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Camera pose estimation from video images is a fundamental problem in machine vision
and Augmented Reality (AR) systems. Most developed solutions are either linear for
both n points and n lines, or iterative depending on nonlinear optimization of some ge-
ometric constraints. In this paper, we first survey several existing methods and compare
their performances in an AR context. Then, we present a new linear algorithm which
is based on square fiducials localisation technique to give a closed-form solution to the
pose estimation problem, free of any initialization. We propose also an hybrid technique
which combines an iterative method, in fact the orthogonal iteration (OI) algorithm,
with our own closed form solution. An evaluation of the methods has shown that this
hybrid pose estimation technique is accurate and robust. Numerical experiments from
real data are given comparing the performances of our hybrid method with several iter-
ative techniques, and demonstrating the efficiency of our approach.

Keywords: Augmented reality, pose estimation, fiducial localization, orthogonal iteration

1. Introduction

Camera pose estimation is the problem of determining the position and orienta-

tion of an internally calibrated camera from known 3D reference points and their

images. It is essential to the so-called registration problem in an Augmented Re-

ality context. Indeed, the objects in the real and virtual world must be properly

aligned with respect to each other, which requires knowing the camera’s pose. Ac-

curate estimation of the 3D pose data will absolutely affect the accuracy and visual

performance of virtual objects in the AR space.

1
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In this paper we propose efficient real-time solutions to the camera pose es-

timation problem that can handle large camera displacements. While commercial

products, are already available for offline camera pose estimation, efficient online

registration remains an open issue because it must be fast and reliable. Many of

the real-time algorithms described in the literature still lack robustness, tend to

drift, and are prone to jitter that makes them unsuitable for applications such as

Augmented Reality3.

To efficiently solve the camera pose estimation problem, we have developed two

approaches. The first one is an analytical solution from 4 points, it is based on

square fiducials localization technique and returns a unique solution, free of any

initialization. The second developed solution is an hybrid approach that combines

the orthogonal iteration (OI) algorithm 19 with our analytical pose estimation tech-

nique. It is a real time extension of some of our previous works using OI for camera

pose recovery using fiducials 1. As we will see, the performances of the OI algo-

rithm are heavily affected by the initialization process, so it is very important that

the initialization is close to the optimum. The original OI algorithm uses a week-

perspective approximation to initialize the rotation matrix, so we propose to use

our analytical solution to initialize the OI algorithm. This combination results in

a system that does not suffer from any of the above difficulties and can deal with

real-time aspect. Experimental results demonstrate that our hybrid algorithm is

extremely efficient and converges in few iterations. It outperforms the original OI

algorithm in terms of convergence and accuracy.

The remainder of this paper is organized as follows. First, we will study related

works in camera pose estimation algorithms as well as augmented reality systems

using fiducial detection. Then, section 3 is devoted to the formulation of the cam-

era pose estimation problem and to the original OI algorithm review. Section 4

describes the developed square fiducials localization technique whereas section 5

will introduce an hybrid method composed of OI initialized using the algorithm

detailed in the previous section. Experimental results are then presented in sec-

tion 6, detailed performance analysis are given to compare our method to existing

methods. Finally, section 7 provides conclusions and suggests some directions of

our future works.

2. Related work

The camera pose computation is based on the extraction of geometric primitives

which allow to match the 2D points (extracted from images) and the 3D points

(known on the object). To deal with this problem, many approaches have been

developed these last years, they can be subdivided into two main categories: 1)

analytical methods based on a low number of points and/or lines, and 2) optimiza-

tion methods based on minimizing an error criteria. Finally, we will survey some

augmented reality localization tools based on fiducials tracking.
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2.1. Analytical methods

The analytical methods use a low number of points and have a finite set of solu-

tions. Their complexity is generally low, and when implemented their computing

time is short. The pose estimated by these methods is generally accurate. However,

the pose computation is dependent on the extraction process of the image points to

be matched with points of the 3D object. According to the quality of the acquired

image and the processing carried out, these methods can produce less accurate

results. Many analytical methods were proposed these twenty last years. Using 3

points, the problem generically has four possible solutions. Haralick et al.12 review

many old and new variants of the basic 3-points method and carefully examine

their numerical stabilities due to different orders of substitution and elimination.

