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ABSTRACT
This paper proposes an original approach to cluster multi-
component data sets with an estimation of the number of
clusters. From the construction of a minimal spanning tree
with Prim’s algorithm and the assumption that the vertices
are approximately distributed according to a Poisson distri-
bution, the number of clusters is estimated by thresholding
the Prim’s trajectory. The corresponding cluster centroids are
then computed in order to initialize the Generalized Lloy-
d’s algorithm, also known asK-means, which allows to cir-
cumvent initialization problems. Metrics used for measuring
similarity between multi-dimensional data points are based
on symmetrical divergences. The use of these informational
divergences together with the proposed method lead to bet-
ter results than some other clustering methods in the frame-
work of astrophysical data processing. An application of this
method in the multi-spectral imagery domain with a satellite
view of Paris is also presented.
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1. INTRODUCTION

Consider a setV of N data points inRL, which we wish
to partition intoK classes, without prior information (i.e. this
is an unsupervised classification).

Each data point (actually a vector inRL) can be consid-
ered as a vertex in a graph. Our study restricts to acyclic to-
tally connected graphs of minimal length : the minimal span-
ning tree (MST). An easy way to segment the graph is to re-
alize some cuts in the connection graph. The segmentation of
the graph inK clusters will lead to remove theK −1 largest
connections. This method, based on single linkage cluster-
ing, is known to be unstable, mainly when the data contain
outliers, or possibly when they are corrupted by noise.

In this communication, we propose to improve the pop-
ular generalized Lloyd’s algorithm (referred to asK-means)
by an automatic initialization of both the number of clus-
ters and corresponding centroids. Various methods have been
proposed to estimate the number of clusters present in a
dataset,e.g. using statistical criteria like AIC, BIC, MDL,
Tibshirani’s Gap, or indices such as Calinski & Harabasz’s
index. Because of space limitation, these criteria will be dis-
cussed in a full-length version of the paper. Actually, our ap-
proach relies upon Prim’s algorithm for constructing MST’s.
It is proposed to record each iteration characteristics (namely
which vertex is connected, and what is the length of the new
edge), in order to get anone-dimensional unfolded repre-
sentation of the underlying data probability density function.

The method will be developed in Section 2.
Furthermore, we address the problem of designing a mea-

sure of similarity between two data points. Instead of us-
ing the popular Euclidean distance, we propose to define the
similarity as a measure of spectral variability between two
probability density functions, by the use of informationaldi-
vergences. New metrics and motivation for resorting to in-
formation based similarity measures will be investigated in
Section 2. In Section 4, we present some unsupervised clus-
tering results obtained in the frame of two applications : the
taxonomic classification of asteroids, and the classification
of objects in a multi-spectral satellite image.

2. AUTOMATIC INITIALIZATION OF POPULAR
CLUSTERING METHODS

2.1 Minimum Spanning Tree and Prim’s Trajectory

Let G = (V,E) be an undirected graph whereV is the set
of N vertices andE denotes the set of edges. The length of
an edge measures the similarity between two vertices, and
depends on the choice of the metric. The graphs considered
herein aretrees, that is, they are connected (i.e. every ver-
tex is connected to at least one other vertex) and acyclic (i.e.
there is no loop).

A spanning tree ofG is a treeT passing through every
vertex ofG. The power-weighted length of the treeT is the
sum of all edge lengths raised to a powerγ ∈ (0,L), denoted
by : ∑e∈T |e|γ . The minimal spanning tree (MST) is the tree
which has the minimal length over all spanning trees

L (V ) = min
T

∑
e∈T

|e|γ

Among algorithms allowing to build a MST, one of the most
popular is Prim’s algorithm [10], the complexity of which is
O(N logN). The Prim’s algorithm connects to the partially
connected graph at iterationi the closest non connected ver-
tex (in the sense of a given chosen metric). The graph which
is determined is acyclic, unique (i.e. independent of the ini-
tial point of the construction of the graph) and of minimal
length.

