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ABSTRACT The method will be developed in Sectifn 2.
This paper proposes an original approach to cluster multi- Furthermore, we address the problem of designing a mea-
component data sets with an estimation of the number ofure of similarity between two data points. Instead of us-
clusters. From the construction of a minimal spanning treéng the popular Euclidean distance, we propose to define the
with Prim’s algorithm and the assumption that the verticesimilarity as a measure of spectral variability between two
are approximately distributed according to a Poissonidistr probability density functions, by the use of informatiodal
bution, the number of clusters is estimated by thresholdingergences. New metrics and motivation for resorting to in-
the Prim’s trajectory. The corresponding cluster censait  formation based similarity measures will be investigated i
then computed in order to initialize the Generalized Lloy-Section[p. In Sectiof] 4, we present some unsupervised clus-
d’s algorithm, also known alk-means, which allows to cir- tering results obtained in the frame of two applicationse: th
cumvent initialization problems. Metrics used for measgri taxonomic classification of asteroids, and the classiboati
similarity between multi-dimensional data points are lase of objects in a multi-spectral satellite image.
on symmetrical divergences. The use of these informational
divergences together with the proposed method lead to bet2, AUTOMATIC INITIALIZATION OF POPULAR
ter results than some other clustering methods in the frame- CLUSTERING METHODS
work of astrophysical data processing. An application &f th . ) . _
method in the multi-spectral imagery domain with a satellit 221 Minimum Spanning Treeand Prim’sTrajectory
view of Paris is also presented. LetG = (V,E) be an undirected graph wheves the set
of N vertices ancE denotes the set of edges. The length of
an edge measures the similarity between two vertices, and
depends on the choice of the metric. The graphs considered
1. INTRODUCTION herein aretrees, that is, they are connectedg every ver-
tex is connected to at least one other vertex) and acyiahic (
there is no loop).
A spanning tree oG is a treeT passing through every

Consider a se¥ of N data points ifR%, which we wish
to partition intoK classes, without prior informationé. this

is an unsupervised classification). | )
. . vertex ofG. The power-weighted length of the tr&eis the
Each data point (actually a vector k) can be consid sum of all edge lengths raised to a powet (0,L), denoted

ered as a vertex in a graph. Our study restricts to acyclic tg=_" . v o ; .
tally connected graphs of minimal length : the minimal span(fby : YecT |€]Y. The minimal spanning tree (MST) is the tree

ning tree (MST). An easy way to segment the graph is to re\_/vh|ch has the minimal length over all spanning trees
alize some cuts in the connection graph. The segmentation of PN — mi v
the graph irK clusters will lead to remove th¢ — 1 largest (V)= mTlne; €]

connections. This method, based on single linkage cluster-

ing, is known to be unstable, mainly when the data contain\mqng algorithms allowing to build a MST, one of the most
outliers, or possibly when they are corrupted by noise. 45131 is Prim's algorithm{[30], the complexity of which is
In this communication, we propose to improve the popp(NogN). The Prim’s algorithm connects to the partially
ular generalized Lloyd's algorithm (referred tolésmeans)  connected graph at iteratidrthe closest non connected ver-
by an automatic initialization of both the number of Clus- ey (in the sense of a given chosen metric). The graph which
ters and corresponding centroids. Various methods have beg; jetermined is acyclic, uniquéed. independent of the ini-

proposed to estimate the number of clusters present in @ noint of the construction of the graph) and of minimal
datasetge.g. using statistical criteria like AIC, BIC, MDL, IengF;h. graph)

Tibshirani’'s Gap, or indices such as Calinski & Harabasz’s
index. Because of space limitation, these criteria will Iz d Denoteg(i) = |a/, the length of a new edge built at iter-
cussed in a full-length version of the paper. Actually, quw a ationi; [g(i),i = 1...N] is referred to a®rim's trajectory.
proach relies upon Prim’s algorithm for constructing MST’s Functiong allows us to “unfold” the probability density func-
Itis proposed to record each iteration characteristics@ig  tion of points inL dimensions into @ne-dimensional func-
which vertex is connected, and what is the length of the newion. The latter exhibits some valleys in the neighborhafds
edge), in order to get aone-dimensional unfolded repre- high density : a set of close points is indeed connected thank
sentation of the underlying data probability density fimet  to a sequence of successive iterations yielding short setgme
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kS . FiG. 2 — Left : C¢ denotes the contour of the support where

i i “% connected vertices are found. The neighborhood which is
s 0 s s 0 s considered for finding a vertex that could be connected to
<6 v; is shown. In the limit of largéN, this latter neighborhood