Lastly, in 1992, Dementhon and Davis also proposed5 a three points based pose

estimation technique. They have shown that by using two perspective approxima-

tions: paraperspective and orthoperspective, 2D lookup tables can be built and can

be used to reduce the number of runtime floating-point operations needed to com-

pute pose estimates. If a unique solution is required, additional information must

be given, a fourth point generally suffices. But there are certain degenerate cases

for which no unique solution is possible. All these critical configurations for which

multiple distinct or coinciding (unstable) solutions occur are known. In 1981, Fis-

chler and Bolles propose several methods to resolve the pose estimation problem.

In their paper on the RANSAC method9 (RAndom SAmple Consensus), they have

shown that, knowing the coordinates of a number of 3D points and their corre-

sponding image points, it is possible to compute the pose of the camera using a

geometric closed-form technique. They also described results on the conditions un-

der which multiple solutions exist for various numbers of correspondences between

image and target, particularly for the Perspective-4-Points (P4P) problem. They

extended their solution to 4 points by taking subsets and using consistency checks

to eliminate the multiplicity for most point configurations. Horaud et al.13 devel-

oped a closed form solution on 4 points which avoids this reduction to a 3 points

solution. These closed form methods can be applied to more points by taking sub-

sets and finding common solutions to several polynomial systems, but the results

are susceptible to noise and the solutions ignore much of the redundancy in the

data. Hung et al.15 have proposed in 1985 a method for fiducial pose estimation

using 4 non-aligned and coplanar points. Quan and Lan22 propose a family of lin-

ear methods that yield a unique solution to 4- and 5-points pose determination for

generic reference points. They also extended their 5-points method to handle more

than five points. Their method does not degenerate for coplanar configurations and

even outperform the special linear algorithm for coplanar configurations in practice.

Furthermore, methods for pose estimation using line segments instead of points as

image features have also been developed. Dhome et al.7 developed algebraic solu-

tions for 3-lines algorithms. Only three edges of the object are used to estimate the

pose. A polynomial of degree 8 is then resolved and the obtained solutions sorted
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according to the validity of the edge’s configuration. Liu, et al.18 combined points

and line segments into the same pose estimation procedure.

2.2. Optimization methods

As the analytical methods are quite dependent on the quality of the acquired im-

age. The solution thus is to carry out the pose computation on a larger set of

points. However, For more than four points, closed form solutions do not exist.

So, it is necessary to formulate pose estimation as a nonlinear least-squares prob-

lem of a polynomial equation in the image observables and the pose parameters

and to solve it by nonlinear optimization algorithms, most typically, the Gauss-

Newton method. Iterative solutions are a subset of optimization methods and are

based on minimizing the error in some nonlinear geometric constraints. The pose is

computed first once, then an iterative algorithm progressively refines the estimate.

These methods allow to obtain a high accuracy of the camera localization within

its environment. However, each iteration carried out involves an additional cost in

computing execution time of the pose estimation. So, it is necessary to take into ac-

count this constraint in order to optimize the iteration number and the operations

carried out during each iteration. Kumar and Hanson17 have developed an iterative

algorithm based on constraints on image lines using an update step adapted from

Horn’s solution14 of the relative orientation problem. Dementhon and Davis6 initial-

ize their iterative scheme (named POSIT) by relaxing the camera model to scaled

orthographic. It uses at least four non coplanar points. Haralick et al.11 introduced

also an iterative pose estimation algorithm which simultaneously computes both

object pose and the depths of the observed points. Lu et al.19 reformulate the pose

estimation problem as that of minimizing an object-space collinearity error. They

combine a constraint on the world points, effectively incorporating depth, with an

optimal update step in the iteration. These iterative approaches typically suffer

from slow convergence for bad initialization, convergence to local minima and the

requirement of a large number of points for stability.

Table 2.2 summarizes the properties of the various pose estimation techniques

surveyed above, it gives some practical advice allowing to choose the appropriate

approach in a given situation.

2.3. The use of fiducials in Augmented Reality

At the same time, in augmented reality projects, coded fiducials techniques were

applied to determine feature points and estimate camera pose in real-time in a

video sequence. Amongst those projects some are using circular coded fiducials

like Cho et al. 4 or later the Intersense system 20. Such fiducial shape implies

that there are several of them stuck on an object to recover the camera pose.

That’s why the most current systems in augmented reality are using square fiducials.

