
HAL Id: hal-00339451
https://hal.science/hal-00339451

Submitted on 27 Feb 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Integrating Internet Technologies in Designing a
Tailorable Groupware Architecture

Nader Cheaib, Samir Otmane, Malik Mallem

To cite this version:
Nader Cheaib, Samir Otmane, Malik Mallem. Integrating Internet Technologies in Designing a Tai-
lorable Groupware Architecture. The 12th International Conference on CSCW in Design (CSCWD
2008), Apr 2008, Xi’an, China. pp.141–147, �10.1109/CSCWD.2008.4536973�. �hal-00339451�

https://hal.science/hal-00339451
https://hal.archives-ouvertes.fr

1

Abstract

In this article, we propose an approach to introduce
tailorability in the design of groupware, as the approaches
already existing are still ambiguous in putting it forward in
CSCW systems. We will present a brief overview on some
approaches that deals with tailorability in this field. Then, we
will make use of concepts and notions from each in order to
integrate them in an innovative, value-added and tailorable
architecture. We will discuss the purpose of integrating
internet technologies with software agents while putting it
forward in the context of tailorable groupware design.

Keywords: Groupware Design, Tailorability, Service

Oriented Architecture, Software Agents.

1. Introduction

As the use of the Internet and services offered with it is
emerging more and more, people are in an increasing need of
flexible and agile applications. The emergence of collaborative
work over the Internet was a solution to the high complexity of
systems and the technical difficulties that could arise from
their use, as users, geographically distributed want more and
more to work together on a single task, but using rigid and
often incompatible applications that may lead to
interoperability problems. The aim of CSCW (Computer
Supported Cooperative Work) is to find ways for groupware to
enhance collaboration between individuals. For [14],
groupware invention is a challenge, as the nature of
collaborative work continually changes as a consequence of
changing work needs, but also as a consequence of how the
systems themselves tend to change work relationships and
processes. As a consequence, the author argues that systems
must themselves adapt to reflect the unpredictable differences
between the requirements of support for collaborative work
during analysis and the actual requirements.

1.1. Need for Tailorability

The research about tailorability originated from the gap
between design and use of collaborative systems. Making the
system, its interfaces and the services that they could offer
tailorable for users is an essential and ongoing research field
that needs much attention to yet be concrete. For this reason,
tailorability has shown to be an essential property that should
be taken in consideration, as it offers to users the possibility to

adapt the application based on their needs and not the other
way around.

Various authors have tried to study the notion of
tailorability [1, 2, 14]. However, this definition is still
ambiguous and lacking in most systems (multi/single user),
where users’ needs when collaborating could multiply rapidly
(audio, video etc.), and the need for a generic and tailorable
architecture to ensure interoperability and ease of integration
remains significant.

In this paper, we will study some approaches found in the
literature for the design of tailorable groupware architecture.
Our aim is to understand how this notion is utilized, extracting
advantages of some approaches in order to design a new
architecture for collaborative applications that will be totally
tailorable. The paper will proceed as follows: First, we will
give some definitions of tailorability. The second part will be
dealing with some approaches for tailorability in groupware,
and in the last part, we will introduce our own approach, which
combines some interesting concepts found in the later
approaches. We will talk about the on-going and recent
research field of web services and software agents’ integration,
and how we could put it in the context of groupware
tailorability. Finally, we summarize the main ideas and give a
short overview for further work in the field.

2. Tailorability Approaches

Various authors have tried to define tailorability for
groupware. The authors in [6] underline that a tailorable
application is at the same time reusable and modifiable by its
own users, and the activity of its redefinition is one of the
facets of its utilization. Other authors [1] define a tailorable
application as a system that can be adapted properly according
to changes and the diversity of users’ needs, or [3] that defines
tailorability as the capacity of an information system to allow a
person to adjust the application based on personal preferences
or different tasks. For [14] tailoring is the continued
development of an application by making persistent
modifications to it. It is in fact initiated in response to an
application being inefficient or difficult to use. Clearly,
tailorability is a crucial property for groupware applications,
but the question remains of how this notion can be
implemented, in particular for users that are not necessarily
specialist in designing software applications.