Denoteg(i) = |ei|, the length of a new edge built at iter-
ation i ; [g(i), i = 1. . .N] is referred to asPrim’s trajectory.
Functiong allows us to “unfold” the probability density func-
tion of points inL dimensions into aone-dimensional func-
tion. The latter exhibits some valleys in the neighborhoodsof
high density : a set of close points is indeed connected thanks
to a sequence of successive iterations yielding short segments



FIG. 1 – Typical example : (top left) construction of a MST,
(bottom) Prim’s trajectory and threshold, (top right) extrac-
tion of the clusters

(Fig. 1). The detection of valleys in the curve hence corre-
sponds to the detection of clusters. It allows to identify the
main modes of the probability density function, each mode
being associated with a cluster.

The choice of the threshold to be applied tog(i) is an
important parameter, since it determines the main modes of
the probability density function. In [8], Michelet al. have
proposed to give the same cluster label to all vertices con-
nected sequentially, as long as the functiong(i) stays below
the threshold. An empirical solution is proposed in [8] for
setting the threshold. In this paper, the number of modes and
associated centroids are required in our problem, in order to
initialize a classical algorithm (e.g. K-means). One possibil-
ity is to arbitrarily set the threshold to the standard devia-
tion of the connectionsε = std{ei}. Because the detection
of modes (or high density regions) is solely based upon find-
ing the centroid of vertices gathered into a valley of Prim’s
trajectory, the estimation of the threshold does not need to
be very precise. For the sake of simplicity, the threshold has
been chosen to be constant over the entire Prim’s trajectory,
but it could vary from one cluster to another.

The question remains to determine the critical number
of points which could be considered as a cluster. Actually
for a given realization, some vertices can be gathered onto a
small neighborhood, even in the case where the theoretical
density does not exhibit any local maximum. Alternatively,
small clusters may correspond to noise effects and thus may
not be relevant. Thus, the number of modes tends to be over-
estimated.

We propose to estimate automatically the minimum num-
ber of points above which one decides that a cluster is de-
tected as a function of the threshold applied on the Prim’s
trajectory. This estimation is realized in the framework ofa
Neyman-Pearson approach. For each new connected vertex,
a binary hypothesis test is performed. Under the null hypoth-
esis, last connected vertices do not belong to some ’mode’
or cluster, and they are spread all over the neighborhood ac-
cording to a Poisson distribution (see below). Under the al-
ternative, the length of the edge that connects the new vertex

FIG. 2 – Left :Ck denotes the contour of the support where
connected vertices are found. The neighborhood which is
considered for finding a vertex that could be connected to
vi is shown. In the limit of largeN, this latter neighborhood
is the half sphere laying on the tangent (hyper)plane toCk
(right).

is too small to match with the null hypothesis.
Let vi be the vertex connected at iterationi. Consider

an L-dimensional space and a neighborhood ofvi hereafter
notedB(vi,ε),with characteristic lengthε. We suppose that the
vertices are approximately distributed according to a Poisson
distribution, with rateλ εL. This is justified, since the latter is
the limiting distribution of the binomial. Bothλ andB(vi,ε)
will be identified later.

We assume that under the null hypothesisH0, the density
does not exhibit any mode : the process is homogeneous over
its entire supportV . Hence we can assess thatλ is constant
overV . The probability that at least one vertex is found in
the neighborhoodB(vi,ε) is given by

Fvi(ε) = 1−e−λ εL

In the context of the Prim construction of the MST,Fvi(ε) can
also be considered as the probability to construct an edge of
length less thanε when connecting a new vertex tovi. Con-
sidering the asymptotic case whereN is large, the neighbor-
hood which must be considered here is the half sphere of
radiusε, as illustrated on the figure 2.

Let Pk,ε be the probability that exactlyk vertices are con-
nected with edge lengths less thanε but the next edge built is
larger thanε :

Pk,ε =
(

1−e−λ εL
)k

e−λ εL

Suppose that at leastk0 successive connections of length less
than the threshold valueε are required for considering that a
cluster is detected. UnderH0, false alarm in the mode detec-
tion will arise for any occurrence of more thank0 successive
connections of length less thanε. Therefore, the expression
of the false alarm probability is given by

PFA(k0,ε) =
∞

∑
k≥k0

Pk,ε =
(

1−e−λ εL
)k0

(1)

In the case whereL-dimensional Euclidean spaces are
considered, the volume of the half sphere of radiusε is
BL(ε) = 1

2CLεL, whereCL stands for the volume of the unit

ball in dimensionL : CL = 2πL/2

LΓ(L/2)
.

