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Abstract

The well-posedness of hyperbolic initial boundary value problems is linked to the occur-
rence of zeros of the so-called Lopatinskii determinant. For an important class of problems,
the Lopatinskii determinant vanishes in the hyperbolic region of the frequency domain and
nowhere else. In this paper, we give a criterion that ensures that the hyperbolic region coin-
cides with the projection of the forward cone. We give some examples of strictly hyperbolic
operators that show that our criterion is sharp.
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1 Introduction

In this paper, we consider initial boundary value problems for hyperbolic systems. Such problems
read: 

Lu := ∂tu +
∑d

j=1 Aj ∂xju = F (t, x) , (t, x) ∈ R+ × Rd
+ ,

B u(t, y, 0) = g(t, y) , (t, y) ∈ R+ × Rd−1 ,

u(0, x) = f(x) , x ∈ Rd
+ ,

(1)

where the spatial domain is the half-space Rd
+ = {x ∈ Rd, xd > 0} and the notation x = (y, xd)

is used. The Aj ’s are N × N real matrices, and B is a p × N real matrix. We always assume
d ≥ 2 in what follows.

The well-posedness of (1) can be characterized with the help of a complex valued function
∆, that is known as the Lopatinskii determinant and that depends on the variables (z, η), z ∈ C
with Im z ≤ 0 and η ∈ Rd−1. We refer to the original articles [5, 9, 10] as well as to the recent
book [2, chapter 4] for a detailed description of the theory. The function ∆ can be chosen to be
positively homogeneous of degree 0 with respect to the variables (z, η). If ∆ does not vanish on
the closed half-sphere {Im z ≤ 0, |z|2 + |η|2 = 1}, then (1) is strongly well-posed, meaning that
source terms in L2 give rise to a unique solution u in L2 that depends continuously on the data.
When ∆ vanishes in the open half-sphere {Im z < 0, |z|2 + |η|2 = 1}, (1) is ill-posed.

In [1], an open class of weakly well-posed problems has been exhibited. This so-called WR
class is made of problems for which ∆ does not vanish in the open half-sphere but vanishes at
first order in the hyperbolic region of {Im z = 0, |z|2 + |η|2 = 1}. Problems in the WR class arise
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naturally in shock wave theory in fluid dynamics, see e.g. [2, chapter 15], and in other various
physical contexts. They give rise to amplification and instability phenomena for geometric optics
expansions, see e.g. the review [7] and the references therein, and to an increase in the speed of
propagation, see e.g. [4]. For an arbitrary system, it may be difficult to locate the hyperbolic
region and to determine whether a given problem of the form (1) belongs to the WR class. In
this paper, we are interested in finding a criterion that allows to compute easily the hyperbolic
region in terms of the so-called forward cone. Our criterion involves the decomposition of
the characteristic polynomial as a product of irreducible factors. When the irreducible factor
associated with the extreme eigenvalues has degree 2, the hyperbolic region coincides with the
projected forward cone. This criterion covers some well-known cases such as the linearized Euler
equations, the wave equation and the elasticity system. We give some counter-examples with
irreducible hyperbolic polynomials of degree 3 or 4 for which the hyperbolic region does not
coincide with the projected forward cone. This shows that our criterion is sharp.

Notations In all this article, ξ denotes a frequency vector in Rd that is decomposed as ξ =
(η, ξ) with η ∈ Rd−1, ξ ∈ R. For instance, (0, 1) denotes the last vector of the canonical basis of
Rd. If (τ, ξ) ∈ R×Rd, we define π(τ, ξ) = (τ, η) ∈ R×Rd−1 the vector obtained by deleting the
last coordinate of ξ.

2 Main results

Let us consider the operator L in (1) and introduce the symbol:

A(ξ) :=
d∑

j=1

ξj Aj , ξ ∈ Rd . (2)

The characteristic polynomial of L is:

P (τ, ξ) := det(τ I + A(ξ)) , (τ, ξ) ∈ R× Rd . (3)

We make the following assumption of hyperbolicity with constant multiplicity:

Assumption 1. There exist some real valued analytic functions λ1, . . . , λq on Rd\{0} and some
integers α1, . . . , αq such that the characteristic polynomial P defined by (3) satisfies:

∀ (τ, ξ) ∈ R× (Rd \ {0}) , P (τ, ξ) =
q∏

j=1

(τ + λj(ξ))αj , λ1(ξ) < · · · < λq(ξ) .