This shape gives 4 points per fiducials, which is enough to compute the camera

pose relative to the fiducial even if there is only one of them. The number of
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Table 1. Summary of camera pose estimation techniques.

Techniques Rely on Failure mode Initialization Accuracy

Haralick et al.12 Linear - 3 points Noisy data + No Can jitter
DeMenthon and Davis5 occlusion

Horaud et al.13 Linear - 4 and 5 Noisy data + No Can jitter
Quan and Lan 22 points occlusion

Fischler and Bolles9 Linear - 4 points Robust to noise No Accurate
and more and occlusion

Dhome et al.7 Linear - 3 edges Noisy data + No Can jitter
occlusion

Kumar and Hanson17 Iterative - 3 lines Robust to noise Yes Highly accurate
and occlusion

Dementhon and Davis6 Iterative - 4 non Fast motion + No Accurate
coplanar points noisy data

Haralick et al.11 Iterative - 3 points Fast motion + Yes Highly accurate
Lu et al.19 robust to noise

systems using such fiducials have increased in the past ten years as well as interest

is growing in using them. We can cite the Matrix system 23 which became later

the Cybercode system 24. More and more augmented reality projects are using the

ARToolkit library 16 10, which is working with the same kind of principle and which

is available freely to public. To these systems, we must add some that were developed

by several laboratories as we can conclude from reading Zhang 25 comparative study

of 4 different systems. Recently some work has been performed to increase the

robustness of fiducial recognition and code extraction 21 8. Some of these fiducials

are shown in figure 1.

(a) InterSense (b) Cybercode (c) ARToolkit

Fig. 1. Some examples of fiducials frequently used in augmented reality systems

This illustrates the potential interest of fiducials in augmented reality appli-

cations. We will now study in detail the pose estimation problem related to the

extraction of feature points from ARToolkit-like markers. First, we will study a
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generic iterative algorithm which the OI. We will then expose an analytic pose esti-

mation method based on particular geometrical constraints of the square fiducials

and then study a variation combining the two previous methods.

3. Formulation of the pose estimation problem

Given a calibrated camera and correspondences between 3D reference points and

2D points found in the image, the goal in pose determination is to find the rotation

and translation matrices which map the world coordinate system to the camera

coordinate system. In this paper we assume a perspective projection model. Let

pi = (xi, yi, zi)
t, i = 1, ..., n, n ≥ 3 a set of 3D non-collinear reference points defined

in an object-centered reference frame, the corresponding camera-space coordinates

qi = (x,
i, y

,
i, z

,
i) are given by :

qi = Rpi + t (1)

where R = (rt
1, r

t
2, r

t
3)

t and t = (tx, ty, tz)
t are a rotation matrix and a translation

vector, respectively.

Let the image point vi = (ui, vi, 1)t be the projection of pi on the normalized

plane. Using the camera pinhole model, the relationship between vi and pi is given

by :

ui =
rt
1pi + tx

rt
3pi + tz

vi =
rt
2pi + ty

rt
3pi + tz

(2)

or

vi =
1

rt
3pi + tz

(Rpi + t) (3)

which is known as the collinearity equation. This equation is used in a different

manner according to the desired approach to be implemented.

3.1. For linear solutions

Each pair of correspondences pi → vi and pj → vj gives a constraint on the

unknown camera-point distances di = ‖pi − c‖ (cf. Fig. 1) :

dij
2 = di

2 + dj
2 − 2didjcosθij (4)

where dij =
∥

∥pi − pj

∥

∥ is the known inter-point distance between the i-th and

j-th reference points and θij is the 3D viewing angle subtended at the camera

center by the i-th and j-th points. The cosines of this angle is directly computed

from the image points and the calibration matrix of the internal parameters of the

camera22. Using the points geometric constraints for 3 or 4 points allows to obtain

a polynomial system for the unknown distances di. Linear algebra is often used to

resolve this system in closed form2,22. The recovered camera-point distances di are

used to estimate the coordinates of the 3D reference points in a camera-centered 3D

frame. To find the camera pose, the rigid 3D motion that best aligns these points

with their known world-frame coordinates is then estimated.
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Pi

Pj 

vi 

vj 

c 

dij

Image plane

Fig. 2. Geometry of camera pose from points correspondences

3.2. For solutions using optimization techniques

The pose estimation problem is to develop an algorithm for finding the rigid trans-

form (R, t) that minimizes some form of accumulation of the errors, generally the

summation of squared errors of the collinearity equations (see Fig. 2). It is formu-

lated as the problem of optimizing the following objective function :

n
∑

i=1

[

(

ûi −
rt
1pi + tx

rt
3pi + tz

)2

+

(

v̂i −
rt
2pi + ty

rt
3pi + tz

)2
]

(5)

Given observed image points v̂i(ûi, v̂i, 1)t. The minimization is over image-space

collinearity. To resolve this problem, two commonly optimization algorithms are

used: the Gauss-Newton method and the Levenberg-Marquardt method.