Various approaches aiming to integrate tailorability in
CSCW systems have received much attention in the literature
[1, 2, 3]. However, most of these approaches apply only to
certain specific domains, as support for synchronous
groupware, workflow-based or collaborative writing, and it is
not certain whether these approaches could be applied to

Integrating Internet Technologies in Designing a Tailorable Groupware Architecture

Nader Cheaib, Samir Otmane and Malik Mallem
 IBISC CNRS FRE 2873, Université d’Evry, 91020 Evry Cedex, France

 nader.cheaib@ibisc.univ-evry.fr, samir.otmane@ibisc.univ-evry.fr, malik.mallem@ibisc.univ-evry.fr

2

generic domains as well. In our research, we found that
introducing tailorability in the design of groupware is still very
limited and theoretical, as there exist various approaches
without a sufficient support for comparison and classification.
For this reason, we thought that providing a global view on
some of these approaches is already a contribution to CSCW
domain. In the rest of this paper, we will begin by building a
global view on some approaches for tailorability in CSCW
systems. We will mention respectively the activity theory
approach [6]; component-based [1]; building blocks [3] and
SOA [9] (Service Oriented Architecture) approaches. Finally,
we will present our own approach based on the later
approaches.

2.1. Activity Theory Approach

The author in [2] justifies that tailorability possesses a
theoretical foundation enabling to apprehend it using
fundamental properties of human activity. He proposes a set of
properties for constructing a conceptual model for a generic
environment of CSCW systems, based on a fundamental
theory, reflectivity. This environment is called DARE
(Distributed Activities in a Reflexive Environment) [6]. In the
realization of DARE, a framework is proposed based on the
concepts and mechanisms of the activity theory, which permits
to distinguish two essential properties of the human activity:
 • Reflexivity, that enables to access and modify the structure
of the application during its execution.
 • Crystallization or the reutilization of user’s experiences.
These experiences could be, for example, a specification of
roles in a particular activity.

Based on the activity theory, all mediator elements influence
the course of activity and thus it is impossible to predict its
impact on a certain activity [2]. This is why, for the author, the
tool should be considered a fully mediator element, meaning
that if it could influence the collaborative activity, then it
should be modified by it. The author was inspired by the Meta-
Object Protocol (MOP) [6] for realizing DARE, as the
reflexivity takes place with the introduction of a meta model
whose main entity is the ‘task’, that is a specification of the
activity that describes the objectives, resources and roles that
should take place in collaboration between actors.

2.2. Component-Based Architecture

A lot of research has been made for the design of
component-based architecture for groupware [4, 1, 5]. The
concept of a component-based architecture is independent of
any application domain, and thus it is highly probable to adopt
this kind of architecture to integrate tailorability in the design
of groupware [4]. In a component-based approach, a
groupware is designed as a collection of components in which
they could be added, modified, or deleted. This type of
applications will be able to support the evolution that
tailorability tries to introduce. The authors in [4] argue that an
ideal collaborative system should be designed as a composable
system where the integration of new components is build on
top of a neutral basis. We will see here two component-based

approaches, each using different ways and mechanisms to
reach tailorability: A reflexive computational system [1] and
building blocks architecture [3].

 2.2.1. Reflective Computational System, The authors in [1]
define a tailorable system as one that can be adapted for
eventual modifications in its structure according to diversity of
user’s needs. The authors use the term adaptability to identify
tailorability in its technical aspects. Here, the authors reused
the notion of reflexivity in the activity theory seen in the first
approach [2], by insisting that an adaptable application should
include a representation of aspects of itself, and this self
representation should be changeable by internal or external
influences, and connected to certain aspects of the application.
If the representation changes, the application changes as well,
and only aspects included in the self representation of the
application are susceptible to be affected by tailorability
activities. As a simple example, consider an application with
an initialization file that specifies the application’s background
color [1]. In this case, this initialization file is the self
representation of the application, and the color is the adaptable
aspect. This type of applications is seen as a “Reflective
computational system”. Note that a reflexive system is one that
contains both representations of aspects of the real world, and
representations of its own activities. In consequence, this type
of application is capable of examining its own state and
structure, and able to modify it according to user’s and the
context’s needs. The causal relation implies that every
modification of the (meta) representation is automatically
shifted towards the behavior of the system.

