
HAL Id: hal-00339482
https://hal.science/hal-00339482

Submitted on 23 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Vision-Based Tracking for Mobile Augmented Reality
Fakhr-Eddine Ababsa, Madjid Maidi, Jean-Yves Didier, Malik Mallem

To cite this version:
Fakhr-Eddine Ababsa, Madjid Maidi, Jean-Yves Didier, Malik Mallem. Vision-Based Tracking for
Mobile Augmented Reality. Tsihrintzis, George A. Multimedia Services in Intelligent Environ-
ments, Springer-Verlag Berlin, Heidelberg, pp.297–326, 2008, Studies in Computational Intelligence,
�10.1007/978-3-540-78502-6_12�. �hal-00339482�

https://hal.science/hal-00339482
https://hal.archives-ouvertes.fr


Vision-Based Tracking

for Mobile Augmented Reality

Fakhreddine Ababsa, Madjid Maidi, Jean-Yves Didier, and Malik Mallem

IBISC Laboratory CNRS FRE 2873. 40 rue du Pelvoux 91020 Evry, France 
ababsa@iup.univ-evry.fr, maidi@iup.univ-evry.fr
didier@iup.univ-evry.fr, mallem@iup.univ-evry.fr

Summary. Augmented Reality Systems (ARS) attempt to enhance humans’ per-
ception of their indoors and outdoors working and living environments and un-
derstanding of tasks that they need to carry out. The enhancement is effected by
complementing the human senses with virtual input. For example, when the human
visual sense is enhanced, an ARS allows virtual objects to be superimposed on a real
world by projecting the virtual objects onto real objects. This provides the human
user of the ARS with additional information that he/she could not perceive with
his/her senses. In order to receive the virtual input and sense the world around
them augmented with real time computer-generated features, users of an ARS need
to wear special equipment, such as head-mounted devices or wearable computing
gears. Tracking technologies are very important in an ARS and, in fact, constitute
one challenging research and development topic. Tracking technologies involve both
hardware and software issues, but in this chapter we focus on tracking computation.
Tracking computation refers to the problem of estimating the position and orien-
tation of the ARS user’s viewpoint, assuming the user to carry a wearable camera.
Tracking computation is crucial in order to display the composed images properly
and maintain correct registration of real and virtual worlds. This tracking prob-
lem has recently become a highly active area of research in ARS. Indeed, in recent
years, several approaches to vision-based tracking using a wearable camera have
been proposed, that can be classified into two main categories, namely “marker-
based tracking” and “marker-less tracking.” In this chapter, we provide a concise
introduction to vision-based tracking for mobile ARS and present an overview of the
most popular approaches recently developed in this research area. We also present
several practical examples illustrating how to conceive and to evaluate such systems.

12.1 Problem Formulation

In vision-based tracking approaches, image features considered for pose com-
putation are often points, lines, contours or a combination of these different
features. To illustrate the formalism of the pose estimation problem, we con-
sider the case of point features.

1



Let pi = (xi, yi, zi)
t
, i = 1, . . . , n, n ≥ 3 be a set of 3-D non-collinear

reference points defined in the world reference frame. The corresponding
camera-space coordinates qi = (x′

i, y′

i, z′i) are given by:

qi = Rpi + T, (12.1)

where R = (rt
1, r

t
2, r

t
3)

t
and T = (tx, ty, tz)

t
are a rotation matrix and a trans-

lation vector, respectively. R and T describe the rigid body transformation
from the world coordinate system to the camera coordinate system and are
precisely the parameters associated with the camera pose problem. We as-
sume that internal calibration parameters of the camera, such as focal length,
principal point, lens distortion, etc. are known.

Let the image point mi = (ui, vi, 1)
t

be the perspective projection of
pi on the normalized image plane, as in Fig. 12.1. Using the camera pinhole
model, the relationship between mi and pi is given by:

mi =
1

rt
3pi + tz

(Rpi + T ) . (12.2)

Equation (12.2) is known as the collinearity equation and indicates that mi, qi

and the projection center of the camera O are collinear.
The pose estimation problem can be stated as that of finding R and T

that minimize the re-projection error between the observed 2-D image points
and the forward-projection of the known 3-D object points:

R, T

X’

Y’

Z’

X

Y

Z

Camera

reference

frame

World

reference

frame

P (x,y,z)

m (u,v)

Normalized

Image

Plane

Image space error 

Fig. 12.1. Point constraints for the camera pose problem

2



E (R, T ) =
∑

j

∥

∥

∥

∥

mi −
(Rpi + T )

rt
3pi + tz

∥

∥

∥

∥

2

. (12.3)

Numerical nonlinear optimization techniques, such as the Newton-Raphson
or Levenberg-Marquardt algorithm, can be used to achieve the minimization.
Also, there exist several iterative solutions based on minimizing the error
E(R, T ) under certain nonlinear geometric constraints. Typical of these ap-
proaches is the work of Lowe [1] and Haralick [2]. Dementhon and Davis [3]
initialize their iterative scheme (named POSIT) by relaxing the camera model
to scaled orthographic. Their scheme uses at least four non-coplanar points.
Lu et al. [4] reformulate the pose estimation problem as that of minimizing
an object-space collinearity error. They combine a constraint on the world
points, effectively incorporating depth, with an optimal update step in the
iteration.

Purely geometric approaches have also been developed to solve the camera
pose estimation problem. Their aim is to recover the camera pose relative to
the scene object using geometric constraints. For example, Hung et al. [5]
have proposed a method for fiducial pose estimation using four non-aligned
and coplanar points. Quan and Lan [6] propose a family of linear methods
that yield a unique solution to four- and five-points pose determination for
generic reference points.

The basic idea of the camera pose estimation methods is to find corre-
spondences between 2-D image features and their 3-D coordinates in a def-
inite world frame. Marker-based approaches identify fiducials in the images
and then extract 2-D interesting points from the markers regions. Whereas,
marker-less based approaches extract directly interesting image features which
correspond to the natural features in the 3-D environment. The 2-D-to-3-D
correspondences are then obtained by using line and contour tracking ap-
proaches. In the following sections we will give more details on these two
approaches.

12.2 Marker-based Approaches

To estimate the camera pose, it is necessary to have a set of 2-D points
and their 3-D counter parts. These 2-D-to-3-D matchings are determined af-
ter detecting and identifying the object of interest in the image. One way
to solve the pose estimation problem in real time is to resort to target (also
called fiducials or features) extraction and tracking. These targets are stuck to
the objects in a scene. Assuming the relative spatial transformation between
the target and the object known and invariant, we are able to determine the
position and orientation of the camera relative to the object. Usually, fidu-
cials are embedded with a code that allows us to distinguish between several
targets and track multiple objects in the same scene. Using the codes, we
can then establish a semantic link between the tracking application and the

3



objects in the scene. Indeed, the target extraction is a known problem in
computer vision and many existing systems rely on fiducials as we will see
in the next section. Also, we will explore a case study detailing each stage of
these classes of techniques, from image processing operators to the final pose
estimation.