4. Analytical square fiducials pose estimation

The aim is to recover the camera pose relative to a square fiducial. We will use the

geometry constraints of this marker to compute its localization.

In this section, we will assume that the camera is calibrated (its intrinsic param-

eters are known). At the same time, we assume that the fiducial is already detected

and the matching of 2D/3D points is already done.

First we will introduce some notations, then detail our algorithm and describe

how we will be able to use it with orthogonal iteration.

4.1. Notations

We will use three different frame coordinates. The first one is the world space coor-

dinates. They’re computed relative to the fiducial. The center of the fiducial is the
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origin of world space coordinates. The second one is the camera space coordinates.

The last one is the image space coordinates. The coordinates of a 3D point M are

written (X, Y, Z) in world coordinates, (x, y, z) in camera space and (u, v) are the

coordinates of the corresponding point in the image plane.

z

x

y

Ca

Camera

optical

center

Y

O

A

B

C

D

Im
age plane

v

u

Z

X

Fig. 3. Notations

The four corners of the fiducials are called A,B, C and D as shown in Fig. 3.

4.1.1. Pin-hole camera model

The pin-hole camera model is a widely spread model for camera calibration. In our

case, we will assume that the optical distortion are already corrected. In its simplest

formulation, the pin-hole model, when we’re writing the relations in camera space

are linking an image point m with image coordinates (u, v) to a 3D point M of

coordinates (X, Y, Z) in world space by the following relations :

X =
Z

fku

(u − u0) Y =
Z

fkv

(v − v0) (6)

In our method, we will first apply an arbitrary depth estimation of our points

A,B, C and D in camera space using geometrical constraints of our fiducial. Then

we will compute the real depth using metric constraints.

4.1.2. Applying geometrical constraints

Since our fiducial has a square geometry, we can write the following property :

−−→
AB =

−−→
DC ⇔





XB − XA

YB − YA

ZB − ZA



 =





XC − XD

YC − YD

ZC − ZD
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We can multiply the two first lines of the equation by f (the camera focal length

parameter) and apply 6 :






ZB

ku
(uB − u0) −

ZA

ku
(uA − u0)

ZB

kv
(vB − v0) −

ZA

kv
(vA − v0)

ZB − ZA






=







ZC

ku
(uC − u0) −

ZD

ku
(uD − u0)

ZC

kv
(vC − v0) −

ZD

kv
(vD − v0)

ZC − ZD







(7)

If we look at the first line, we notice we can simplify it and rewrite it like this :

uBZB − uAZA − u0(ZB − ZA) =

uCZC − uDZD − u0(ZC − ZD)
(8)

Since ZB − ZA = ZC − ZD, we can simplify again this line. We can do the same

for the second line and then we obtain :




uBZB − uAZA

vBZB − vAZA

ZB − ZA



 =





uCZC − uDZD

vCZC − vDZD

ZC − ZD



 (9)

4.1.3. Arbitrary relative depth estimation

To differentiate the arbitrary depth to the real ones, we will call them

Z ′

A, Z ′

B , Z ′

C and Z ′

D. In the first move, we will arbitrarily set Z ′

A to 1, so that

we will be able to compute Z ′

B , Z ′

C et Z ′

D, we will then have to solve the following

system :




uB −uC uD

vB −vC vD

−1 1 −1









Z ′

B

Z ′

C

Z ′

D



 =





vA

uA

−1



 (10)

We will then obtain :

Z ′

B =
1

δ
[uA(vC − vD)+vA(uD − uC)−(uCvD − uDvC)]

Z ′

C =
1

δ
[uA(vB − vD)+vA(uD − uB)+(uDvB − uBvD)]

Z ′

D =
1

δ
[uA(vB − vC)+vA(uC − uB)−(uBvC − uCvB)]