Moreover, the λj(ξ)’s are semi-simple eigenvalues of the matrix A(ξ) (their geometric and alge-
braic multiplicty are equal).

For simplicity, we also assume that the boundary {xd = 0} is non-characteristic, that is:

Assumption 2. The matrix Ad is invertible.

The two main objects used in this paper are the so-called forward cone and hyperbolic region,
and are defined as follows (see e.g. [2]):

Definition 1. • The characteristic variety of the operator L is Char L := {(τ, ξ) ∈ R ×
Rd/P (τ, ξ) = 0}. The forward cone Γ is the connected component of (1, 0) in the comple-
mentary set of Char L.
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• The hyperbolic region H is the set of all (τ, η) ∈ R×Rd−1 \ {(0, 0)} such that the matrix:

A (τ, η) := −A−1
d (τ I + A(η, 0)) , (4)

is diagonalizable with real eigenvalues.

The nonzero elements of πΓ always belong to the hyperbolic region H , see [2, chapter 8].
Recall that π(τ, ξ) = (τ, η). Thanks to the fact that H is a symmetric cone:

(τ, η) ∈ H , s ∈ R \ {0} =⇒ (s τ, s η) ∈ H ,

we thus have:
(πΓ ∪ −πΓ) \ {(0, 0)} ⊂ H . (5)

In this paper, we are interested in characterizing the operators L for which the opposite inclusion
in (5) holds, meaning that the hyperbolic region H coincides with the projected forward cone
πΓ and its symmetric set −πΓ.

Let us first begin with the special (easy) case when the spectrum of Ad is either positive or
negative:

Proposition 1. Let assumptions 1 and 2 hold. Then we have either λ1(0, 1) > 0 or λq(0, 1) < 0
if and only if πΓ = R × Rd−1. In that case, we have H = R × Rd−1 \ {(0, 0)}, and H is
connected.

We now consider the general case where Ad has positive and negative eigenvalues. Our first
main result is the following:

Theorem 1. Let assumptions 1 and 2 hold, and assume that the inequalities λ1(0, 1) < 0 <
λq(0, 1) hold. Then πΓ and −πΓ are two disjoint connected components of H . Consequently,
we have H = πΓ ∪ −πΓ if and only if H has exactly two connected components.

Our purpose is now to give necessary or sufficient conditions on the operator L that ensure
that H has two connected components. Our criterion below involves the decomposition of P
as a product of irreducible factors. We therefore recall the following result:

Proposition 2 ([2]). Let assumption 1 hold. Then the characteristic polynomial P splits as:

P (τ, ξ) =
J∏

j=1

Pj(τ, ξ)βj , (6)

where the polynomials Pj are normalized by Pj(1, 0) = 1 and satisfy the following properties:

• each Pj is a homogeneous polynomial of (τ, ξ),

• the Pj’s are irreducible in R[τ, ξ] and pairwise distinct,

• for ξ ∈ Rd \ {0}, the roots of each Pj(·, ξ) are real and simple,

• for ξ ∈ Rd \ {0}, the roots of Pj(·, ξ) and Pk(·, ξ) are pairwise distinct if j 6= k.

Up to reordering the Pj ’s, we can always assume that −λ1(ξ) is a root of P1(·, ξ) for all ξ.
This convention is used from now on. Our criterion is the following:
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Theorem 2. Let assumptions 1 and 2 hold, and assume that the inequalities λ1(0, 1) < 0 <
λq(0, 1) hold. Assume furthermore that in the decomposition (6), P1 has degree 2. Then H =
πΓ ∪ −πΓ.

As we shall see with some explicit examples below, the criterion of Theorem 2 is “optimal”.
More precisely, there are examples of strictly hyperbolic operators L with P1 of degree 3 or 4
such that the corresponding hyperbolic region H has more than two connected components. In
[1, page 1080], the authors expected1 that for hyperbolic operators with constant multiplicity,
H would coincide with πΓ∪−πΓ. Our examples show that this is unfortunately not true. As a
matter of fact, we believe that in space dimension 2, as soon as the degree of P1 is greater than
3, it may happen that H has more than two connected components.