12.2.1 Related Works on Fiducial Extraction

Augmented Reality (AR) applications in the past years rely on fiducial extrac-
tion techniques to solve the pose estimation problem in real time. One of the
requirements of fiducials is that they should possess simple geometrical shapes
that can be easily detected with very fast and basic image processing filters.
Amongst the numerous fiducial systems, two classes of shapes are commonly
used, namely squares and circles.

Cho and Neumann [7] relied on a set of fiducials using multiple concen-
tric colored rings. Colored areas are detected by expanding candidate pixels
compared against reference colors. A centroid for the feature is computed by
weighting the pixels with their distance from the reference color. The value
of this centroid will give one 2-D point for each target. Since the camera is
calibrated and the positions of the markers are known, at least three fiducials
are needed to estimate the pose of the camera.

Naimark and Foxlin [8] developed their own system of coded targets. Their
targets were composed of circular shapes. The algorithm of target recognition
consists of four steps, namely contrast enhancement, edge detection, binariza-
tion and erosion of the image. The target code is read using white points in
the target center and two black spots located in the target quadrants. This
set of three points forms a reference frame to extract the code. Using circular
targets, implies that it is necessary to have at least three fiducials to compute
the camera pose. It also implies that several targets should be placed on the
same object in order to track it. This is the reason why some systems are
based on square targets, the four corners of which provide directly sufficient
points for pose estimation.

Rekimoto [9] developed a localization system using a single target in the
image. The system was initially called Matrix, but later it was renamed
Cybercode [10]. This method is composed of several steps to detect targets
and to estimate the camera pose. First, the image is binarized and an analysis
of connected components is performed to determine black zones of the image
and find the bar located under the code. Then, from the bar localization, the
four corners of the code are found and finally the image is normalized in order
to extract the code composed of 33 bits.

Kato and Billinghurst [11] designed the ARToolkit library for the rapid
development of AR applications. This library provides computer vision tech-
niques to compute the position and orientation of a camera relative to marked
targets so that virtual 3-D objects can be overlaid on the markers. First the

4



Fig. 12.2. Some examples of different coded fiducials

image is converted into a binary image based on a lighting threshold value.
ARToolKit finds all squares in the binary image and, for each square, captures
the pattern inside matches to some pretrained pattern templates. If there is
a match, then ARToolKit has found one of the AR tracking markers. Finally,
computer graphics are drawn over the real marker.

Besides the previous, other systems, were developed by several labora-
tories, such as the four compared in Zhang [12]. Moreover, recent work has
been performed on increasing the robustness of fiducial recognition and code
extraction [13,14].

Some of the evoked coded fiducial can be seen in Fig. 12.2. To illustrate the
fiducial-based technique, we will detail next our fiducial extraction and iden-
tification approaches as they have been tailored to fit our needs. Specifically,
we will evaluate pose estimation algorithms using one or several markers.

12.2.2 Square Fiducial Identification Approach

To extract the target from images, it is necessary to detect the object shape
before identification. In order to reduce detection error rates, images are pre-
processed into an acceptable form before carrying out any image analysis. The
image is converted into a black and white image using a suitable threshold.
Then, several operations are applied to process the image and detect the
object shape. The algorithm of object detection is composed of the following
steps, as in Fig. 12.3:

1. Apply Canny filter [15] to detect contours in image (Fig. 3.1)
2. Smooth the image using a Gaussian filter (Fig. 3.2)
3. Dilate the image to remove potential holes between segments (Fig. 3.3)
4. Make a polygonal approximation of contours and discard the ones that are

not quadrilaterals (Fig. 3.4).

Once a potentially square object is detected, the next step is to identify
this object and match it with a defined template by extracting a digital code.
This is computed by mapping a set of reference points from the model of
the fiducial to the actual image of the target which has undergone through a

5



Fig. 12.3. Fiducial detection process

Fig. 12.4. Fiducial sampling

spatial transformation and projection. This mapping is performed by solving
the following homography equation:

⎛

⎝

su

sv

s

⎞

⎠ =

⎛

⎝

h11 h12 h13

h21 h22 h23

h31 h32 h33

⎞

⎠

⎛

⎝

x

y

1

⎞

⎠ , (12.4)

with (x, y) being the coordinates of the reference point and (u, v) the coordi-
nates of the same point in the image. By arbitrarily setting h33 = 1, we can
rewrite (12.4) as:

6



(

x y 1 0 0 0 −xu −yu

0 0 0 x y 1 −xv −yv

)

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

h11

h12

h13

h21

h22

h23

h31

h32

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

(

h33u

h33v

)

. (12.5)

The number of parameters to estimate is 8 and, thus, we need eight equa-
tions to solve. Therefore, we use four coplanar points which represent the fidu-
cial vertices in the image. The set of reference points is a sampling grid (see
Fig. 12.4) applied using the computed homography. Points in green should
be black, otherwise the pattern is rejected because it must have a black
border. The sixteen points in red are sampled to extract the correspond-
ing code.

Our code is then composed of 16 bits and allows 216 = 65,536 possible dif-
ferent targets. However, the target system must respect a strong constraint,
namely it should allow the detection of the target orientation. Each target
which has been rotated by 90◦ has a different code in the identification phase.
Thus, targets have four codes following their orientations and, consequently,
the number of target classes is divided by 4. This reduces the number of
possible codes, as in Fig. 12.5. Moreover, targets should not have a central
symmetry because in that case target orientation cannot be determined. Fi-
nally, one obtains 16,320 classes of code and each target has a code from 0 to
65,535 and a unique orientation in object space.

12.2.3 Pose Estimation from Fiducials

Once the fiducial is recognized, we can proceed to pose estimation. To deter-
mine the pose, the 2-D-to-3-D pairs of points must be known and the camera
assumed calibrated. The camera calibration determines the geometrical model

Fig. 12.5. Codes corresponding to different target orientation

7



of an object and the corresponding image formation system which is described
by the following equation [16]:

⎛

⎝

su

sv

s

⎞

⎠ = M ·

⎛

⎜

⎜

⎝

x

y

z

1

⎞

⎟

⎟

⎠

=

⎛

⎝

αu 0 u0 0
0 αv v0 0
0 0 1 0

⎞

⎠ ·

(

R3×3 t3×1

01×3 1

)

·

⎛

⎜

⎜

⎝

x

y

z

1

⎞

⎟

⎟

⎠

. (12.6)

In(6), s is an arbitrary scale factor and (R, t), called the extrinsic parameters,
are the rotation and translation that transform the world coordinate system
to the camera coordinate system. The remaining parameters, called intrinsic

parameters, are the coordinates (u0, v0) of the principal point and the scale
factors αu, αv along the u and v image axes. The intrinsic parameters are
computed during the camera calibration procedure and remain unchanged
throughout the experiments.

The aim of pose estimation is to compute the extrinsic matrix (R, T )
using couples of 2-D-to-3-D matched points, in this case corners of our square
fiducial. Next, we will present some of the pose estimators that could be
combined with fiducial extraction.