δ=(uCvD−vCuD) + (uDvB−uBvD) + (uBvC−uCvB)

4.1.4. Real depth estimation

The arbitrary depths we obtained are related to the real depth by a scale factor,

therefore we note r1 as the ratio ZA/ZC = Z ′

A/Z ′

C and r2 the ratio ZB/ZD =

Z ′

B/Z ′

D. Since we can recover the arbitrary depth, we know the values of the ratios.
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We will now express some equations related to r1. The same principle could be

applied to r2. Using equations 6 we can write :

XA = ZA

αu
(uA − u0) YA = ZA

αv
(vA − v0)

XC = ZC

αu
(uC − u0) YC = ZC

αv
(vC − v0)

(11)

Where αu = fku and αv = fkv. We know the value of ‖
−→
AC‖ since the metric

constraints of our fiducial is known. Using this constraint and the value of r1, we

can express the value of ZA :

ZA =
−‖

−→
AC‖

√

(r1 − 1)2 + (f(r1))2 + (g(r1))2
(12)

with

f(r1) =
r1(uC − u0) − (uA − u0)

αu

(13)

g(r1) =
r1(vC − v0) − (vA − v0)

αv

(14)

Once ZA is computed, we can obtain ZC using r1. We can perform the same

process to obtain ZB and ZD values. By using 11, we can determine the missing

coordinates of points A,B, C and D.

4.1.5. Pose estimation

When the real depth are known, we can determine the translation and the rotation

associated to our fiducial in camera space. The fiducial origin is placed in its center

which coordinates are computed using those of A,B, C and D. The fiducial’s center

coordinates are also the translation between the camera and the fiducial.

We can then compute a rotation matrix (we will note it R3×3) its lines will be

noted r1∗, r2∗, r3∗ and will be equal to the following :

r1∗ =

−−→
AB

‖
−−→
AB‖

r2∗ =

−→
AC

‖
−→
AC‖

r3∗ = r1∗ ∧ r2∗ (15)

The camera pose is obtained by inverting the found transformation. Once the

pose is known, we can combine this algorithm with OI by feeding the initialization

step using the newly computed pose. We will now see how it benefits to the OI

algorithm.

5. Hybrid Solution for pose estimation

In this section we propose an hybrid approach for camera pose estimation that

combines the orthogonal iteration (OI) algorithm19 with our analytical pose esti-

mation technique described above. We propose to use the (OI) for its accuracy,

global convergence and rapidity. Another strong point is it is taking into account

the structure of the rotation parameter which is not achieved when using standard

optimization method such as Levenberg-Marquart or Gauss-Newton.
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Image Plane
Normalized

frame
reference
Camera

X’

Z’

Y’

reference

R,t

X

Y

Z

Image sparse error

Object
sparse
error

p(x,y,z)

m(u,v)

Object

frame

Fig. 4. The reference frames

5.1. The OI algorithm overview

The starting point for the algorithm is to state the pose estimation problem using

the following object-space collinearity error vector (cf. Fig. 4) :

ei =
(

I − V̂i

)

(Rpi + t) (16)

where V̂i is the observed line-of-sight projection matrix defined as :

V̂i =
v̂iv̂

t
i

v̂
t
iv̂i

(17)

The algorithm minimize the sum of the squared error

E(R, t) =

n
∑

i=1

‖ei‖
2

=

n
∑

i=1

∥

∥

∥

(

I − V̂i

)

(Rpi + t)
∥

∥

∥

2

(18)

over R and t. Given a fixed rotation R, the optimal value of t can be computed in

closed form as :

t(R) =
1

n



I −
1

n

∑

j

V̂j





−1
∑

j

(

V̂j − I
)

Rpj (19)

Thus, equation (18) can be written :

E(R) =
n

∑

i=1

‖Rpi + t(R) − qi(R)‖
2

(20)

The matrix R can be computed iteratively as follows : First, assume that the kth

estimate of R is R(k), t(k) = t
(

R(k)
)

, and q
(k)
i = R(k)pi + t(k). The next estimate,



October 12, 2007 9:53 WSPC/INSTRUCTION FILE ijig

12 J.-Y. Didier, F. Ababsa, M. Mallem

R(k+1), is determined by solving the following classical absolute orientation problem
14 :

R(k+1) = arg minR

n
∑

i=1

∥

∥

∥
Rpi + t − V̂iq

(k)
i

∥

∥

∥

2

(21)