 2.2.2. “Building block” Architecture, The authors in [3]
propose an approach based on building blocks for constructing
tailorable CSCW systems. They argue that the evolution in the
utilization of groupware is nowadays one of the main reasons
for designing tailorable systems. In fact, the authors consider a
tailorable system as one that permits for its users to perform
modifications on the technical structure of the application after
its implementation, according to their needs, personal
preferences or different tasks. For the simple reason that all the
modifications could not be predicted in the design phase by the
application designers, it would be possible, according to the
authors, to equip the users with means to accommodate these
changes.

The authors introduce the concept of tailoring to the
extreme [3]. This concept implies the extension of the set of
functions in the system with new modules that could be
dynamically integrated. An example of this concept is to
permit the user to download modules from the internet and
plug them directly into the system (plug-ins, widgets, etc.).
However, this approach requires that functional modules
(building blocks) should be analyzed before integrating them
in order to determine the functions that they could offer and
the way in which they will communicate and interconnect to
other modules for minimizing interference in the system. The
authors here insist that interoperability standards are therefore

3

essential between the building blocks that will be integrated
into the system, probably resulting from different vendors, in
order to standardize and facilitate the process of integration
with other building blocks already existing, and therefore,
insure the stability of the system as a whole. The authors
implemented their concepts in CooPS (Cooperative People &
Systems) [3].

2.3. Service-Oriented Architecture (SOA)

The demand for collaborative and flexible services is
becoming more urgent as the competition in the marketplace is
getting fiercer between service providers. For this reason, the
authors in [9] propose the utilization of a Service-Oriented
Architecture (SOA) for the construction of collaborative
services. For the authors, SOA is becoming a new paradigm
that aim at implementing loosely-connected applications which
are extensible, flexible and integrate well with existing
systems. Collaborative platforms have the potential of offering
services on different layers of abstraction as their role is to
offer a support tool for collaboration of activities [8].

SOA [8, 9] is a paradigm in full expansion that could be
adapted to offer extensible services integrated in a platform for
different users to collaborate between each other. Web
services could facilitate the collaboration between groups or
organizations, and can be defined by, for example, resource
sharing, communication and interaction between collaborators
(synchronous, asynchronous, communication channels etc.),
virtual rooms, organization management (calendar, mail etc.).
The support for web services offers interoperability between
different collaborative or single-user systems [8], as they can
be viewed as modular applications. The architecture considers
a model of integrated services, where the interfaces of web
services are described with a standardized definition language
WSDL (Web Service Definition Language), and interact with
each other using SOAP (Simple Object Access Protocol),
while having their definitions saved in some norms of a web
service catalogue using UDDI (Universal Description,
Discovery and Integration).

 3. Tailorable Design of Groupware

We base our approach mainly on the concept of a reflective
system introduced in [6] and [1] (see paragraph 2.2.1). In
addition, we use the concept of tailoring to the extreme [3] that
relies on building blocks (that are Web services in our case),
requiring them to be analyzed before integrating them into the
system in order to discover the services they offer.

We also base our approach on SOA in designing
collaborative services [9]. The use of SOA is mainly due to the
interoperability that this approach offers. Using already
standardized protocols, this approach will complement other
approaches, and thus will combine the concepts of tailorable,
reflective architecture with the concept of interoperability, for
in consequence satisfying the maximum tailorability needed in
the design of groupware. Finally, we introduce a hot research
topic over the last years, which is web services’ integration

with software agents. We will see the advantages of using
agents in conjunction with web services by attempting to
integrate them into our approach. The integration of web
services with software agents has the objective of giving the
web services a proactive behavior in interacting with users.
We will begin by describing our architecture, and then we will
see how our approach integrates the later approaches and make
use of each.