12.2.3.1 Analytical Algorithm

Analytical methods use a reduced number of points. Their complexity and
execution time are low. Several analytical algorithms have appeared in the
literature [5,6], which essentially differ in the technique of resolution and the
number of points they use. Didier [17] developed an analytical algorithm based
on coded square targets. The method requires knowledge of:

• Intrinsic parameters of the camera
• Coordinates of the four corners of the target (named A, B, C and D) in

the image
• The real size of a fiducial side

The algorithm is composed of two parts. The first part consists of com-
puting the real depths of fiducial vertices and the second part is the pose
computation.

The fiducial has a square shape, so it has the following property:

−−→
AB =

−−→
CD. (12.7)

Applying the perspective model of the camera, one gets the following
expression:

⎛

⎝

uB −uC uD

vB −vC vD

−1 1 −1

⎞

⎠

⎛

⎝

ZB

ZC

ZD

⎞

⎠ =

⎛

⎝

vA

uA

−1

⎞

⎠ . (12.8)

8



Solving (12.8), the depth of the four square corners is given by the following
formulae:

ZB =
1

det M
[uA (vC − vD) + vA (uD − uC) + (uCvD − uDvC)]

ZC =
1

det M
[uA (vB − vD) + vA (uD − uB) + (uDvB − uBvD)]

ZD =
1

det M
[uA (vB − vC) + vA (uC − uB) + (uBvC − uDvB)]

det M = (uCvD − uDvC) + (uDvB − uBvD) + (uBvC − uDvB)

(12.9)

Once the real depth is known, one determines the translation and the
orientation of the fiducial toward the camera. The translation is determined
using the fiducial center computed from the coordinates of fiducial vertices,
A, B, C and D. The rotation matrix is given by the following three vectors:

r1 =

−−→
AB +

−−→
DB

∥

∥

∥

∥

−−→
AB +

−−→
DB

∥

∥

∥

∥

, r2 =

−→
AC −

−−→
DB

∥

∥

∥

∥

−→
AC −

−−→
DB

∥

∥

∥

∥

, r3 = r1 ∧ r2.

12.2.3.2 Hybrid Orthogonal Iteration Algorithm

In this method, the pose estimation is formulated as error metric minimiza-
tion based on collinearity in object space. Using an object space collinearity
error metric, an iterative algorithm is derived to compute orthogonal rotation
matrices. Further information can be found in Lu et al. [4]. Such algorithms
converge to a solution but, in some cases, they could be trapped into local
minima. To avoid this and simultaneously reduce the number of algorithm it-
erations, we choose to initialize the algorithm with the result of the analytical
method in Sect. 12.2.3.1 rather than the weak perspective computation that
is usually employed for initialization.

12.2.3.3 Extended Kalman Filter Algorithm

In this third approach, we use an extended Kalman filter (EKF) to estimate
position and orientation of the object with respect to the camera coordinate
frame. The EKF is a set of mathematical equations that provides an efficient
computational model to estimate the state of a process by minimizing the
mean of a squared error [18]. The EKF is applied to nonlinear systems with
Gaussian zero mean process and measurement noise. The evolution model and
measurement process are given by the following equations:

{

xk = f (xk−1, wk−1)

zk = h (xk−1, nk−1)
(12.10)

9



where xk is the state vector, wk the process noise, zk is the measurement
vector and nk the measurement noise.

In the first step of the EKF, which is time update, the state vector and
the error covariance matrix are predicted using initial estimates of x̂k and
Pk, respectively. Once this step is completed, the estimates become the input
for the measurement update (correction) step. With the updated informa-
tion, the time update step projects the state vector and the error covariance
matrix to the next time step. By repeating these two steps recursively, we
estimate the state vector x̂ that represents the pose parameters.

As described previously, the time update projects the system state vector
and its covariance matrix from the current step k into the next step k + 1.
The measurement model represents the relationship between the system state
vector and the camera measurement inputs. First, we need to define the state
vector for the EKF. Since our goal is to estimate the camera pose, we use the
rotation angles and the translation components (φ, ψ, θ, tx, ty, tz) to represent
the system state. The measurement input is provided by the camera. We have
to estimate six variables of the state vector, while the total measurement input
is a 8 × 1 vector:

z =
(

u1 u2 u3 u4 v1 v2 v3 v4

)t
. (12.11)

Applying the camera perspective model to the 3D points, we have the
following equations:

ui =
M1 · pi + tx

M3 · pi + tz
vi =

M2 · pi + ty

M3 · pi + tz
, (12.12)

in which pi = (xi, yi, zi) represents the 3-D point in the object reference frame
and Mi, i = 1, 2, 3 are the components of the perspective projection matrix
of the camera, given in (12.6).

Time Update

The time update produces estimates x̂ of the state vector and of the error
covariance matrix P . The equations of projection are given by:

{

x̂−

k+1
= x̂k

P−

k+1
= AkPkAt

k + Qk

(12.13)

where Q represents the covariance matrix of the process noise and A is the
transition matrix arbitrarily chosen as A = I9, with I9 being the 9×9 identity
matrix.

Measurement Update

The general equations for the measurement update step in the EKF are
given by:

zk+1 = h (x̂k) + nk

Kk = P−

k Ht
k

(

HkP−1

k Ht
k + VkΓkV t

k

)

Pk = (I − KkHk) P−

k

(12.14)

10



The first of (12.14) is the measurement function, while the second and third
compute the Kalman gain and update the error covariance, respectively.

The next step is to tune the EKF parameters. For us, function h will be
related to (12.12) since each pi is a coordinate in the local frame associated
to the fiducial. Γ and V are both considered to be representations of errors of
measurement of about 1 mm for the considered distance between the fiducial
and camera. H is the Jacobian matrix consisting of the partial derivatives of
function h with respect to elements of the internal state of the filter.

By executing the time update and measurement update recursively, we
can estimate the rotation angles and the translation vector of the camera
coordinate frame according to the workspace coordinate frame.

12.2.3.4 Hybrid Extended Kalman Filter Algorithm

This method is simply a combination of the analytic algorithm with the EKF
algorithm. Indeed, as we have already stated, the difficulty with the EKF
algorithm lies in guessing the parameters for the first time. Thus, we may use
the analytical algorithm to initialize the pose values to accurately estimate
the EKF states.

12.2.4 Experimental Results

In this section, we present experimental results and a detailed evaluation
of different localization methods. A comparison between these methods is
performed in order to determine their relative performance. We compared our
hybrid EKF (H-EKF) method to the three other algorithms which are the
analytical algorithm, the hybrid OI (H-OI) and the EKF. The comparison
between these algorithms is carried out according to the following criterions:

• Execution time.
• Reconstruction error which measures the pixel-to-pixel difference between

feature points on the detected target in the image and the 3-D target
model projection using the computed pose parameters.

• Generalization error which consists of projecting the targets which were
not used for pose computation on the image plan and measuring the vari-
ation in pixels between the projected points of the 3-D models and the
corresponding targets detected in the image.

• Real camera-target distance estimation which measures the difference be-
tween the evaluation of the estimated distance by the pose algorithm and
the real distance given by the robot.