4 (T ‘ | ‘U is the half sphere laying on the tangent (hyper)plan€gto

l i (right)

1l
fl “ is too small to match with the null hypothesis.
‘ . oL Let v; be the vertex connected at iterationConsider
b o 0 i 0 = e an L-dimensional space and a neighborhoodjdfiereafter
notedB,,, ¢),with characteristic length. We suppose that the

FiG. 1 — Typical example : (top left) construction of a MST, Vertices are approximately distributed according to aswis

(bottom) Prim’s trajectory and threshold, (top right) extr ~ distribution, with rate\ g\, This is justified, since the latter is
tion of the clusters the limiting distribution of the binomial. Botd andBy,

will be identified later.
. : . We assume that under the null hypothe$isthe density
(Fig. ﬂ)' The detection of valleys in the curve hence COIM€4Hoes not exhibit any mode : the process is homogeneous over
sponds to the detection of clusters. It allows to identify th its entire support”. Hence we can assess thais constant
main modes of the probability density function, each mode o The probability that at least one vertex is found in

being associated with a cluster. h iahborh A
The choice of the threshold to be appliedg@) is an the neighborhooBy, ) is given by

important parameter, since it determines the main modes of Ri(e)=1— et

the probability density function. I{][8], Michedt al. have v

proposed to give the same cluster label to all vertices corin the context of the Prim construction of the M$,,(€) can

nected sequentially, as long as the functigi) stays below also be considered as the probability to construct an edge of

the threshold. An empirical solution is proposed fh [8] forlength less tham when connecting a new vertex  Con-

setting the threshold. In this paper, the number of modes argidering the asymptotic case whe\ds large, the neighbor-

associated centroids are required in our problem, in oaler thood which must be considered here is the half sphere of

initialize a classical algorithme(g. K-means). One possibil- radiuse, as illustrated on the figuf¢ 2.

ity is to arbitrarily set the threshold to the standard devia  LetR ¢ be the probability that exactlyvertices are con-

tion of the connections = std{e }. Because the detection nected with edge lengths less thabut the next edge built is

of modes (or high density regions) is solely based upon findlrger thare :

ing the centroid of vertices gathered into a valley of Prim’s N .

trajectory, the estimation of the threshold does not need to Re = (17 e e ) e ¢

be very precise. For the sake of simplicity, the threshokl ha

been chosen to be constant over the entire Prim’s trajgctor§puppose that at lealg successive connections of length less

but it could vary from one cluster to another. than the threshold valugare required for considering that a
The question remains to determine the critical numbegluster is detected. Undety, false alarm in the mode detec-

of points which could be considered as a cluster. Actuallyiion will arise for any occurrence of more thkgisuccessive

for a given realization, some vertices can be gathered onto@dnnections of length less than Therefore, the expression

small neighborhood, even in the case where the theoreticaf the false alarm probability is given by

density does not exhibit any local maximum. Alternatively,

) > ko
small clusters may correspond to noise effects and thus may Pra(ko, €) = Re = (17 e’ EL) (1)
not be relevant. Thus, the number of modes tends to be over- K=
estimated.

In the case wherd.-dimensional Euclidean spaces are
We propose to estimate automatically the minimum numconsidered, the volume of the half sphere of radsus
ber of points above which one decides that a cluster is deB_ () = 1C_e", whereC_ stands for the volume of the unit

tected as a function of the threshold applied on the Prim’% P : S~ 2om/?