We shall also give an example where P1 has degree 3 and where we still have H = πΓ∪−πΓ.
Therefore the criterion of Theorem 2 is not a necessary and sufficient condition. However
Theorem 2 predicts that the only general case where the hyperbolic region is easily computable
corresponds to a polynomial P1 of degree 2. This situation occurs for the linearized Euler
equations, as well as for the wave equation or the elasticity system (these were the examples
treated in [1]). When the degree of P1 is greater than 3, the hyperbolic region can have many
connected components, and it may become difficult to check the WR condition for the system
(1) since the hyperbolic region must then be determined by computing the spectrum of A , which
may be difficult, especially when the size N of the system is large.

3 Proof of the main results

We recall that the forward cone Γ coincides with the set {(τ, ξ) ∈ R × Rd/τ + λ1(ξ) > 0}, see
e.g. [2, chapter 1]. In a similar way, −Γ = {(τ, ξ) ∈ R×Rd/τ + λq(ξ) < 0}. We also recall that
Γ and −Γ are open and convex.

3.1 Proof of Proposition 1

Let us first assume that λ1(0, 1) > 0, or in other words that Ad has only positive eigenvalues.
Let (τ0, η0) ∈ R× Rd−1. We introduce the function:

g : ξ ∈ R 7−→ τ0 + λ1(η0, ξ) .

The homogeneity and continuity properties of λ1 show that g(ξ) ∼ ξ λ1(0, 1) as ξ tends to +∞.
Consequently there exists a real number ξ0 such that g(ξ0) > 0, and we get (τ0, η0) ∈ πΓ. A
similar proof with ξ tending to −∞ works if we consider the case λq(0, 1) < 0.

Let us now assume that πΓ = R × Rd−1. Since (0, 0) ∈ πΓ, there exists ξ0 ∈ R \ {0} such
that λ1(0, ξ0) > 0. We have:

λ1(0, ξ) =

{
ξ λ1(0, 1) , if ξ ≥ 0,
−|ξ|λq(0, 1) , if ξ ≤ 0.

This shows that we have either λ1(0, 1) > 0 (when ξ0 > 0) or λq(0, 1) < 0 (when ξ0 < 0). The
proof of Proposition 1 is complete. In this case, the hyperbolic region H is connected and
πΓ = −πΓ (even though Γ and −Γ are disjoint).

1And so did the author of this article until he studied the examples given at the end of this article !
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3.2 Proof of Theorem 1

We now assume that the inequalities λ1(0, 1) < 0 < λq(0, 1) hold. Then the proof of Proposition
1 above shows that (0, 0) 6∈ πΓ ∪ −πΓ. More precisely, πΓ does not contain any element of the
form (τ, 0) with τ ≤ 0, and −πΓ does not contain any element of the form (τ, 0) with τ ≥ 0.

Let us first begin with the following result:

Lemma 1. The sets πΓ and −πΓ are open, convex, and their intersection is empty.

Proof. It is clear that π is linear and surjective, so π maps open sets onto open sets. Since Γ
and −Γ are convex, and π is linear, πΓ and −πΓ are open and convex. It remains to show that
their intersection is empty. Let us assume that (τ , η) ∈ πΓ ∩−πΓ. In particular, we necessarily
have η 6= 0 (otherwise τ > 0 and τ < 0). Moreover there exist some real numbers ξ1, ξq such
that:

τ + λ1(η, ξ1) > 0 , τ + λq(η, ξq) < 0 .

For all j = 1, . . . , q, we introduce the real analytic function:

fj : ξ ∈ R 7−→ τ + λj(η, ξ) .

Following an argument used in the proof of Proposition 1, we know that f1(ξ) tends to −∞ as
ξ tends to ±∞. In the same way, fq(ξ) tends to +∞ as ξ tends to ±∞. The intermediate value
Theorem shows that f1 and fq vanish both at least twice: there exist ξ

1
< ξ1 and ξ

q
< ξq such

that f1(ξ1
) = f1(ξ1) = fq(ξq

) = fq(ξq) = 0.
If 2 ≤ j ≤ q − 1, we have:

fj(ξ1) = τ + λj(η, ξ1) > τ + λ1(η, ξ1) > 0 , fj(ξq) < 0 .

This shows that there exists a real number ξ
j

such that fj(ξj
) = 0.