The experimental tests were realized using the following hardware configura-
tion:

• Pentium III 1.1 GHz
• Matrox Meteor II frame grabber
• Sony XC-555 camera

11



Table 12.1. Mean reconstruction error and execution time for each algorithm

Analytical H-OI EKF H-EKF

Execution time (µs) 20 240 6,022 1,910
Reconstruction error (pixels) 0.84 0.77 0.2 0,12

12.2.4.1 Reconstruction Error and Execution Time

In the first experiment, the camera is moved by hand around the target ob-
ject, the four algorithms estimate the pose parameters and we evaluate the
reconstruction error in the image. Table 12.1 summarizes the results obtained
for each algorithm over 5,000 computed poses. The error is estimated by re-
projecting the object model on the image. We then measure the deviation
between real target corners and the projected corners.

As expected, the analytical method is the fastest algorithm. However,
because no optimizations are performed, it is also the algorithm with the
most serious reconstruction error. The EKF is the slowest algorithm, mainly
because its initialization is not sufficiently close enough to the optimal so-
lution which results in slow convergence. Depending on a compromise in
speed/accuracy trade-off, one can choose the most appropriate algorithm on
the basis of these results.

12.2.4.2 Generalization Error

To determine the generalization error, we use two targets (their side is 6 cm
long) with different codes. One of the targets is used for pose estimation. Then,
we re-project the model of the targets onto them and measure distances in
pixels between corner projection and real corners of the second fiducial. This
way, we can estimate the generalization error, as in Fig. 12.6. When compared
to other algorithms, the H-EKF and the analytical method presents the best
performance in terms of generalization error. The overall error behavior of
these two algorithms is stable and does not present jitter in images. EKF
appears sometimes as the weakest algorithm, as it can sometimes diverge if
the initialization of the filter is not sufficiently close the true solution.

12.2.4.3 Real Camera-Target Distance Estimation

In order to evaluate camera-target distance errors of the various algorithms,
we use a calibration robot-bench which moves in two directions X and Y, as
in Fig. 12.7. The camera is mounted on the robot-bench, the target (18 cm in
side length) is fixed on the other side of the bench. The robot displacement is
sampled in 1,939 positions. For each one of them, our four pose estimation al-
gorithms are applied to compute the distance between the optical center of the
camera and the target. We have classified the obtained values into ten classes

12



0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

70

80

Distance between fiducials (m)

G
e

n
e

ra
liz

a
ti
o

n
 e

rr
o

r 
(p

ix
e

ls
)

Analytical algorithm

Hybrid OI

EKF

Hybride EKF

Fig. 12.6. Generalization error according to distance between fiducials

Fig. 12.7. Robot bench used for distance evaluation

13



(according to distance ranges between camera and target) and we computed
the mean errors and variances of the pose estimation methods. The results are
illustrated in Fig. 12.8, in which we compare the generated errors of the real
distance given by the robot (robot position) and the position estimated by the
pose algorithms. We notice that the analytical method presents a significant
mean error relatively to other methods, however the error variance is quite
small. The hybrid EKF and OI present the best performances. Finally, the
EKF algorithm presents a large variance around its mean error.

Figure 12.9 shows real distances computed by the robot according to the
distance estimated by the different pose algorithms. Indeed, this evaluation
determines, with accuracy, the distance error generated from each pose esti-
mator. The interpretation of errors is performed by approximating the curves
in Fig. 12.9 with non linear regression for the hybrid OI, EKF and hybrid
EKF algorithm and a quadratic regression for the analytical algorithm. The
mean error of the OI algorithm is 0.81%, that is, a mean error of 8.1 mm for
a distance of 1 m.

The hybrid OI error is estimated to 0.84%, while the EKF degenerates
and presents a mean error of 2.6%. The lowest value of error is obtained with
the hybrid EKF where it is estimated as 0.72%. We conclude that the hybrid
EKF is best real distance estimator.

12.2.4.4 Virtual Object Rendering Results

Since the pose parameters were determined, we have projected a virtual cube
on the detected real target in order to evaluate visually the virtual object
rendering stability. In this experiment, the camera is freely moved around
fiducials. The identification algorithm detects and tracks targets in frames
and the hybrid EKF estimates position and orientation of the camera. In
Fig. 12.10, we see that virtual objects are well superimposed on the real image
and remain laid on the target for different camera poses.

12.2.4.5 Discussion

In this study, we compared the performances of four pose estimation algo-
rithms. We evaluated these methods using an experimental protocol to com-
pute several error sources and estimate real distances. We used three iterative
methods based on nonlinear optimization and a new analytical method based
on direct computation of parameters.

Indeed, the two kinds of algorithms have both advantages and shortcom-
ings. Iterative methods are accurate, but suffer from high computation expense
due to inaccurate initialization and local minima problems. On the other side,
the analytical methods are fast, but their major disadvantage is their lack of
accuracy.

Table 12.2 summarizes the results obtained from the different pose esti-
mation algorithms for each experiment criterion. Clearly, purely analytical

14



0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

0.005

0.01

0.015

0.02

0.025

0.03

Distance to fiducial center (m)

M
e
a
s
u
re

d
 e

rr
o
r 

(m
)

Analytical algorithm

Hybrid OI

EKF

Hybride EKF

0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7
0

0.005

0.01

0.015

0.02

0.025

0.03

Distance to fiducial center (m)

M
e
a
s
u
re

d
 v

a
ri
a
n
c
e
 (

m
)

Analytical algorithm

Hybrid OI

EKF

Hybride EKF

Fig. 12.8. Mean errors and variances of the classified data

15



Fig. 12.9. Evaluation of measured distances according to real distances

methods and purely iterative methods rank badly whereas hybrid methods
seem to be the best compromise for an algorithm that attempts to satisfy all
the criteria we set. However, depending on the individual criteria an algorithm
must fulfill, one of the presented methods may be more appropriate.

Target tracking is widely used in AR applications. Such an interest could
be explained by the intrinsic strength of the previous algorithms:

• Their requirements, in terms of image processing, are quite low since their
geometric properties are chosen so that they can be easily detected.

• They use their own code which makes it easy to distinguish one from
another. Moreover this code can be semantically linked to the application.

These systems also have flaws:

• Target systems invade the scene they need to be placed inside the envi-
ronment or stuck on the objects we wish to track.

• They cannot be applied to every type of environment. For example, in
some ARS the target may be soiled in industrial facilities, hence reducing
the tracking efficiency.

• They cannot be placed in arbitrary locations in the scene; usually targets
must be placed on objects or places with planar surfaces.

These limitations of marker-based tracking have led to research and de-
velopment of so-called marker-less tracking which does not require additional
scene instrumentation but is more involved in terms of image processing and

16



Fig. 12.10. Virtual object overlay in a tracking sequence using various fiducials

17



Table 12.2. Overall results of the different algorithms

Analytical H-OI EKF H-EKF

Execution time First Second Fourth Third
Reconstruction error Fourth Third Second First
Generalization error Second First Third Third
Distance estimation Fourth Third First Second
Mean ranking 2.75 2.25 2.5 2.25

computations. The interest in these methods has been renewed over the past
few years, following the rapid increase of available inexpensive computing
power, which makes possible the real time execution of marker-less algorithms
to track complex objects.