. X P X : all in dimensiorL : C_. = £
trajectory. This estimation is realized in the frameworkaof LTI
Neyman-Pearson approach. For each new connected vertex, |, tnis framework, undeklo, consider the radiug, of a
a binary hypothesis test is performed. Under the null hypothgpere covering the set of all vertice’s s identified by the
esis, last connected vertices do not belong to some ’modget of equations
or cluster, and they are spread all over the neighborhood ac-
cording to a Poisson distribution (see below). Under the al- { v = CLe(%

_~ N
ternative, the length of the edge that connects the newwerte A 55 =N = A=C7 (2)



5o Minimum number of points in a detected cluster or to a reflectance spectrum in astrophysics. The most pop-

as| / ular distance used to characterize similarities between tw
4o/ / points is the Euclidean distance. Though this metric enjoys
ol usefull properties (symmetry, non-negativity, triangula
-~ :z equality), it turns out not to be the perfect measure of dista
26k that one can think of to calculate similarities. This dis&n
15 P indeed has the following drawbacks : (i) it increases when
10/ e the dimension of the data.§. number of wavelengths) in-
o creases; (ii) it does not handle cases when spectra contain
% 0.005 oot 0015 0.02 missing values at some wavelengths, (iii) it gives esskytia
a spatial distance, and does not take into account the\positi
Average size of false alarm cluster V{0, 112 ity of data. For these reasons, following the works of Chang
45 ‘ ‘ ] 1 , we prefer information divergences as measures of simi-
¢ larity.
3'2 )/ ) First, at a given wavelength, each data point is associ-
Qs /? / e ated with a (positive) normalized quantity;:= x; / ZJ'L:lXJ-.
[ J S - 1 Let X = {%,...,%_ } andY be defined accordingl¥ (resp.
/a4 il Y) can be interpreted as the probability distribution thagia c
ol / AP " | tain amount of information has been captured (measured) at
= . . . I the wavelengthi;.
& Next, our goal is now to measure the similarity between

these two probability density functions. Using the popular
FIG. 3 — Upper plot :kg = (&) for Pea = 0.05; Lower symmetrized KuIIback—LeibIerdivergencﬂ: [5]leads to :
plot : Average size of false alarm detecteczj cluster from .
sets of uniformly distributed vertices ovfd, 1)<, andN = L X
128 256,512,1024 vertices respectively. Theoretical curve dk (X|]Y) = _Z(Xi *yi)l()g}?i (3)
(red) and numerical simulation (blue). =

It corresponds to the relative entropy¥fwvith respect toX.
This information divergence is widely used in Information

N Theory, and is strongly related to the Shannon theory (see

Pra(ko.€) = (1-e %= %) eg. [H).
Alternatively, the symmetrized Rényi divergence of order

This formula allows to determine the relationship betweerf (0 < a < 1) can similarly be used as a spectral measure :
ko (minimum number of vertices that form a cluster) and the
threshold value in the framework of a Neyman-Pearson ap-

1 L gl L gl
proach for cluster detection. Though these calculationewe  da(X[[Y) = —— ('092)(‘0{3“ T+ Iongyi"x.- !
derived under some rough simplifying assumptions, the ob- = = )

tained results are close to what is obtained by numerical Smbroperties and advantages of the Réaydivergence have
ulations, as illustrated in Figuf¢ 3 een detailed by Heret al. [[j]. Note that wherx tends to
Though the next sections will introduce the usefulness of "4 a-divergence [{4) converges to the Kullback-Leibler
informational divergences for the clustering problems] an di,vergence E|3) Whem = 1/2, the a-divergence matches
consequently formulate the Prim’s trajectory constructio (\%ith the Hellinger affinityd, ,»(X||Y) or Hellinger distance

some evidently non-Euclidean space, the previous resul hich is often used to assess how close a probability den-

will still be applied as approximations. So far, we have nOgj, is g 4 reference one. As the Bayes optimal exponential
evidence but the quality of our results for accepting thgse a

mati This will be th tter of a fut K rate of decay of the decision error in a binary test’'(s this
proximations. This will be the matter of a future work. spectrum almost identical to this other one ?") involves the

a-divergence of order /2 [[f], only the valuea = 1/2 will
be considered in the following.