It is not difficult to check that the q + 2 real numbers ξ
1
, . . . , ξ

q
, ξ1, ξq are pairwise distinct.

The polynomial P (τ , η, ·) = fα1
1 . . . f

αq
q has degree N , and we have shown that ξ

1
, . . . , ξ

q
are

roots of multiplicity at least equal to α1, . . . , αq and ξ1, ξq are roots of multiplicity at least equal
to α1, αq. We thus obtain:

N ≥ 2 α1 + α2 + · · ·+ αq−1 + 2 αq = N + α1 + αq ,

which is a contradiction. The proof of Lemma 1 is complete.

Our goal now is to show that πΓ is the connected component of (1, 0) in H , and similarly
that −πΓ is the connected component of (−1, 0) in H .

We first use the fact that H is open. This is indeed a consequence of the block structure
condition proved in [8] for the matrix A defined in (4). We thus know that the connected
components of H are also open. Let Ω denote the connected component of (1, 0) in H and let
us assume that πΓ 6= Ω, in other words πΓ is strictly included in Ω. We thus consider an element
(τ0, η0) ∈ Ω \ πΓ. The set Ω is open and connected. It is therefore pathwise connected. Let us
consider a continuous path {(τs, ηs), s ∈ [0, 1]} in Ω that joins (τ0, η0) and (1, 0). Consider now
s := inf{s ∈ [0, 1] , (τs, ηs) ∈ πΓ}. It is standard to show that (τs, ηs) belongs to the boundary
of πΓ.

Up to now, we have constructed an element (τ , η) ∈ H ∩ ∂(πΓ). In particular, we have
η 6= 0. We are going to show that (τ , η) is a glancing mode for which the matrix A (τ , η) is
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not diagonalizable. We know that (τ , η) is the limit of a sequence
(
(τn, ηn)

)
n∈N of elements of

πΓ. For all integer n there exists a real number ξn such that τn + λ1(ηn, ξn) > 0. The sequence(
(τn, ηn)

)
n∈N is bounded because it converges so the sequence (ξn)n∈N is necessarily bounded.

Up to extracting a subsequence, it converges towards a real number ξ, and we obtain:

τ + λ1(η, ξ) ≥ 0 .

The quantity τ + λ1(η, ξ) cannot be positive because (τ , η) belongs to the boundary of πΓ and
not to πΓ. We thus have τ + λ1(η, ξ) = 0. Moreover, we have ∂ξλ1(η, ξ) = 0 for otherwise we
could find a real number ξ close to ξ such that τ + λ1(η, ξ) > 0. We have thus obtained:

τ + λ1(η, ξ) = ∂ξλ1(η, ξ) = 0 ,

which means that (τ , η) is a so-called glancing mode. For such frequencies, the matrix A is not
diagonalizable, see [8]. For the sake of completeness, we briefly recall the proof of this claim.
First of all, we have Ker (A (τ , η)− ξ I) = Ker (τ I + A(η, ξ)) so the geometric multiplicity of
the eigenvalue ξ equals α1. Moreover, we can write:

τ + λ1(η, ξ) = (ξ − ξ)2 ϑ1(ξ) ,

where ϑ1 is smooth in a neighborhood of ξ. A simple calculation then gives:

det(A (τ , η)− ξ I) = (ξ − ξ)2 α1 ϑ2(ξ) ,

where ϑ2 is smooth in a neighborhood of ξ. This shows that the algebraic multiplicity of the
eigenvalue ξ equals at least 2α1, so A (τ , η) is not diagonalizable.

We have therefore proved that πΓ is the connected component of (1, 0) in H , and in a
similar way −πΓ is the connected component of (−1, 0) in H . In particular, H has at least
two connected components, and the proof of Theorem 1 follows.

3.3 Proof of Theorem 2

Let us first observe that P1 can not have degree 1. Otherwise, λ1 would be a linear function of ξ.
In particular, we would have λ1(−ξ) = −λ1(ξ) for all ξ ∈ Rd. But we also have λ1(−ξ) = −λq(ξ)
so q would equal 1, and this is incompatible with the assumption that Ad has two distinct
eigenvalues.

Let us assume from now on that P1 has degree 2. Because P1 is homogeneous of degree 2,
we have P1(λ1(ξ),−ξ) = 0 for all ξ. Applying to −ξ, we get P1(−λq(ξ), ξ) = 0 for all ξ, so we
obtain:

P1(τ, ξ) = (τ + λ1(ξ)) (τ + λq(ξ)) .