12.3 Marker-Less Based Approaches

Marker-less tracking is a very complex task, as it uses image processing op-
erators to detect natural features in the video stream and to recover camera
position and orientation. Several marker-less tracking approaches have been
developed in the recent years. Model-based tracking approaches appear to be
the most promising among the standard vision techniques currently applied in
AR applications. The main idea of the model-based techniques is to identify
features in the images using an object model. The problem is solved using reg-
istration techniques that allow alignment of 2-D image data and a 3-D model.
Edge features are widely used to track an object in image sequences. Wuest
et al. [19] present a model-based line tracking approach that can handle partial
occlusion and illumination changes. To obtain robust 2-D-to-3-D correspon-
dences, they have implemented a multiple hypotheses assigning method using
the Tukey estimator. The camera pose is computed by minimizing the dis-
tances between the projection of the model lines and the most likely matches
found in the image.

Drummond and Cipolla [20] propose a novel framework for 3-D model-
based tracking. Objects are tracked by comparing projected model edges to
edges detected in the current image. Their tracking system predicts the edge
locations in order to rapidly perform the edge search. They have used a Lie
group formalism in order to transform the motion problem into simple geo-
metric terms. Thus, tracking becomes a simple optimization problem solved
by means of iterative reweighed least squares.

Yoon et al. [21] present a model-based object tracking to compute the
camera 3-D pose. Their algorithm uses an Extended Kalman Filter (EKF) to
provide an incremental pose-update scheme in a prediction-verification frame-
work. In order to enhance the accuracy and the robustness of the tracking

18



against occlusion, they take into account the measurement uncertainties as-
sociated with the location of the extracted image straight-lines.

Recently, Comport et al. [22] have proposed a real-time 3-D model-based
tracking algorithm. They have used a visual control approach to formulate
the pose estimation problem. A local moving edges tracker is implemented
which is based on tracking of points normal to the object contours. In order
to make their algorithm robust, they have integrated a M-estimator into the
visual control law.

Other approaches have also been applied where different features have
been combined to compute the camera pose, such as edge and point feature
combination [23] and edge and texture information combination [24, 25]. In
the next section, we will present a robust line tracking approach for camera
pose estimation which is based on particle filtering framework [26]. This will
illustrate to the reader how to conceive and to evaluate such a system.

12.3.1 Marker-Less Line Tracking Approach

12.3.1.1 Problem Definition

In this section, we set the 3-D constraints for pose determination when using
line features. Given correspondences between 3-D and 2-D lines found in the
image, the goal is to find the rotation matrix and the translation vector which
map the world coordinate system to the camera coordinate system. Let L be
an object line. Several representations for a 3-D line have been proposed [27].
In our approach, we represent the 3-D line L by its two end-points p1 and
p2 (see Fig. 12.11). The point pi in world coordinates can be expressed in
camera frame coordinates as in (12.1).

Let (x1, y1, z1) and (x2, y2, z2) be the camera coordinates of the end-
points p1 and p2 which project onto the image plane at m1 and m2 respec-
tively. The projection plane formed by the image line (m1m2) is given by the

plane (Om1m2). The 3-D line L1 must lie in this plane. The normal �N to the
projection plane is given by:

�N = �n1 × �n2, (12.15)

where �n1 and �n2 are the optical rays of the image points m1 and m2. Thus,
the 3-D line constraint can be formulated as:

�N · (Rpi + T ) = 0. (12.16)

The 3-D line constraint represents the fact that any point on the 3-D line
in camera coordinates ideally must lie in the projection plane. This constraint
relates both rotation and translation pose parameters to the 3-D model and
2-D image lines. In the next section, we will describe the use of this constraint
within a particle filter to estimate the camera pose.

19



m1

m2

P1

P2

L1

l1

Xc

Yc

Zc

n1

n2

N

Image

plane

Camera

frame

Xw

Yw

Zw

World

frame

Oc

Ow

Fig. 12.11. Perspective projection of 3D line

12.3.1.2 Particle Filter Implementation

The particle filter is used to estimate the posterior density for the 3-D camera
pose parameters. The camera state is represented by position and rotation
of the camera with respect to a world coordinate system. Rotations can be
represented with various mathematical entities, such as matrices, axes and
angles, Euler angles, and quaternions. However, quaternions have proven very
useful in representing rotations because of several advantages over other rep-
resentations, such as increased compactness, lesser susceptibility to round-off
errors, avoidance of discontinuous jumps.

A quaternion representation of rotation R is written as a normalized four
dimensional vector q = ⌊q0 qx qy qz⌋, where

(

q2
0 + q2

x + q2
y + q2

z = 1
)

.
Thus, the camera state is given by:

X = ⌊q0 qx qy qz tx ty tz⌋, (12.17)

where T = [tx ty tz]
T

is the camera position (translation) vector.
We denote the camera state at time k by the vector Xk. Each particle Xn

k

corresponds to a potential pose of the camera. The most probable particle
will have important weights. These provide an approximation to the posterior
density. Basically, the key components of the Particle Filter are the state

20



dynamics and the observations used. More details on particle filter theory are
given in [28,29].

State Dynamics

The particle filter requires a probabilistic model for the state evolution be-
tween time steps, i.e. the density p (Xx |Xk−1 ). Since we have no prior knowl-
edge of camera motion, we use a simple random walk based on a uniform
density about the previous camera state [30]:

p (Xk |Xk−1 ) = U (Xk−1 − v,Xk−1 + v) , (12.18)

where v = [v1 v2]
T

represents the uncertainty about the incremental camera
movement (v1 for rotation and v2 for translation).

As the camera undergoes a random walk, it moves a certain random dis-
tance ∆d and deviates from its previous direction by some random quantity
∆θ. The proposed Uniform Random Walk model has a probability density
distributed according to vi · (2 · Rand − 1) i = 1, 2, with the random vari-
able Rand uniformly distributed between 0 and 1. The parameters vi are set
empirically.

Observation Model

Let yk be the observation at frame k and y1:k the set of observations from
frame 1 to frame k. In our case, observations correspond to the extracted
image lines li (see Fig. 12.1). We also assume that we have a set of 3-D scene
lines, Z = {L1, L2, . . . , LM}, which are defined in the world coordinate frame.
Each line Li is represented by its two end-points P i

1 and P i
2, respectively. The

projection of the line Li on the camera frame with the camera state Xk is
then denoted C(Li, Xk) and is given by:

C (Li, Xk) =

{

Rk · pi

1
+ Tk

Rk · pi

2
+ Tk

(12.19)

Equation (12.19) describes the projection of the 3-D model lines in the
camera coordinates frame. Thus, the two end points pi

1
and pi

2
of the 3-

D line Li are projected in the camera frame using the rigid transformation
between the world coordinates frame and the camera coordinates frame, given
by the current camera pose parameters (Rk, Tk).

The solution of the particle filter is to obtain successive approximations
to the posterior density p (Xk |y1:k, Z ). This is generally provided in the form
of weighted particles

{(

X1
k , w1

k

)

, . . . , (Xn
k , wn

k )
}

, where Xn
k is a state space

sample and the weights wn
k are proportional to p (yk |X

n
k ), so that:

S
∑

n=1

wn
k = 1 (12.20)

for a total of S particles.