As already pointed out, the distance measure between These metrics have been used to determine similarity be-
points plays a key role to characterize their similarity i+d tween points in order to form the MST. In the clustering part
similarity. In this paper, the physical data that are com@d  of our algorithm, we use thi€-means algorithm (minimiza-
are non-negative (they are homogeneous to a spectral me#n of the squared error function between the points and the
sure), and may therefore be easily understood as behavirgntroids). This classical partitioning algorithm canodte
like probability densities, up to some scale factor. adapted to match the metric used in the construction of the

Let X = {xq,...,x.} andY = {y1,...,y.} two feature tree [1]. Nevertheless, in our approach, we have only fatuse
vectors,e.g. corresponding to a pixel in the imagery domainour interest on the initialization d¢-means.

Finally, we get from equation§| (1) ar{d (2)

2.2 Choice of metrics

1The average size of a false alarm cluster can be shown (thidbevi ,
published elsewhere) to be expressed as : 3. IMPLEM ENTQE'II'(S)gEEAMIiT SFOR LARGE

—oainh( SN L . . .
<k>*25'”h<7 7E > Suppose that the pairwise distance or affinity between
vertices is known. The construction of an MST requires to



sort the lengths of all possible edges. This operation requi proposed on this surveﬂlZ], we kept only spectra which do
Comp.sort = O(Nlog(N)) logical operationse€g. by using  not contain missing values ; hence the survey reduces to 1329
the “quick-sort” algorithm). Thus the overall computat@bn asteroids spectra.

cost is mostly due to the computation of all the distances. A clusterC will be associated with the taxonomic class
This becomes prohibitive for large datasets, since it wouldax (defined by Bus and Binzel) which has the largest over-
lead to a computational burden 6bmp.dist = O(LN?/2)  lapp withC. Let us define some variables ¢ represents

flops. the cardinal ofC, .#7ax the cardinal ofTax and .A{er the
This is avoided by using a pre-conditionning data drivencardinal of the intersection & andTax.
hierarchical classification tree, which could be learnednfr A clustering validity index is defined a$core =

a small randomly chosen subsetRtlatZ. The latter clas- e /-#7ax. Score characterizes the ratio of asteroids be-
sification tree allows to identify neighborhoods of each verlonging to a taxonomic class and that are correctly labeled.
tex by comparing the vertex coordinates along each ot the

dimensions to sets of thresholds. The size of the neighbor- Clustering Methods \ Score

H i Nearest Neighbor MST (Euclidean) + K-means | 815/1329 = 61,32%
hO.Od can be set up in such a Way that in the average, each Nearest Neighbor MST (Kullback-Leibler) + K-means976/1329 = 73,44%
neighborhood counts aroumd vertices. Consequently, the Nearest Neighbor MST (Rényi) + K-means _ | 972/1329 = 73,14%
number of pairwise distances that need to be evaluated is of Spectral Clustering [9] l;L 878/1329 = 66,06%
h d sz 2 Thi lgorithm will be di din an Spectral Clustering (Dual Rooted Hitting Time) 6] 913/1329 = 6§69 %
the order ofM#/2. This algo € discussed In al K-Nearest Neighbor [12] 777/1329 = 58 46 %
extended version of this paper, and leads to a maximal com- K-means (randomly initialized) 773/1329 = 58,16%
putational burden expressed Bpmp.dis = O(NLM?/2) _ _
flops andComp.sort = O(NMlogM). Assuming thatM is TAB. 1 — Synthesis of results obtained on SMASSII

set such tham? < N, the computational load is thus signif-
icantly lowered. In the next sections, construction of MST
using this algorithm will be referred to as ‘Nearest-Neighb
MST".

From the tabld]1, we see that properly initialized K-
means used simultaneously with informational divergence
based affinity measures outperforms previously proposed ap
proaches.