Consider now (τ, η) ∈ H . In particular, the characteristic polynomial of the matrix A (τ, η)
has real roots. We compute:

det(ξ I −A (τ, η)) = (det A−1
d ) P (τ, η, ξ) ,

so P (τ, η, ·) has only real roots. Using (6), P1(τ, η, ·) has only real roots. Let ξ1 ∈ R satisfy
P1(τ, η, ξ1) = 0. We have either τ + λ1(η, ξ1) = 0 or τ + λq(η, ξ1) = 0. In the first case, we
necessarily have ∂ξλ1(η, ξ1) 6= 0, otherwise (τ, η) would be a glancing mode and, as we have
seen at the end of the proof of Theorem 1, A (τ, η) would not be diagonalizable. Consequently,
there exists ξ close to ξ1 such that τ + λ1(η, ξ) > 0, and (τ, η) ∈ πΓ. In the second case, similar
arguments lead to (τ, η) ∈ −πΓ. We have thus obtained H ⊂ πΓ ∪ −πΓ. Together with (5),
the proof of Theorem 2 is complete.
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4 Some examples

The linearized isentropic Euler equations We consider the isentropic Euler equations
and linearize them around a state that corresponds to a positive density ρ > 0, and a velocity
u = u ed, with ed the last vector of the canonical basis of Rd. We assume that the fluid is
incoming and subsonic, that is:

0 < u < c ,

with c the sound speed corresponding to the density ρ. In space dimension d, the characteristic
polynomial of the corresponding linear operator L splits as follows:

P (τ, η, ξ) =
(
(τ + u ξ)2 − c2 (|η|2 + ξ2)

)
(τ + u ξ)d−1 .

The matrix Ad has one negative eigenvalue and d positive eigenvalues (counted with their mul-
tiplicity). The hyperbolic region H is given by:

H =
{

(τ, η) ∈ R× Rd−1/τ2 > (c2 − u2) |η|2
}

,

and has two connected components, which is consistent with the result of Theorem 2.

The wave equation Even though the analysis above is done for first-order systems, we feel
free, as in [1], to apply the results in the case of higher order hyperbolic equations or systems.
For instance, in the case of the wave equation, the characteristic polynomial is:

P (τ, ξ) = τ2 − |ξ|2 .

The hyperbolic region H is given by:

H =
{

(τ, η) ∈ R× Rd−1/τ2 > |η|2
}

,

and has two connected components, which is consistent with the result of Theorem 2 because P
has degree 2.

The elasticity system The linear elasticity system reads:

∂2
ttz − div

(
α (∇z +∇zT ) + (β − α) (divz) I

)
= 0 , z ∈ R3 ,

with α > 0, β > 0 the Lamé coefficients. The characteristic polynomial splits as:

P (τ, ξ) = (τ2 − c2
s |ξ|2)2 (τ2 − c2

p |ξ|2) ,

with c2
s = α and c2

p = α + β. As expected from Theorem 2, the hyperbolic region has two
connected components, and it is given (see [1, page 1091]) by:

H =
{

(τ, η) ∈ R× Rd−1/τ2 > c2
p |η|2

}
.

We refer to [1] for examples of WR problems in the case of the wave equation or the elasticity
system.

From now on, we only consider the case d = 2, so η ∈ R. In that case, we recall the result
of [3, 6] that any homogeneous hyperbolic polynomial may be represented under the form (3)
with suitable real symmetric matrices A1, . . . , Ad. (This is Lax’ conjecture.) We therefore work
directly with the characteristic polynomial P and forget about the matrices Aj ’s.
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Examples with an irreducible polynomial of degree 3 The following example is taken
from [11, page 426]:

P (τ, η, ξ) = τ3 − 3
(
η2 + ξ2

)
τ + ξ3 . (7)

Using Cardano’s rule (Lemma 12.1 in [11]), it is straightforward to check that for (η, ξ) 6= 0,
P (·, η, ξ) has three simple real roots. It is also straightforward to check that P is irreducible
in R[τ, η, ξ] so the only factor in (6) is P itself with multiplicity 1. The hyperbolic region
corresponds to the (τ, η) ∈ R2 \ {(0, 0)} such that P (τ, η, ·) has three simple roots. Cardano’s
rule shows that H = {(τ, η) ∈ R2/τ2 > 3 η3}, so H has two connected components. This is a
case where the irreducible factor associated with extreme eigenvalues has degree 3 but H still
has two connected component, so H = πΓ ∪ −πΓ. The example of the polynomial (7) shows
that the condition in Theorem 2 is only sufficient and is not necessary. However, it does not
seem possible to improve the criterion in Theorem 2 as shown with the two examples below.