21



The likelihood p (yk |Xk, Z ) is based on the closeness of the projected

line C (Li, Xk) to get on the projected plane defined by the vector �N . In
other words, we propose to use the 3-D line constraint in (12.16) to construct
the likelihood p (yk |Xk, Z ). Practically, for each extracted image line li(i =

1, . . . , l) we compute the normal vector �Ni to its projection plane. Then, for
each particle Xn

k we determine all the projected lines corresponding to the
model 3-D lines Lj as follows:

C (Lj , X
n
k ) n = 1, . . . , S and j = 1, . . . , M (12.21)

To compute the likelihood we use a function related to the number of the
model 3-D lines whose projections into the camera frame are within a given
threshold of extracted projection planes, i.e.

p (yk |Xk, Z ) = exp

⎧

⎨

⎩

−

l
∑

i=1

M
∑

j=1

dl

(

�Ni, Lj , Xk

)

⎫

⎬

⎭

, (12.22)

where I and M corresponds here to the number of 2-D extracted im-
age lines and the number of the 3-D model lines, respectively. In (12.22),

dl

(

�Ni, Lj , Xk

)

indicates whether the 3-D line Lj is an inlier or outlier with

respect to the observation �Ni and the state Xk, i.e.

dl

(

�Ni, Lj , Xk

)

=

{

1 if �Ni. �C (Lj , Xk) < εl

0 otherwise,
(12.23)

where εl is a threshold which defines the minimal distance to the plane
projection.

Equation (12.23) implies that if the projection of the 3-D model line in

the camera coordinate frame is orthogonal to the normal �Ni to the projection
plane, then we consider the 2-D-to-3-D matching between the image line li
and the 3-D line Lj as correct and allot to it a score equal to 1. Otherwise, we
consider the 2-D-to-3-D matching line as false and we put the score to zero.
Indeed, any point on the 3-D model line, in camera coordinates frame, must
lie in the projection plane, which justifies our modeling strategy.

Finally, the weights wn
k , for both point and line features, are given by:

wn
k =

p (yk |X
n
k , Z )

S
∑

n

p (yk |Xn
k , Z )

(12.24)

The output of the particle filter is given by:

X̂k =

S
∑

n=1

wn
k · Xn

k (12.25)

22



To avoid the degeneracy of the particle filter method, a re-sampling stage
may be used to eliminate samples with low importance weights and multiply
samples with high importance weights (see Sect. 12.2). In our work, we have
implemented the selection scheme proposed by Gordon [28].

12.3.1.3 Experimental Results

In order to study the robustness of our algorithm, we have used a complex test
sequence containing a 3-D object, as in Fig. 12.12, and simulated the camera
pose tracking in uncontrolled environment. This sequence test enables us to
evaluate our method in more realistic circumstances. This sequence is recorded
from a moving camera pointing toward the object of interest. The frame rate
is 25 frames/s (25 Hz) with a sequence duration of 40 s. The resolution of the
collected images is 320 × 240 pixels.

Frame 1 is used to calibrate the camera and also to initialize the camera
tracking algorithm. Thus, at k = 1 the state vector X1 is initialized with the
camera pose parameters given by the calibration procedure. In addition, to
extract line features from the current image, we have used the well known
Hough line transform. Each 2D line is then defined by its two end-points in
the image plane. This process generates more lines than needed to determine
a model pose, thus only a small subset of them are used by the algorithm to
compute pose and correspondence.

In order to analyze the pose estimation accuracy, we define the image
registration error (in pixels) which corresponds to the distance between the

Fig. 12.12. 3D object used in experiments

23



detected features in the image (inliers) and the re-projected 3-D reference fea-
tures using the estimated camera pose. When the camera pose is estimated,
we re-project the 3-D model on the current frame. This gives a visual tool to
assess the tracking accuracy. If augmented graphics appear stable in their cor-
rect position as the camera moves, this indicates good tracking performance.

Figure 12.13a demonstrates successful tracking. Clearly, the virtual ob-
ject is well superimposed on the real world. An analysis of the results shows
that our algorithm performs quite accurately for AR applications. Indeed, the
system exhibits an average image error lower than 1%.

In addition to the previous, we have developed an implementation to test
the robustness of our approach to partial occlusion of the object. Figure 12.13b
shows that the virtual object is correctly augmented onto the image frame al-
though the real object is occluded at approximately 40%. This demonstrates
that our algorithm can accurately estimate the camera pose when severe oc-
clusion occurs. Indeed, this robustness is simply ensured by the observation
model of the particle filter, which uses inliers with respect to the observations
in order to compute the filter output. Furthermore, as the 3-D constraint
equation for the camera pose parameters was developed in the case of “infi-
nite image line,” any image points on the 2-D line can be used to construct
the corresponding projection plane. Thus, when partial occlusion occurs, it
is sufficient to detect only small parts of the fiducial edges to estimate the
camera pose.

Furthermore, it is essential to minimize the number of particles used in
the estimation step. The number of particles needed is determined so that the
computational load remain sufficiently low for real-time application, while
at the same time high performance is assured. We have performed several
experiments to determine the appropriate number of particles and found that
N = 200 leads to a good compromise.

Finally, real-time performance of our tracking approach has been achieved
by carefully evaluating the processing time to compute the filter output.
We have implemented our algorithm on an Intel Pentium IV 2.99 GHz PC
equipped with a standard Matrox Meteor II acquisition card and an iS2 IS-
800 CCD camera. The computational time depends mainly on the number
of extracted lines. As our goal is to demonstrate the feasibility of the pro-
posed tracking framework, we have tuned the threshold parameters of the
Line Hough Transform to produce only interesting lines, that is long straight
lines. As a result, the processing time of our algorithm is, in average, less than
20 ms.

12.3.1.4 Discussion

We have presented an implementation example of a camera pose estimation
algorithm based on lines tracking. First, we formulated the problem by high-
lighting the geometrical constraint which relate the pose parameters to the
3-D model and 2-D image lines using the computer vision paradigm. Then, we

24



Fig. 12.13. Experimental results. (a) Example of camera pose estimation result
(b) camera tracking under partial occlusion of the 3D object

demonstrated the way to use this constraint in a particle filter to estimate the
camera pose. To evaluate our algorithm performance, we defined several crite-
ria which take into account AR applications needs, such as registration error,
robustness against occlusion and computational load. Experimental results
show that our algorithm can track the camera pose successfully and accurately

25



under various conditions, including severe occlusion. The achieved perfor-
mance is good compared to the performance of other line tracking techniques.

However, we find that the performance, in terms of speed, accuracy and
flexibility, of marker-less tracking techniques in general is still beyond what
real–world AR applications demand. Hybrid approaches can be an interesting
tracking solution, where other sensors (e.g. inertial sensors) are used to com-
pensate vision-based tracking. Indeed, the fusion of complementary sensors
is used to build better tracking systems. Synergies can be exploited to gain
robustness, tracking speed and accuracy, and to reduce jitter and noise.