4. RESULTS
The first application deals with the taxonomic classifica*2 M ulti-spectral image of Paris

tion of asteroids, by using reflectance measures at differen In this experiment, 4 (512 512) images of the same
wavelengths ; the second application concerns the segmenttene are available ; each image is recorded from a device

tion of a multi-spectral image of Paris surroundings. operating at a different wavelength (more precisely, adoun
a different wavelength). The affinity measure is based upon
4.1 Astrophysical data the Kullback-Leibler divergence between the (4-pointgcsp

. . tra associated to each pixel. Image registration problems a
Here we report the results obtained on astrophysical datd o+ t5ckled here, and it is supposed that the images are per-

by comparing several clustering methods. Different simila gy registered. Figurg 4 illustrates this. The propcaigo-

ity measu:jes have begn used for constructing Ple S trlaject rithm (Prim based initializing of K-means clustering meiho
ries. In order to provide some comparisons with an altérngg tested on this multi-spectral image, where each vertex is
tive existing method, clustering results obtained withshe nothing but a 4-points spectrum. For avoiding to deal with
calledspectral clustering [fL1] approach are given. The spec- 57 2 vertices, the Nearest Neighbor MST algorithm depicted
tral clustering algorithm used is that of Ngal. [B] based on in section 3 is applied to an image which has been sub-

an eigen-decomposition of the normalized Laplacian of th | £ f4. Fi h h i .
graph. The affinity which is considered in the latter case re%amp ed by a factor of 4. |guﬂa 5 shows the obtained re

lies upon a new metric introduced recently by Grishdta .

[F], which uses hitting time of Prim’s trajectories rooted a W ra i
each vertex. Some tests have been realized with symmetrical

divergences as similarity measures in the spectral ciagter s B
algorithm, and are not reported here. On one hand, they have .

not been proved to be able to handle non-euclidean cases;
on the other hand, the results obtained were not better than -
those reported in tab$ 1. Note that this algorithm will net b
detailed here, as it is only mentioned for providing a compar
ison to the one proposed in this paper.

The asteroid data are reflectances measured at different
wavelengths, from which a mineralogic classification of the
asteroid is seeked. More details on the physics underlfiagt Fic. 4 — Multi-spectral image of Paris composed by multi-
classification problems are iﬁ| [8]. components

The Small Main Belt Asteroid Spectroscopic Survey
phase Il (SMASSII) contains spectra of 1341 asteroids . - .
recorded in the band.@4 and 092 um. It has been used as sults : 8 clusters are identified, from which 3 are easy to
a reference for the Bus and Binzel taxonorfly [3]. To makdinderstand. Cluster 2 contains the pixels that are characte

a fair comparison with the supervised classification methodftic from trees and grass regions. Therefore, one can rec-
ognize recreation areas and natural parks in Paris surround

2The hierarchical tree requir€(LRIogR) logical operations. ings (Boulogne, Vincennes). Cluster 3 exhibits the 'water a

Water components

Asphalt components




eas’ in Paris, and the Seine river together with some knowtion of a minimum spanning tree, in order to provide the ini-
ponds is easily extracted. Cluster 4 is clearly associatéd w tialization parameters of classicélmeans algorithm. New
roads, asphalt and concrete. Other clusters cannot bg fairtriteria are derived for setting the false alarm rate (pywér

interpreted without cross analysing our results veith pol-

a test over the Prim’s trajectory associated with a MST built

lution imaging or gas detection systems. This very rough unever the set of data. We assumed that the vertices are dis-
supervised approach leads to think that the proposed metharbuted according to a Poisson distribution, in the absenc
is very promising. Note that a similar approach using Eu-of additional information. Should prior information be dva
clidean distances was tested and led to gather 'water pixelable, this reasoning could be extended to other distribatio

and 'green pixels’ as belonging to the same cluster.

’j‘-’
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The usefulness of the information divergence based affinity
measure is illustrated throughout many examples taken from
astrophysical field or multi-spectral image analysis. lis th
paper, the threshold value is constant along the Prim’s tra-
jectory. We can think of setting up a variable threshold as a
function of connected segments.

Some improvement in the understanding of the behavior
of Prim’s trajectory for vertex distributions exhibitingffer-
ent modes are under study, and will allow to define clusters
and labels directly from the MST, without resorting e@.
K-means. In the case of hyper-spectral images, the proposed
method will also require to be developed onto some lower
dimensional subspace. Dimension reduction and its relatio
ship to spectral clustering methods applied to graphs using
information divergence or MST-based distances must be in-
vestigated|]2].
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