and fine interface point(J,e ) : Q%

For any point X JQ”, we need to specify the set A"(x)

of points in the composite grid Q" which are accessible
from x, and to specify the corresponding finite difference

coefficients 1" (x, y), yOA4"(x).

At a regular point Xx DQ}Ez = Qg 0 Q%, , we use the
original finite difference scheme. At an interface point Q,
a special technique is used: (1) First, as depicted in Figures

3 and 5, we consider the set 4”(x) of points in the grid
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Q" which are accessible from x, by adding some slave
points (+) if necessary, and we define the corresponding
finite difference coefficients I (x, y), y0A"(x), using

the expressions given in the section above. (i1) Then, we
redistribute the finite difference coefficients of each slave
point to points that actually exist in the composite grid, by
linear interpolation.

We get in the end a composite scheme:

rolx)= 3, I'(xy)el)

yOat (x)
L] L[] L] L]
+ o+ o+
T
e + % + o ®

° (&) ® ° ° °
® ° ° °
° &3} ® ° ° .

Figure 3 — Coarse interface points ([]) and their
slave points (+)

°
(53]

© O 0
°
°
.

Figure 4 — Coarse interface points ([]) and their
pointers

° (&) [0} ° ° °
®© ° ° °
° (<] ® ° ° °

Figure 5 — Fine interface points (€ ) and their
slave points (+)



With this technique, we can prove that the resulting finite
difference matrix 22 on the composite grid Q| is such
that the matrix [1 -or’ ] isa M -matrix.

10}
® . ° .

° 521

©
°
°
°

Figure 6 — Fine interface points (€ ) and their
pointers

3. ALGORITHM FOR THE FILTERING PROBLEM

For simplicity, we present our algorithm in the simple case

of two meshes: a fine mesh & = (hl,L h, ) and a coarse

mesh H = 2h . To obtain our approximation pfj’h at time

t, , we proceed in three steps.

O We first consider the following linear system on the

coarse grid Q
O
(-0 Tt = g

SH
The right hand side vector Pn-1 s just the restriction to

3h
Q7 of the fine grid approximation Pn-1 obtained at the

previous time !4-1. To solve this linear system, we use the
BCG (BiConjugate Gradient) method. Based on this rough
S.H

approximation Pr-172 of the solution Pr-1/2 | we have then
to decide where to refine the grid. From a theoretical point
of view, the determination of the refinement region is a
difficult task. Here, we propose a widely used heuristic a
posteriori. criterion, based on the magnitude of the Zakai
equation. Using a simple threshold decision rule, we decide
whether this point is going to be refined or not. As a result,
we obtain a composite grid

Q"=0"0Q; where Q! = U N'(x)

x0T refined

Notice that the nested iteration of the multigrid method
offers a numerically natural way to do this step.
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O In the second step we construct a new linear system

WP oh _ ok

|:] - JLf] Pnoin = Pua
on the composite grid. The matrix I" is defined as in
section above. The right hand side vector pf’_}ll is again the

3.h
p n-1
obtained at the previous time #,,_; . To solve this system, we
use the FAC method .

restriction to Q” of the fine grid approximation

O The last step consists of the correction step

oh — orh Ok
prt - cnkpnlhpn—l/Z

on the global fine grid Q" Here ¢, 1s a normalization

constant, to make sure that the vector pf’h 1s a discrete

probability distribution (i.e. non-negative everywhere, and
adding up to one).

FAC method

The FAC method (fast adaptive composite multigrid
method) introduced in McCormick [10] is a natural
extension of the conventional multigrid methods to
problems discretized on composite grids. For simplicity,
we give here a two level algorithm for solution of equation
above. i.e.

Mk =

with Af# =[] - 67" ] and f* =ph =L

begin
S ELS = M
uth = (Mzh)‘l fzh
u =u+ 12u*" global correction

S =17 (f* = M" u”) residual restriction to local grid

oc
h _— h -1 rh
Upe = (Mloc) ﬁoc

h— h ho o h
u- =u +[h,loculoc

residual restriction to coarse grid

solution of coarse grid problem

local correction

end

solution of local fine grid problem

Figure 7 — Two-level FAC algorithm

The grid transfer operators ],;: , If , ];h , Izhh ,

I and I}, operators are defined in an obvious way. A

full multigrid algorithm (FMG) is used in our approach. At
coarsest level we replace the exact solution by BCG



method. As we have already pointed out, the FMG
approach gives us a cheap way to find the refined regions.

From the point of view of implementation, solving a 4-
dimension PDE on a composite grid numerically is quite
difficult Special data structure and dynamic memory
allocation have to be used. For the implementation of the
Zakai equation, we chose the C++ language because it
provides an efficient realization of object oriented
programming techniques. This is discussed in [2] in the
case of two dimensions. The idea is then extended for four
dimensions, and this is our main contribution.