The next estimate of translation is then computed using (19).

t(k+1) = t
(

R(k+1)
)

(22)

The process is repeated. A solution R∗ to the pose estimation problem using the

(OI) algorithm is defined to be a fixed point to (21), that is, R∗ satisfies :

R∗ = arg minR

n
∑

i=1

∥

∥

∥
Rpi + t − V̂i (R∗pi + t(R∗))

∥

∥

∥

2

(23)

5.2. Initialization of the OI algorithm

The OI algorithm is initiated using a weak perspective approximation. Weak per-

spective assumes that the object points lie in a plane parallel to the image plane

passing through the origin of the object frame 13. In this case, the image points

vi are treated as the first hypothesized scene points. This leads to an absolute ori-

entation problem between the set of 3D reference points pi and the set of image

points vi considered as coplanar 3D points. This initial absolute orientation prob-

lem allows to compute the initial rotation matrix R(0) and thus to start the (OI)

algorithm.

The performances of the OI algorithm are heavily affected by the initialization

process, so it is very important that the initialization is close to the optimum. We

propose to use our square fiducials localization method to compute a good initial

guess better than given by the weak perspective approximation. This will consid-

erably improve the pose solution accuracy and computing time as demonstrated in

section 6.

6. Experimental results

In this section, we will compare the results given by OI method, our pose estima-

tion method for square fiducials, the hybrid method using OI (we will call it later

Customized OI or C-OI) and initialized using our analytical method and a ground

truth : the least mean squares (LMS) algorithm for pose estimation. The three first

methods are using the four corners of a detected fiducial (Fig. 5) whereas the LMS

needs more points. To use this last one, we had to detect internal corners of the

fiducial.

We will compare the results given by the three methods according several criteria

:

• Computation time,
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Image size 736×571

Projection parameters Distortion parameters

Scale factors Radial distortion coefficients

αu 706.1 k1 -0.2279

αv 731.1 k2 0.1479

Optical center projection Tangential distortion coefficients

u0 388.0 p1 -0.0007985

v0 269.6 p2 0.0006245

Table 2. Intrinsic parameters of the Sony XC-555P used in experiments.

• Reconstruction error, i.e. the error in pixels between reprojection on the

image of the fiducial model,

• Generalization error, i.e. the error in pixels when we reproject other objects

on the images according to the pose computed using only one fiducial,

• Distance estimation error, i.e. the metric error we measure between the

estimated pose and the actual one.

Each study is performed by computing the pose of only one fiducial, placing us

in the worst case scenario of fiducials detection.

The test-bench we’re using for experiments is composed of one computer PIII

1.1 GHz, a camera Sony XC-555P, a Matrox Meteor II framegrabber. The whole

is orchestrated by a linux operating system. The camera is calibrated using Zhang

method 26. Intrinsic parameters are displayed in table 2.

6.1. First series of results

For the first series of experiments, we hold the camera by hand and we’re freely

moving around a set of two square fiducials of 6cm side-length. One is needed to

compute the camera pose and the reconstruction error. During the pose estimation,

the computation time is also determined. The projection of the second fiducial on

the image is performed to determine the generalization error. It leads to the figures

given in table 3. The best values for each criterion of comparison is highlighted in

green whereas the worst are the red ones. The angular error given is extrapolated

from the results given by generalization error study.

If we have a first look on these values, one can notice that our direct pose esti-

mation algorithm is the fastest as expected since it is a specific method developed

for square fiducials. At the same time, the LMS is quite slow. This is partly due

to the additional corners detection. The reconstruction errors are roughly the same

for each algorithm and looks like in figure 5 whereas it drastically changes for gen-

eralization error. The customized-OI method seems to have the best performances

on generalization error contrary to the OI algorithm with its standard initialization

which has one of the worst performances. This is mainly due to the fact that OI
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Algorithm Direct OI C-OI LMS

Computation time

Mean (µs) 20 153 111 13129

Standard deviation 3.10 12.7 17.6 3664

Reconstruction error

Mean (pixel) 0.48 0.50 0.42 2.98

Standard deviation 0.38 0.44 0.30 1.83

Generalization error

Mean (pixel) 9.52 16.6 8.90 14.1

Standard deviation 8.85 26.6 8.03 16.24

Angular error

Mean angular error (degrees) 1.63 2.82 1.52 2.76

Number of computed poses

Number of computed poses 6541 6362 6571 4410

Table 3. Raw results on the different experiments performed.