3.1. Tailorable Groupware Architecture

Figure 1 illustrates our architecture. The main square

represents the boundaries of the system that contain the
interfaces connecting users to the application. The square in
the middle represents the self representation of the system.
This self representation [1] is viewed in our approach as a
norm of public directory that contains the list of all the
services included in the system. This public directory is built
using the protocol UDDI (Universal Description, Discovery
and Integration), that is one of the core web services standards
[12]. In other words, this self representation contains the
definitions of services running in the system that are
susceptible of undergoing tailorability activities by
collaborating users. The definitions of these web services are
provided using the standardized language for web services,
WSDL (Web Service Definition Language), and interact with
each other and the user using SOAP (Simple Object Access
Protocol). For a more elaborate explanation on web services
standards, please refer to [12]. The definitions included in the
self representation of the system are connected to adaptable
aspects, which are in our approach, the services themselves, as
we can observe in Figure 1. These services can be considered
as orchestrations of other services in the system [10], and
include other services based on the functionalities they offer.
In our approach, we distinguish three main categories of
services: ComService, CooService and ProService:
• ComService: contains all services offering means of
communication between users in collaboration
(videoconference service, voice recorder service etc.).
• CoorService: contains services implementing rules of
coordination between users, and codify their interaction (i.e.
workflow).

Figure 1: Design of our tailorable architecture

4

• ProService: contains services that are the collaborative
product of using the architecture. (Ex: paint application, word
document etc.).
By classifying services in the system into three main categories
(Communication, Coordination and Production), the three
main spaces of the software collaboration process defined by
the 3C model [11] are satisfied. Note that we use the term
‘Production’ to mean ‘Cooperation’ of activities (satisfying the
terms used in the 3C model: Communication, Coordination
and Cooperation).

3.2. Standards for Interoperability

By using SOA [9] as a basis to our approach, we insure
interoperability between services in the application, and also
between the user’s needs and the system’s capacity and
performance. In fact, SOA offers three main standards that
achieve interoperability: SOAP, UDDI and WSDL. We make
use of the three standards in our architecture as follows:
• SOAP is a communication protocol written in XML, which
permits to exchange data independently of the operating
system used. To interact with the system, the user sends
requests to the self representation of the application using
SOAP messages.
• UDDI is a directory of web services’ definitions called via
the protocol SOAP. This type of protocol will implement the
self representation of our architecture. In this way, the users
interrogate the UDDI to know what are the services registered
in the system, what type of functions they offer and the means
to access them. UDDI implements 3 basic functions:
 • Publish: Lists the Web services’ definitions in the self
representation.
 • Find: Allows users to easily search for services using a
search engine applied on the self representation of the system.
 • Bind: Insures the connection between a needed service in
the system, and its clients.
• WSDL is used to list the definitions of the services in the self
representation of the system (UDDI) that is be susceptible to
be modified by tailoring activities. WSDL is also written in
XML, listing the methods available, the messages formats of
the services’ interfaces and the way to access them.

3.3. Classic SOA Vs Tailorable SOA

In Figure 2, we can see the transformation of the classic
SOA found in the literature to our vision of a tailorable SOA.
In the classic SOA, there exist 2 actors: the service provider
that registers the definitions of Web services (WSDL) in the
public registry (UDDI). The user in this kind of architecture
has only the possibility to send SOAP requests to interrogate
the UDDI about a needed service, but does not have the
possibility to modify the UDDI by adding new services that
could better satisfy his needs. This limits the use and the
flexibility of the approach, as users would only be limited to
use the services already existing in the system, and thus
wouldn’t be able to adapt the application to their needs, but
rather the other way around.

In the tailorable SOA, we modify the structure of the classic

SOA in a way that the service user is the service provider
himself. In other words, the user will then have the privilege to
interrogate the UDDI (self representation of the application in
our approach) using standard SOAP requests, but also modify
it using the same type of messages formats by directly
plugging the new service definitions into the UDDI (i.e.
drag/drop mechanism). The protocols provided (SOAP) in the
SOA will be in charge of reconfiguring the links between the
services added and the services already present in the system.
In fact, the self representation part could be seen as an open
implementation mechanism [7] where the users would be able
to modify the structure of the application (inserting new
service definitions through their WSDL files) without
recompiling the system and stopping its execution. Also, this
kind of system will satisfy the evolution of the use of the
application due to temporal or behavioral changes. In this case,
the classic Service-Oriented Architecture will be transformed
into a tailorable Service-Oriented Architecture by giving the
user tools to accommodate these changes.