In this framework, underH0, consider the radiusε0 of a
sphere covering the set of all vertices ;λ is identified by the
set of equations

{

V = CLεL
0

λ εL
0 = N

=⇒ λ = CL
N
V

(2)



FIG. 3 – Upper plot :k0 = f (ε) for PFA = 0.05 ; Lower
plot : Average size of false alarm detected cluster from
sets of uniformly distributed vertices over[0,1]2, andN =
128,256,512,1024 vertices respectively. Theoretical curve
(red) and numerical simulation (blue).

Finally, we get from equations (1) and (2)

PFA(k0,ε) =
(

1−e−CLεL N
V

)k0

This formula allows to determine the relationship between
k0 (minimum number of vertices that form a cluster) and the
threshold valueε in the framework of a Neyman-Pearson ap-
proach for cluster detection. Though these calculations were
derived under some rough simplifying assumptions, the ob-
tained results are close to what is obtained by numerical sim-
ulations, as illustrated in Figure 31.

Though the next sections will introduce the usefulness of
informational divergences for the clustering problems, and
consequently formulate the Prim’s trajectory construction in
some evidently non-Euclidean space, the previous results
will still be applied as approximations. So far, we have no
evidence but the quality of our results for accepting these ap-
proximations. This will be the matter of a future work.

2.2 Choice of metrics

As already pointed out, the distance measure between
points plays a key role to characterize their similarity or dis-
similarity. In this paper, the physical data that are considered
are non-negative (they are homogeneous to a spectral mea-
sure), and may therefore be easily understood as behaving
like probability densities, up to some scale factor.

Let X = {x1, . . . ,xL} andY = {y1, . . . ,yL} two feature
vectors,e.g. corresponding to a pixel in the imagery domain

1The average size of a false alarm cluster can be shown (this will be
published elsewhere) to be expressed as :

< k >= 2sinh

(

CL

2
N
V

εL
)

or to a reflectance spectrum in astrophysics. The most pop-
ular distance used to characterize similarities between two
points is the Euclidean distance. Though this metric enjoys
usefull properties (symmetry, non-negativity, triangular in-
equality), it turns out not to be the perfect measure of distance
that one can think of to calculate similarities. This distance
indeed has the following drawbacks : (i) it increases when
the dimension of the data (e.g. number of wavelengths) in-
creases ; (ii) it does not handle cases when spectra contain
missing values at some wavelengths, (iii) it gives essentially
a spatial distance, and does not take into account the positiv-
ity of data. For these reasons, following the works of Chang
[4], we prefer information divergences as measures of simi-
larity.

First, at a given wavelengthλi, each data point is associ-
ated with a (positive) normalized quantity : ˜xi = xi/∑L

j=1x j.
Let X̃ = {x̃1, . . . , x̃L} andỸ be defined accordingly.̃X (resp.
Ỹ ) can be interpreted as the probability distribution that a cer-
tain amount of information has been captured (measured) at
the wavelengthλi.

Next, our goal is now to measure the similarity between
these two probability density functions. Using the popular
symmetrized Kullback-Leibler divergence [5] leads to :

dKL(X ||Y ) =
L

∑
i=1

(x̃i − ỹi) log
x̃i

ỹi
(3)

It corresponds to the relative entropy ofỸ with respect toX̃ .
This information divergence is widely used in Information
Theory, and is strongly related to the Shannon theory (see
e.g. [5]).

Alternatively, the symmetrized Rényi divergence of order
α (0 < α < 1) can similarly be used as a spectral measure :

dα(X ||Y ) =
1

α −1

(

log
L

∑
i=1

x̃i
α ỹi

1−α + log
L

∑
i=1

ỹi
α x̃i

1−α

)

(4)
Properties and advantages of the Rényiα-divergence have
been detailed by Heroet al. [7]. Note that whenα tends to
1, the α-divergence (4) converges to the Kullback-Leibler
divergence (3). Whenα = 1/2, theα-divergence matches
with the Hellinger affinityd1/2(X‖Y ) or Hellinger distance
which is often used to assess how close a probability den-
sity is to a reference one. As the Bayes optimal exponential
rate of decay of the decision error in a binary test (i.e.’is this
spectrum almost identical to this other one ?’) involves the
α-divergence of order 1/2 [7], only the valueα = 1/2 will
be considered in the following.