Let us now introduce the following polynomial:

P (τ, η, ξ) = τ3 − 3
(
η2 + ξ2

)
τ + η3 + ξ3 . (8)

Again, it is straightforward to check that P is irreducible in R[τ, η, ξ]. Cardano’s rule shows that
for (η, ξ) 6= 0, P (·, η, ξ) has three simple real roots. The hyperbolic region H is the set of (τ, η)
such that P (τ, η, ·) has three simple real roots. This is equivalent to asking that the polynomial
P (τ, η, ·+ τ) has three simple real roots. We compute:

P (τ, η,Ξ + τ) = Ξ3 − 3 τ2 Ξ + (η3 − 3 τ η2 − τ3) .

Applying Cardano’s rule, we get:

H = {(τ, η) ∈ R2/4 τ6 > (η3 − 3 τ η2 − τ3)2} .

The region H is depicted in red in figure 1, where we can see that H has four connected
components. We now give a quick argument that shows that H has at least four connected
components (this is sufficient to prove that H is not equal to πΓ ∪ −πΓ). We introduce the
homogeneous polynomial:

Q(τ, η) := 4 τ6 − (η3 − 3 τ η2 − τ3)2 .

Standard trigonometric relations yield:

f(θ) := Q(cos θ, sin θ) = − 5
16

+
9
8

sin(2 θ)− 3
4

sin(4 θ) +
1
8

sin(6 θ)

+
63
32

cos(2 θ) +
21
16

cos(4 θ) +
1
32

cos(6 θ) .

The following inequalities are obtained from straightforward computations:

f(0) > 0 , f(
π

4
) < 0 , f(

2 π

5
) > 0 , f(

π

2
) < 0 , f(π) > 0 . (9)

The only possibly difficult evaluation is when θ = 2π/5, for which we use the relations cos(π/5) =
ϕ/2 and cos(2 π/5) = 1/(2 ϕ) where ϕ = (1+

√
5)/2 is the golden ratio. The inequalities (9) show

that the set {θ ∈ [0, π]/f(θ) > 0} contains at least three disjoint intervals [0, θ1[, ]θ2, θ3[, ]θ4, π].
Since f is π-periodic, the set {θ ∈ R/(2 π Z)/f(θ) > 0} contains at least four connected com-
ponents. As a matter of fact, we can see on figure 1 that there are exactly four connected
components. The example (8) shows that when the irreducible factor associated with extreme
eigenvalues has degree 3, the equality H = πΓ ∪−πΓ may not hold anymore. We give another
example of this fact below with an irreducible factor of degree 4 for which the computations are
much easier.
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An example with an irreducible polynomial of degree 4 The following result is elemen-
tary:

Lemma 2. Let a, b ∈ R. Then the polynomial X4 − 2 aX2 + b has four simple real roots if and
only if a > 0, b > 0 and a2 > b.

Let us then define the polynomial:

P (τ, η, ξ) = τ4 − 4
(
η2 + ξ2

)
τ2 + η4 + ξ4 . (10)

Lemma 2 shows that for (η, ξ) 6= 0, P (·, η, ξ) has four simple real roots. We now consider P as a
polynomial in ξ. We can apply Lemma 2 again: P (τ, η, ·) has four simple real roots if and only
if the following inequalities hold:

τ2 > 0 , τ4 − 4 τ2 η2 + η4 > 0 , 3 τ4 + 4 τ2 η2 − η4 > 0 .

We thus get:

H =

{
(τ, η) ∈ R2/

√
7− 2
3

η2 < τ2 < (2−
√

3) η2 or (2 +
√

3) η2 < τ2

}
.

The hyperbolic region H is depicted in red in figure 2. It has six connected components, so
H 6= πΓ ∪ −πΓ.
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