3.4. Added-Value Tailorable Architecture

By integrating the three approaches described in the first
section, we created an added-value architecture that introduces
tailorability in collaborative applications to the fullest. In fact,
we used the notion of reflexivity in [1, 6] by adopting the
authors’ view of a reflective system containing a
representation of its own activities, and thus able to access and
modify its structure according to user’s needs. More
specifically, we use the notion of self representation [1] that is
viewed in our approach as a public registry containing
definitions of services in the system connected to adaptable
aspects of the application, that are the services themselves.
This means that if the definitions of the services change, the
services themselves change as well, and in consequence, the
whole system would become tailorable by users. We than used
the concept of tailorability to the extreme [3] that requires
modules to be analyzed before integrating them into the
system. This concept has also another essential requirement,
which is the necessity of having interoperability mechanisms
to allow reconfiguration of modules from different vendors
with other functions constituting the system. We remedied this
problem by using interoperability standards from the SOA
approach [8]. Using these standards, the user will easily be

Figure 2: Classic Vs Tailorable SOA

5

able to analyze the functionalities of the services [3] (by using
the services’ WSDL) before inserting them into the self
representation of the application [1]. Thus, by combining the
three concepts found in the literature (reflexivity, tailoring to
the extreme and SOA), a tailorable architecture is emerged
satisfying properties of interoperability [8], openness [7] and
flexibility that are in our opinion, essential requirements for
CSCW systems.

3.5. Software Agents and Web services Integration

For [18], current techniques for publishing and finding
services (such as WSDL and UDDI) rely on static descriptions
of service interfaces, forcing consumers to find and bind
services at design time. On the other hand, web services are
becoming one of the most important architectures used in
heterogeneous cooperative information systems, as it was the
appearance of Web services that permitted internet sites to
offer services in a more flexible manner [14]. However, the
concept of software agents is even older than web services,
and it has been employed with success for executing
distributed applications. Agents are defined briefly as a piece
of software that acts autonomously to undertake tasks on
behalf of users. For [16], it is based on the fact that users only
need to specify a high-level goal instead of issuing explicit
instructions, leaving the how and when decisions to the agent.
The same authors say that software agents exhibit a number of
features that make them different from other traditional
components including autonomy, goal-orientation,
collaboration, flexibility, self-starting, temporal continuity,
character, communication, adaptation, and mobility.

 The reason behind our motivation to integrate software
agents with web services is driven by the fact that agents put in
practice the concept of mobile code, and through coordination
with their flexible architectures, can easily be adapted to
highly dynamic and heterogeneous environment as the web.
Web services however are the fast emergence of dominant
means for connecting distributed applications through well
established internet protocols.

Software agents can be one of the essential developments to
web services for the fact that they are functional entities
instead of being just simple interaction delegations or
communication means [15]. The idea in our design of
tailorable architecture is to explore the capacities of agents’
proactive interactions to enhance the behavior of web services
in a service-oriented architecture (SOA). With this paradigm,
software components, where each one is representing a service
and an agent in collaboration, can interact with each other for
providing unified services in a specified environment, as for
example the exchange of multimedia applications in a virtual
environment (we are currently working on such system, we call
it Oce@nyd). This is aligned with the authors in [15]: “agents
will become an essential part of most Web-based applications,
serving as the ‘glue’ that makes a system as large as the Web
manageable and viable.”