These metrics have been used to determine similarity be-
tween points in order to form the MST. In the clustering part
of our algorithm, we use theK-means algorithm (minimiza-
tion of the squared error function between the points and the
centroids). This classical partitioning algorithm can also be
adapted to match the metric used in the construction of the
tree [1]. Nevertheless, in our approach, we have only focused
our interest on the initialization ofK-means.

3. IMPLEMENTATION OF MST’S FOR LARGE
SETS OF DATA

Suppose that the pairwise distance or affinity between
vertices is known. The construction of an MST requires to



sort the lengths of all possible edges. This operation requires
Comp.sort = O(N log(N)) logical operations (e.g. by using
the “quick-sort” algorithm). Thus the overall computational
cost is mostly due to the computation of all the distances.
This becomes prohibitive for large datasets, since it would
lead to a computational burden ofComp.dist = O(LN2/2)
flops.

This is avoided by using a pre-conditionning data driven
hierarchical classification tree, which could be learned from
a small randomly chosen subset ofR data2. The latter clas-
sification tree allows to identify neighborhoods of each ver-
tex by comparing the vertex coordinates along each of theL
dimensions to sets of thresholds. The size of the neighbor-
hood can be set up in such a way that in the average, each
neighborhood counts aroundM vertices. Consequently, the
number of pairwise distances that need to be evaluated is of
the order ofM2/2. This algorithm will be discussed in an
extended version of this paper, and leads to a maximal com-
putational burden expressed byComp.dist = O(NLM2/2)
flops andComp.sort = O(NM logM). Assuming thatM is
set such thatM2 ≪ N, the computational load is thus signif-
icantly lowered. In the next sections, construction of MST
using this algorithm will be referred to as ‘Nearest-Neighbor
MST’.

4. RESULTS

The first application deals with the taxonomic classifica-
tion of asteroids, by using reflectance measures at different
wavelengths ; the second application concerns the segmenta-
tion of a multi-spectral image of Paris surroundings.

4.1 Astrophysical data

Here we report the results obtained on astrophysical data,
by comparing several clustering methods. Different similar-
ity measures have been used for constructing Prim’s trajecto-
ries. In order to provide some comparisons with an alterna-
tive existing method, clustering results obtained with theso-
calledspectral clustering [11] approach are given. The spec-
tral clustering algorithm used is that of Nget al. [9] based on
an eigen-decomposition of the normalized Laplacian of the
graph. The affinity which is considered in the latter case re-
lies upon a new metric introduced recently by Grishkatet al.
[6], which uses hitting time of Prim’s trajectories rooted at
each vertex. Some tests have been realized with symmetrical
divergences as similarity measures in the spectral clustering
algorithm, and are not reported here. On one hand, they have
not been proved to be able to handle non-euclidean cases ;
on the other hand, the results obtained were not better than
those reported in table 1. Note that this algorithm will not be
detailed here, as it is only mentioned for providing a compar-
ison to the one proposed in this paper.

The asteroid data are reflectances measured at different
wavelengths, from which a mineralogic classification of the
asteroid is seeked. More details on the physics underlying the
classification problems are in [8].

The Small Main Belt Asteroid Spectroscopic Survey
phase II (SMASSII) contains spectra of 1341 asteroids
recorded in the band 0.44 and 0.92 µm. It has been used as
a reference for the Bus and Binzel taxonomy [3]. To make
a fair comparison with the supervised classification method

2The hierarchical tree requiresO(LR logR) logical operations.

proposed on this survey [12], we kept only spectra which do
not contain missing values ; hence the survey reduces to 1329
asteroids spectra.