4. BEARINGS-ONLY TRACKING

The problem of bearings-only tracking arises in a variety of
important practical applications, for example tracking
using a passive sonar. Here the target state is a four-
dimensional vector:

/Yt = (xt’yt,’uﬂvt)T

where (X,y) and (u,V) are the position and velocity

components, respectively. We consider a classical CV
model presented in [l,page 86], where after the
discretization of equation (1), we have

Xy =FX, +Ty, (6)

where ), a scalar zero mean white noise sequence with
— 2 . .
E(y,V,)=0,0, ;and the covariance matrix of process

V., =Ty, is defined by

4 3
(o8 o )
4 2
o &, &
_ _ 4 2
Q—ajrrm—a; >
ES 0 5% 0
3
0 57 0 o

So we have @ = g, I'T". The vector b(*), which is the
coefficient before axi,- 18,
b(x,y,u,v)=(u,v,0,0)
The observation process is
Yp = h(X,) tv,

with
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(x,—x2)
k k (7)

h(X,)= tan™ k—a
Y =V

and v, : N(0, Jf). The classical UKF equations ([4]) are

then applied to (7), whereas the standard Kalman filter
equations are applied to (6).

5. NUMERICAL RESULTS

In this section, we present the numerical results of a
scenario. The target-observer configuration for this case is
shown in Figure 8. The target, whose state vector is
initialized with small error (10%) in position and null
velocity, moves with an initial velocity of 0.4 m/s, and a
initial heading of —270°; its trajectory is disturbed by a
white noise acceleration of magnitude g, =0.005 m/s’. The

ownship executes a circle maneuver disturbed by a white
noise acceleration of the same magnitude; its initial
position is (0,0) and its velocity is 2 m/s with initial
heading of 9 and turn rate of 0.3 deg/s. Bearing
measurements with accuracy g =1 are received every

J=1second for an observation period of 800 seconds.

We will present the numerical results in the following
figures. Figure 8 shows the Zakai filter in target-observer
plan. Figure 9 gives the estimated target kinematics
features deduced from the state vector: relative distance
(between ownship and target), heading and course. Same
estimation is also calculated by the UKF filter with
Cartesian representation (for more details, see [8]).

Figures 10, 11 and 12 give the solutions of the Zakai
equation at instants 40 s, 160 s and 800 s. Each figure has
four subplots; at the top, we give marginal density in
(x,y) and (u,v) fields with the true position indicated by
a cross mark; at the bottom we present their corresponding
grids obtained by a projection of 4D composite grid onto
(x,y)and (u,v) plans. Of course this projection is done

for illustration purposes of our local refinement grid
method, and need not to be done in practice.
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marginal density (x, y) instant = 040 marginal density (Vx, Vy) instant = 040
or -600 2
= Ownship
Target
UKF -700 1
-0.21 Zakai
-800 0
-0.4F -900 -1
-1000 -2
_o6k 500 600 700 800 -2 -1 0 1 2

-0.8
i 80! %
_12F -90 %
=y oz 0 02 oa 06 08 1
Figure 10 — Zakai solution at t=40 s, marginal
Figure 8 — Scenario, Zakai and UKF estimated density and corresponding composite grid
trajectories

Three levels are used in this example. The coarsest grid is a
20x20x11x11regular grid so that the finest level has a
151 e resolution of 77 x 77 x 41 x 41, nearly 10 million grid points.

) In comparison, there are about 300 thousand points in our
3 e composite grid. This test takes 280 minutes with an opteron
oo — U 2.4 Ghz CPU, consuming 900 Mo Ram. To compare the
— ZAKAI . .
0 : : : : m = s time performance of our method, we have run this code
eading with a one level 77 x 77 x 41 x 41 regular grid: the CPU time
o for this problem took 134.4 hours, and needed 18 Go of
210 ; memory space.
—
— ZAKAI marginal density (x, y) instant = 160 marginal density (Vx, Vy) instant = 160
90 Il Il Il Il Il T J -600 2
0 2 4 6 8 10 12 14
Velocity -700 1
4 .
Real
K -800 0
2 — ZAKAI
g 2 -900 -1
s -1000 -2
0 1 1 1 1 1 1 | 500 600 700 800 -2 -1 0 1 2
0 2 4 6 8 10 12 14

marginal grid (x, y) instant = 160

Figure 9 — Kinematics features
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00000000000
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Figure 11 — Zakai solution at =160 s, marginal
density and corresponding composite grid



marginal density (, y) instant = 800
-600 2

marginal density (Vx, V) instant = 800

-700 1

-800 0 &
e
-900 -1

-1000 -2
500 600 700 800 -2 -1 0 1 2

marginal grid (x, y) instant = 800 marginal

00000000000

=)
00000000000
O 0000000000000 O
O O 0000000 O O O
00000

Figure 12 — Zakai solution at t=800 s, marginal
density and corresponding composite grid

6. CONCLUSION

We have implemented for the first time an algorithm to
solve the Zakai equation of a four dimensional stochastic
system with local refinement. Our approach is based upon a
local refinement method where the state space is
dynamically refined when the density is significant, and
this allows for an important time reduction.
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