3.6. Purpose of integration

For [15], the purpose of the combination is to integrate
agents and web services technologies into a cohesive entity
that attempts to surpass the weakness of each technology,
while reinforcing their individual advantages. This integration
can be proposed on the design and implementation level,
where on the design level, web services are encapsulated as
semi-autonomous agents that can be employed for describing
the external behaviors of software agents, and where every
agent works in relation to the environment as a regular web
service. In consequence, agents can be used to establish high-
level, flexible interaction models, and the web services will be
more appropriate for resolving the problem of interoperability
of diverse applications in concrete realizations. At the
execution level, UDDI WSDL and SOAP will provide
capacities as the discovery, deployment and communication.
Eventually, by integrating web services and software agents in
the context of groupware tailorability, we introduce a totally
innovative view of a groupware architecture design, offering
tailorability at the system’s level, where the system can be
tailored by dynamically integrating agents with web services,
thus offering to users tailoring capabilities. Software agents
will be responsible for dynamic reconfiguration and discovery
of services, along with openness and flexibility already
satisfied by our architecture conceived from various tailoring
approaches found in the literature. Eventually, by identifying
these technologies, implementing real tailorable architecture
will shift from theory to real practice.

3.7. Use of Agents in our architecture

Taking this into consideration, dynamic service selection
needs an agent-based solution. Agents can represent
autonomous service consumers and providers as well as
collaborating to dynamically configure and reconfigure
services-based software applications. In our architecture, the
agent can play the active role of a consumer. That is, whenever
a consumer application using the system needs to use a
service, it employs its agents to communicate with the service.
For each service, the architecture will create a service agent
that exposes the service’s interface, augmented with
functionality to capture the consumer’s preferences or needs
and to query other agents for a suitable match [17]. The agent
can determine objective attribute values (such as reliability,
availability, and request-to-response time) on its own and gets
user feedback for subjective attributes (such as the user’s
overall experience). The architecture will have a self-
performance reliable data in which it could use to calculate the
degree of tailorability offered to the user along with its
performance capabilities according to user’s satisfaction in
delivering the needed services.
3.7.1. JADE and Web services, JADE (Java Agent
DEvelopment Framework) is a middle-ware implemented in
Java which simplifies the implementation of agents complying
with the FIPA specifications [18] through a set of graphical
tools that supports the debugging and deployment phases.
JADE agents use ACL (Agent communication Language) to

6

communicate between each other, which is analogous to the
SOAP protocol used by Web services. We rely on the
approach in [17] presenting a Web service agent framework
along with the approach in [18] for integrating web services
with JADE agents, providing common means to dynamically
invoke instances of each other at run-time. Another approach
used is to allow the two platforms to evolve in parallel without
imposing restrictions on each other, hence accepting equity
between Web services and agents’ roles. To do this, a module
between the two platforms should exist translating ACL
messages to Web service invocations, and vice versa. This
module is registered as a special agent service in FIPA DF
(Directory Facilitator in JADE) and a special Web Service
endpoint in UDDI directories, so when an agent wants to
invoke a Web service, the request is passed to this particular
module to perform the actual Web service invocation. This
reflects the assumption that Web services need to be registered
before they can be discovered, which is true for a model like
UDDI but does no longer hold in recent P2P models [18].

4. Conclusion

In this article, we gave a brief overview on some approaches
that try to implement tailorability in designing CSCW
(Computer Supported Cooperative Work) systems. Moreover,
we described a theoretical foundation for a collaborative
platform using Internet technologies to be put forward in the
domain of groupware tailorability, giving concrete tools for its
implementation: A synergy of tailoring concepts put together
to arrive to a component-based, service-oriented architecture.
Software agents are to be used enhancing the functionalities of
web services by giving them a proactive behavior. However,
we should say that the utility of agents can be limited when
only considering the standard web services protocol stack
without semantic annotations. Hence, we expect to expand our
work by integrating tools to manipulate semantic Web service
descriptions.

We are working on the implementation of a multimedia
application (oce@nyd), enabling users to share digital
information such as photos and audio/video recordings in
order to enrich simultaneously and in collaboration maps of
underwater sites. Our architecture for designing groupware
will be applied to the later multimedia environment. Moreover,
experiments are taking place for testing agents’ integration
with web services capabilities in a JADE environment. Our
aim again is to provide users with powerful mechanism for
dynamically tailoring the services offered in the platform, and
hence, enhance collaboration.