Fig. 5. Registration sample on a coded fiducial

is not designed for solving the camera pose problem using coplanar points as it is

the case in our application. It is a degenerate case where OI can converge to two

different solutions. If the initialization of the pose estimation is not close enough

to the real solution then OI will be able to converge to the wrong solution, hence

having poor results for generalization error.

If we plot the generalization error according to distance separating two fiducials,
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we will have the curve shown in figure 6. It shows that, for some series, OI has per-

formed a wrong pose estimation, resulting in a jittering curve. Mean performances

of our analytical algorithm and customized-OI are basically not very different un-

less we separate the two fiducials by a distance of seven times the square side size

of each fiducial. This is mainly due to the fact that our direct algorithm doesn’t

return a real rotation matrix but an approximation of it, whereas OI is intended to

optimize such a matrix.
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Fig. 6. Generalization error according to distance separating fiducials

6.2. Distance estimation error

For this experiment, we changed the square fiducial size (20cm side-length). The

camera was mounted on a XY-axes robot realizing the setup from Fig. 7. The robot

coordinate frame and the camera frame were calibrated. The robot positions taken

from a given trajectory (Fig. 8 are then giving the actual camera pose we can

compare with our pose estimation algorithms. Fig. 9 is a scatter plot of the pose

estimations we obtained using the different methods. One can notice that the Direct

and OI methods are having an error of distance estimation around two percents

whereas the LMS method has a rapidly increasing distance error estimation.

Since the scatter plot is not easily readable, we separated data into ten classes

(Fig. 9(c)) to elaborate a simplified graph (Fig. 9(b)). The middle of each bar is the

mean value for the distance evaluation in a given class and the two extremities are
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Fig. 7. Robot test-bench for distance estimation error

showing the standard deviation around the computed mean. It particularly shows

that the pose estimations coming from our analytical method is more sensible to

noise than customized-OI or OI itself.

6.3. Effects of OI customization

By studying the provided results, the customized OI has several strong points gen-

uine OI and our direct analytical method do not have. First of all, C-OI is more

stable than the two other algorithms, providing a more accurate pose estimation

with an increase of the accuracy for objects far from the vertices of the fiducials

used to estimate the camera pose.

The second one is that the C-OI is compensating some of the side effects of

OI, that is to say the initialization problem as well as the computation time. The

provided initialization is close enough to the pose estimation we want to reach so

that the OI converge about 30 percents faster to the right solution.

However, even if the C-OI has some interesting features, the computation time

cost to increase accuracy is five times bigger than the basic analytical method.
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Coded fiducial

X

Y

Camera trajectory

Camera

in XY plane

Fig. 8. Camera trajectory in the XY robot plane

7. Conclusion

In this paper, we proposed the use of a square fiducials pose estimation to compute

a good initial guess for the OI method. According to evaluations performed on 4

different algorithms, this customized-OI is presenting the following strong points :

• the distance evaluation accuracy has less than two percents of relative error,

• the rotation estimation is accurate and optimized using the OI algorithm,

• its computation speed is quite a good compromise between speed and ac-

curacy, the pose being computed in about 100 µs,

• this method is more stable than all compared method.

This study will help us to establish guidelines in using fiducials in augmented

reality projects according to the requirements of applications in terms of tracking,

robustness and accuracy in overlaying virtual images on real images as well as

accuracy of localization. Some of them would answer to questions such as how

many markers should we place, where and what size should they have ?

Further area of investigation will be towards the improvement of the robustness

of our square fiducial localization algorithm, especially in case of occlusions of a part

of the fiducial. We will also try to combine this method with markerless algorithms

to bypass the drawbacks of both family of methods.
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(a) Scatter plot of the measured distance error for each computed pose
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(b) Means and standard deviations for 10 classes subdividing the point set

Classes [0.7,0.8[ [0.8,0.9[ [0.9,1.0[ [1.0,1.1[ [1.1,1.2[ [1.2,1.3[

Population 123 143 157 184 206 229

Classes [1.3,1.4[ [1.4,1.5[ [1.5,1.6[ [1.6,1.7[ Outliers Total

Population 235 248 258 133 41 1957
(c) Classes and their population.

Fig. 9. Distance estimation error, 1957 pose estimations
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