12.4 Hybrid Approaches

Hybrid solutions attempt to overcome the drawbacks of any single sensing
solution by combining the measurements of at least two tracking methods.
Nowadays, a hybrid tracking system seems to be the best solution to achieve
a better vision-based camera tracking, and is widely applied in recent ARS.
State et al. [31] developed a hybrid tracking scheme which combined a fiducial–
based vision tracker with a magnetic tracker. Their system exhibits the (static)
registration accuracy of vision-based trackers and the robustness of magnetic
trackers.

Auer and Pinz [32] created a similar magnetic–vision system, which em-
ploys the corners as visual features. In their solution, prediction from the
magnetic tracker is used to reduce the search areas in the optical tracking sub-
system achieving a faster and more robust tracking. Another popular choice in
unprepared environments is inertial and natural feature video–based tracker
fusion. You et al. [33] created a tracking system which combined a natural fea-
ture vision system with three gyro sensors. The fusion approach is generally
based on the structure from motion (SFM) algorithm, in which approximate
feature motion is derived from inertial data, and vision feature tracking cor-
rects and refines these estimates in the image domain.

Chen and Pinz [34] presented a structure and motion framework for real
time tracking combining inertial sensors with a vision system based on natural
features. Their model uses fusion data to predict the user’s pose and also to
estimate a sparse model of the scene without any visual markers. An Extended
Kalman Filter (EKF) is used to estimate motion by fusion of inertial and
vision data and a bank of separate filters to estimate the 3-D structure of
the scene.

Chai et al. [35] employs an adaptive pose estimator with vision and inertial
sensors for overcoming the problems of inertial sensor drift and vision sensor
slow measurement. The EKF is also used for data fusion and error compensa-
tion. Foxlin and Naimark [36] have developed the VIS-tracker system, which
fuses data from inertial and vision sensors. They use a novel 2-D barcode
system to recognize a large number of unique fiducial codes so as to initialize
its location over a wide area. Their system is robust to lighting conditions
variation, fast motions, occlusions, and has very low latency.

26



Recently, Ababsa and Mallem [37] proposed a real-time hybrid approach
for 3-D camera pose estimation that integrates inertial and vision-based tech-
nologies. A fast and accurate vision based corner tracker forms the basis of
their vision system. In order to fuse sensor data, they propose to use a Particle
Filter instead of the EKF.

Furthermore, mobile outdoor ARS use, in addition to the camera, a
GPS for position measurements and inertial sensors coupled with magnetic
compasses for orientation. Examples of such systems include the proto-
type of the university of Columbia [38], the Tinmith-metro system [39], the
ARVino System [40], and the Going out System developed by Reitmayr and
Drummond [41].

Hybrid tracking is still a great challenge. Current systems require an ex-
tensive calibration of all the sensors. In some cases, the system has to be
initialised after a few minutes because of the drift. Moreover, most of the
vision-based tracking techniques mentioned here assume a known and accu-
rate initial position.

With the previous in mind, future research should be focused on robust and
reliable algorithms for hybrid marker-less tracking, initialization and sensor
fusion problems. Thus, future ARS are expected to be able to automatically
select and combine the suitable algorithms for defined conditions, to fuse,
filter and estimate the camera pose.

References

1. D.G. Lowe. Fitting Parameterized Three-Dimensional Models to Images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13, pp. 441–450,
1991.

2. R.M. Haralick. Pose Estimation from Corresponding Point Data. IEEE Trans-
actions on Systems, Man, and Cybernetics, 19(6), pp. 1426–1446, 1989.

3. D.F. DeMenthon and L.S. Davis. Model-based Object Pose in 25 Lines of Code.
International Journal of Computer Vision, 15(1–2), pp. 123–141, 1995.

4. C.P. Lu, G. Hager, and E. Mjolsness. Fast and Globally Convergent Pose Esti-
mation from Video Images. IEEE Transaction on Pattern Analysis and Machine
Intelligence, 22(6), pp. 610–622, June 2000.

5. Y. Hung, P. Yeh, and D. Harwood. Passive ranging to known planar point sets.
In Proceedings of IEEE International Conference on Robotics and Automation,
1, pp. 80–85, St. Louis, Missouri, 1985.

6. L. Quan and Z. Lan. Linear n-Point Camera Pose Determination. IEEE Transac-
tions. Pattern Analysis and Machine Intelligence, 21(7), pp. 774–780, July 1999.

7. Y. Cho and U. Neumann. Multi-Ring Color Fiducial Systems for Scalable Fidu-
cial Tracking Augmented Reality. In Proceedings of the Virtual Reality Annual
International Symposium (VRAIS’98). pp. 212, Washington, DC, USA, 1998.

8. L. Naimark and E. Foxlin. Circular data matrix fiducial system and robust
image processing for a wearable vision-inertial self-tracker. In Proceedings
of ACM/IEEE International Symposium on Mixed and Augmented Reality
(ISMAR 2002). pp. 27–36, Darmstadt, Germany, 2002.

27



9. J. Rekimoto. Matrix: A Realtime Object Identification and Registration Method
for Augmented Reality. In Proceedings of the Third Asian Pacific Computer and
Human Interaction (APCHI’98). pp. 63–68, Washington DC, USA, 1998.

10. J. Rekimoto and Y. Ayatsuka. Cybercode: Designing Augmented Reality Envi-
ronments with Visual Tags. In Proceedings of DARE 2000 on Designing Aug-
mented Reality Environments, pp. 1–10, Elsinore, Denmark, 2000.

11. H. Kato and M. Billinghurst. Marker Tracking and HMD Calibration for a
Video-based Augmented Reality Conferencing System. In Proceedings of the
2nd ACM/IEEE International Workshop on Augmented Reality (IWAR’99),
pp. 85–92, Washington DC, USA, 1999.

12. X. Zhang, S. Fronz, and N. Navab. Visual Marker Detection and Decoding in
AR Systems: A Comparative Study. In Proceedings of the ACM/IEEE Inter-
national Symposium on Mixed and Augmented Reality (ISMAR 2002), pp. 97,
Washington, DC, USA, 2002.

13. C.B. Owen, X. Fan, and P. Middlin. What is the Best Fiducial? In Augmented
Reality Toolkit, The First IEEE International Workshop. IEEE, 2002.

14. M. Fiala. Artag, A Fiducial Marker System Using Digital Techniques. In Pro-
ceedings of the 2005 IEEE International Conference on Computer Vision and
Pattern Recognition (CVPR’05). 2, pp. 590–596, Washington, DC, USA, 2005.

15. J. Canny. A computational approach to edge detection. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 8(6), pp. 679–698, 1986.

16. Z. Zhang. Flexible Camera Calibration by Viewing a Plane from Unknown Ori-
entations. In Proceedings of the International Conference on Computer Vision,
1, pp. 666, Corfu, Greece, 1999.

17. J.Y. Didier. Contributions à la déxtérité d’un système de réalité augmentée mo-
bile appliquée à la maintenance industrielle. In PhD Thesis, Université d’Évry,
France, 2005.