ACKNOWLEDGMENT
The implementation of this work is a part of a national

project DIGITAL OCEAN, which has the objective of
creating an innovative mode for the distribution of multimedia
applications. This project is supported by the National Agency
of Research in France (ANR).

REFERENCES
[1] O. Stiemerling and A. Cremers, “Tailorable Component

Architectures for CSCW- Systems”. Proceedings of the 6th
euromicro Workshop on Parallel and Distributed Programming,
January 1998, pp. 21-24

[2] G. Bourguin, “Les leçons d’une expérience dans la réalisation
d’un collecticiel réflexif “. Actes de la 15ème Conference
francophone IHM 2003, pp. 24-28.

[3] R. Slagter, M. Biemans, and H.T Hofte, “Evolution in Use of
Groupware: Facilitating Tailoring to the Extreme”. Proceedings
of the Seventh International Workshop on Groupware,
CRIWG2001, pp. 68-73.

[4] M. Roseman and S .Greenberg, “Simplifying Component
Development in an Integrated Groupware Environment”.
Proceedings on the 10th annual ACM symposium on User
Interface software and technology, NY, USA 1997, pp.65-72.

[5] R. Slagter, H.T Hofte and O. Stiemerling, “Component-Based
Groupware: An introduction”. Proceedings on the CSCW2000
Workshop on Component-based groupware, Volume 2, 2000.

[6] G. Bourguin, “Un support informatique à l’activité coopérative
fondé sur la Théorie de l’Activité le projet DARE“. Thesis in
computer science, University of Lille, France 2000.

[7] G. Kiczales, J. Lamping, C. Lopes, C. Maeda and A. Mendhekar,
“Open Implementation Design Guidelines”. Proceedings of the
19th international conference on Software engineering, ACM
Press NY, USA 1997, pp.481-490.

[8] I. Jorstad, S. Dustdar and D.V Thanh, “A service Oriented
Architecture Framework for Collaborative Services”,
Proceedings of the 14th International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise.
Copyright IEEE 2005, pp.121-125.

[9] S. Dustdar, H. Gall and R. Schmitt, “Web services for
Groupware in Distributed and Mobile Collaboration”. 12th
Euromicro Conference on Parallel, Distributed and Network-
Based Processing, 2004, pp.241-247.

[10] C. Peltz, “Web Services Orchestration. A review of emerging
technologies, tools and standards”. Hewlett Packard White
Paper, January 2003.

[11] C.A Ellis and J.A Wainer, “Conceptual Model of Groupware”,
ACM Conference on Computer Supported Cooperative Work
(CSCW94), ACM Press New York, USA, 1994, pp.79-88,

[12] E. Newcomer, “Understanding Web Services: XML, WSDL,
SOAP and UDDI”, Addison-Wesley Professional (E), 2002.

[13] A. Fernandez, “Groupware for Collaborative Tailoring”. Thesis
in computer science, des Fachbereichs Informatik der
FernUniversitat in Hagen. Hagen, April 2005.

[14] I.E. Foukarakis, A.I. Kostaridis, C.G. Biniaris, D.I. Kaklamani
and I.S. Venieris. “Webmages: An agent platform based on web
services”. Computer Communications Journal, Volume 30, Issue
3 2007, pp. 538-545.

[15] W. Shen, Q. Hao, S. Wang, Y. Li and H. Ghenniwa, “Agent-
based service-oriented integration architecture for collaborative
intelligent manufacturing” . Robotics and Computer-integrated
Manufacturing Volume 23, Number 3, June 2007, pp. 315-325.

[16] Z. Maamar, Q.Z Sheng and B. Benatallah,”Interleaving Web
Services Composition and Execution Using Software Agents and
Delegation”. AAMAS2003 Workshop on Web Services and
Agent-Based Engineering. July 2003.

[17] E.M Maximilien and M.P Singh. “A Framework and ontology
for dynamic web services selection”. Internet Computing IEEE,
Volume 8, Number 5, 2004, pp.84-93

[18] T.X Nguyen and R. Kowalczyk. “WS2JADE: Integrating Web
Service with Jade Agents” Technical Report, SOCAB05,
Springer 2005.