A clusterC will be associated with the taxonomic class
Tax (defined by Bus and Binzel) which has the largest over-
lapp with C. Let us define some variables :NC represents
the cardinal ofC, NTax the cardinal ofTax andNinter the
cardinal of the intersection ofC andTax.

A clustering validity index is defined asScore =
Ninter/NTax. Score characterizes the ratio of asteroids be-
longing to a taxonomic class and that are correctly labeled.

Clustering Methods Score
Nearest Neighbor MST (Euclidean) + K-means 815/1329 = 61,32%

Nearest Neighbor MST (Kullback-Leibler) + K-means976/1329 = 73,44%
Nearest Neighbor MST (Rènyi) + K-means 972/1329 = 73,14%

Spectral Clustering [9] 878/1329 = 66,06%
Spectral Clustering (Dual Rooted Hitting Time) [6] 913/1329 = 68,69 %

K-Nearest Neighbor [12] 777/1329 = 58,46 %
K-means (randomly initialized) 773/1329 = 58,16%

TAB . 1 – Synthesis of results obtained on SMASSII

From the table 1, we see that properly initialized K-
means used simultaneously with informational divergence
based affinity measures outperforms previously proposed ap-
proaches.

4.2 Multi-spectral image of Paris

In this experiment, 4 (512× 512) images of the same
scene are available ; each image is recorded from a device
operating at a different wavelength (more precisely, around
a different wavelength). The affinity measure is based upon
the Kullback-Leibler divergence between the (4-points) spec-
tra associated to each pixel. Image registration problems are
not tackled here, and it is supposed that the images are per-
fectly registered. Figure 4 illustrates this. The proposedalgo-
rithm (Prim based initializing of K-means clustering method)
is tested on this multi-spectral image, where each vertex is
nothing but a 4-points spectrum. For avoiding to deal with
5122 vertices, the Nearest Neighbor MST algorithm depicted
in section 3 is applied to an image which has been sub-
sampled by a factor of 4. Figure 5 shows the obtained re-

FIG. 4 – Multi-spectral image of Paris composed by multi-
components

sults : 8 clusters are identified, from which 3 are easy to
understand. Cluster 2 contains the pixels that are character-
istic from trees and grass regions. Therefore, one can rec-
ognize recreation areas and natural parks in Paris surround-
ings (Boulogne, Vincennes). Cluster 3 exhibits the ’water ar-



eas’ in Paris, and the Seine river together with some known
ponds is easily extracted. Cluster 4 is clearly associated with
roads, asphalt and concrete. Other clusters cannot be fairly
interpreted without cross analysing our results withe.g. pol-
lution imaging or gas detection systems. This very rough un-
supervised approach leads to think that the proposed method
is very promising. Note that a similar approach using Eu-
clidean distances was tested and led to gather ’water pixels’
and ’green pixels’ as belonging to the same cluster.

FIG. 5 – Clusters obtained on the multi-spectral image of
Paris

5. CONCLUSION AND FUTURE WORKS

In this paper, we have proposed an original approach for
clustering multi-dimensional data. The method is based on
the estimation of the number of clusters from the construc-

tion of a minimum spanning tree, in order to provide the ini-
tialization parameters of classicalK-means algorithm. New
criteria are derived for setting the false alarm rate (power) of
a test over the Prim’s trajectory associated with a MST built
over the set of data. We assumed that the vertices are dis-
tributed according to a Poisson distribution, in the absence
of additional information. Should prior information be avail-
able, this reasoning could be extended to other distributions.
The usefulness of the information divergence based affinity
measure is illustrated throughout many examples taken from
astrophysical field or multi-spectral image analysis. In this
paper, the threshold value is constant along the Prim’s tra-
jectory. We can think of setting up a variable threshold as a
function of connected segments.

Some improvement in the understanding of the behavior
of Prim’s trajectory for vertex distributions exhibiting differ-
ent modes are under study, and will allow to define clusters
and labels directly from the MST, without resorting toe.g.
K-means. In the case of hyper-spectral images, the proposed
method will also require to be developed onto some lower
dimensional subspace. Dimension reduction and its relation-
ship to spectral clustering methods applied to graphs using
information divergence or MST-based distances must be in-
vestigated [2].
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