18. G. Welch and G. Bishop. An introduction to the kalman filter. Technical Report
No. TR 95-041, Department of Computer Science, University of North Carolina,
USA, 2004.

19. H. Wuest, F. Vial, and D. Stricker. Adaptive Line Tracking with Multiple
Hypotheses for Augmented Reality. In Proceedings of ACM/IEEE Interna-
tional Symposium on Mixed and Augmented Reality (ISMAR 2005), pp. 62–69,
Vienna, Austria, October 2005.

20. T. Drummond and R. Cipolla. Real-Time Visual Tracking of Complex Struc-
tures, IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7),
pp. 932–946, July 2002.

21. Y. Yoon, A. Kosaka, J.B. Park, and A.C. Kak. A New Approach to the Use
of Edge Extremities for Model-based Object Tracking. In Proceedings of the
2005 IEEE International Conference on Robotics and Automation (ICRA 2005).
pp. 1883–1889, Barcelonna, Spain, April 2005.

22. A.I. Comport, E. Marchand, M. Pressigout, and F. Chaumette. Real-Time
Markerless Tracking for Augmented Reality: The Virtual Visual Servoing Frame-
work. IEEE Transactions on Visualization and Computer Graphics, 12(6),
615–628, July/August 2006.

23. V. Lepetit, L. Vacchetti, D. Thalmann, and P. Fua. Fully Automated and Stable
Registration for Augmented Reality Applications. In Proceedings of ACM/IEEE
International Symposium on Mixed and Augmented Reality (ISMAR 2003),
p. 93, Tokyo, Japan, 2003.

28



24. L. Vacchetti, V. Lepetit, and P. Fua. Combining Edge and Texture Information
for Real-Time Accurate 3D Camera Tracking. In Proceedings of ACM/IEEE
International Symposium on Mixed and Augmented Reality (ISMAR 2004),
pp. 48–57, Arlington, VA, November 2004.

25. M. Pressigout and E. Marchand. Real-Time 3D Model-based Tracking: Com-
bining Edge and Texture Information. In Proceedings of the 2006 IEEE Inter-
national Conference on Robotics and Automation (ICRA 06), pp. 2726–2731,
Orlando, Florida, May 2006.

26. F. Ababsa and M. Mallem. Robust Line Tracking Using a Particle Filter for
Camera Pose Estimation. In Proceedings of ACM Symposium on Virtual Re-
ality Software and Technology (VRST 2006), pp. 207–211, Limassol, Cyprus,
November 2006.

27. A. Beutelspacher and U. Rosenbaum. Projective Geometry: From Foundations
to Applications, Cambridge University Press, Cambridge, 1998.

28. N.J. Gordon. A Hybrid Bootstrap Filter for Target Tracking in Clutter. IEEE
Transactions on Aerospace and Electronic Systems, 33, pp. 353–358, 1997.

29. A. Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo Methods in
Practice. Springer, Berlin Heidelberg New York, 2001.

30. M. Pupilli and A. Calway. Real-Time Camera Tracking Using a Particle Fil-
ter. In Proceedings of the British Machine Vision Conference (BMVC 2005),
pp. 519–528, Oxford, UK, September 2005.

31. A. State, G. Hirota, D.T. Chen, W.F. Garrett, and M.A. Livingston, Superior
Augmented Reality Registration by Integrating Landmark Tracking and Mag-
netic Tracking. In Proceedings of the 23rd Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH’96), pp. 429–438, New York,
NY, USA, 1996.

32. T. Auer and A. Pinz. Building a Hybrid Tracking System: Integration of Op-
tical and Magnetic Tracking. In Proceedings of the 2nd ACM/IEEE Interna-
tional Workshop on Augmented Reality (IWAR’99), pp. 13–19, Washington,
DC, USA, 1999.

33. S. You, U. Neumann, and R. Azuma. Hybrid Inertial and Vision Tracking for
Augmented Reality Registration. In Proceedings of IEEE International Confer-
ence on Virtual Reality (VR 99), pp. 260–267, 1999.

34. J. Chen and A. Pinz. Structure and Motion by Fusion of Inertial and Vision-
based Tracking. In OCG. Proceedings of the 28th OAGM/AAPR Conference.
Digital Imaging in Media and Education (W. Burger and J. Scharinger, eds.),
pp. 55–62, 2004.

35. L. Chai, W. Hoff, and T. Vincent. Three-Dimensional Motion and Structure
Estimation Using Inertial Sensors and Computer Vision for Augmented Reality.
Presence: Teleoperators and Virtual Environments, pp. 474–492, 2002.

36. E. Foxlin and L. Naimark. VIS-Tracker: A Wearable Vision-Inertial Self-Tracker.
In Proceedings of the IEEE Conference on Virtual Reality (VR 2003), pp. 193,
Los Angeles, CA, USA. March 2003.

37. F. Ababsa and M. Mallem. Hybrid 3D Camera Pose Estimation Using Particle
Filter Sensor Fusion. Advanced Robotics. International Journal of the Robotics
Society of Japan (RSJ), pp. 21, 165–181, 2007.

38. S. Feiner, B. MacIntyre, T. Hollerer, and A. Webster. A Touring Machine: Pro-
totyping 3D Mobile Augmented Reality Systems for Exploring the Urban Envi-
ronment. In Proceedings of the 1st IEEE International Symposium on Wearable
Computers (ISWC 97). pp. 74, Washington, DC, USA, 1997.

29



39. W. Piekarski and B. Thomas. Tinmith-metro: New Outdoor Techniques for Cre-
ating City Models with an Augmented Reality Wearable Computer. In Proceed-
ings of the 5th International Symposium on Wearable Computers, pp. 31–38,
Zurich, 2001.

40. G.R. King, W. Piekarski, and B.H. Thomas. ARVino – Outdoor Augmented
Reality Visualisation of Viticulture GIS Data. In Proceedings of the ACM/IEEE
International Symposium on Mixed and Augmented Reality (ISMAR 2005),
pp. 52–55, Washington, DC, USA, 2005.

41. G. Reitmayr and T. Drummond. Going out: Robust Model-based Tracking for
Outdoor Augmented Reality. In Proceedings of the ACM/IEEE International
Symposium on Mixed and Augmented Reality (ISMAR 2006), pp. 109–118,
Santa Barbara, CA, USA, October 2006.

A. Websites and Companies Specializing in Augmented

Reality Research and Applications

http://www.isense.com/
http://www.xsens.com/
http://www.augmented-reality.org/
http://www.igd.fhg.de/index.html.en
http://studierstube.icg.tu-graz.ac.at/
http://www.miralab.unige.ch/
http://vrlab.epfl.ch/
http://www1.cs.columbia.edu/cvgc/
http://www.tinmith.net/
http://www.arvika.de/
http://ar.in.tum.de/Chair/ProjectDwarf
http://evra.ibisc.univ-evry.fr/index.php/AMRA
http://evra.ibisc.univ-evry.fr/index.php/ARCS
http://www.ibisc.univ-evry.fr/Equipes/RATC/
http://www.hitl.washington.edu/artoolkit/

30


