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Abstract. We study the spectrum σ(M) of the multipliers M which commute with the trans-
lations in weighted spaces L2

ω(R). For operators M in the algebra generated by the convolutions

with φ ∈ Cc(R) we show that µ(Ω) = σ(M), where the set Ω is determined by the spectrum

of the shift S and µ is the symbol of M . For the general multipliers M we establish that µ(Ω)
is included in σ(M). A generalization of these results is given for the weighted spaces L2

ω(Rk)
where the weight ω has a special form.

AMS Classification: 47A10

1. Introduction

In this paper we examine the spectrum of multipliers M in a weighted space L2
ω(R). Our

approach is based heavily on the existence of symbols for this class of operators and we show
that the spectrum σ(M) can be expressed by the symbol µ of M applied to a set Ω defined by
the spectrum of the shift operator S. To announce our results we need some definitions.
A weight ω on R is a non negative function on R such that

sup
x∈R

ω(x+ y)

ω(x)
< +∞, ∀y ∈ R.

Denote by L2
ω(R) the space of measurable functions on R such that

∫

R

|f(x)|2ω(x)2dx < +∞.

Let Cc(R) be the set of continuous functions on R with compact support. For a compact K
of R denote by CK(R) the subset of functions of Cc(R) with support in K. The space L2

ω(R)
equipped by the norm

‖f‖ =
( ∫

R

|f(x)|2ω(x)2dx
) 1

2

is a Banach space and Cc(R) is dense in L2
ω(R). We denote by f̂ or by F(f) the usual Fourier

transform of f ∈ L2(R). Denote by Sx the operator of translation by x defined on L2
ω(R) by

(Sxf)(t) = f(t− x), ∀t ∈ R.

Let S (resp. S−1) be the translation by 1 (resp. -1) on the space L2
ω(R). Define the set

Ω =
{
z ∈ C, − ln ρ(S−1) ≤ Im z ≤ ln ρ(S)

}
,

where ρ(A) is the spectral radius of A. For φ ∈ Cc(R) denote by Mφ the operator of convolution
by φ on L2

ω(R). Let A (resp. B) be the closed algebra generated by operators Mφ, for φ ∈ Cc(R)
1
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(resp. Sx, x ∈ R) with respect to the topology of the operator norm. Denote by Â the set of
characters of a commutatif algebra A.

Definition 1. A bounded operator M on L2
ω(R) is called a multiplier if

MSx = SxM, ∀x ∈ R.

We will denote by M the algebra of the multipliers on L2
ω(R). First we treat the operators

in the algebra A working with the symbol of M defined in Section 2. Notice that if Mφ is the

convolution by φ ∈ Cc(R), the symbol of Mφ is φ̂. Our first result concerns the spectrum of
Mφ.

Theorem 1. For φ ∈ Cc(R), we have

σ(Mφ) = φ̂(Ω).

On the other hand, for every M ∈ A we obtain

Theorem 2. Let M ∈ A and let ν be the symbol of M . Then ν is a continuous function on Ω
and we have

σ(M) = ν(Ω). (1.1)

For general multipliers M we have a weaker result leading to the inclusion of µ(Ω) in the
spectrum of M.

Theorem 3. Let M be a multiplier on L2
ω(R) and let µ be the symbol of M . Then we have

µ(Ω) ⊂ σ(M). (1.2)

We should mention that our results cannot be obtained by using known spectral mapping
theorems since in general we have no spectral calculus for the operators in the algebra M. For
this reason we exploit the existence of symbols µ for such operators established in [6] for L2

ω(R)
and in [8] for L2

ω(Rk) assuming that the weight is a product of weights ω = ω1 × ...× ωk. The

symbols µ are holomorphic in the set
◦

Ω and this plays a crucial role in our analysis since we
may characterize the spectrum of M by the set µ(Ω). For example if Tt = etS , then Theorem 3
yields the well known inclusion

etσ(S) ⊂ σ(etS).

On the other hand for the operators in M it seems difficult to obtain an analog of (1.2) by
using the techniques developed for C0-semi-groups and special Banach algebra (see [4], [3], [5],
[1]).

2. Preliminaries

First, we explain the link between the spectrum of S and the set where the symbol of a
multiplier is defined. For a ∈ R, denote by ga the function ga(x) = g(x)eax. In [6], we have
established the following theorem.

Theorem 4. For every M ∈ M, and for every a ∈ I = [− ln ρ(S−1), ln ρ(S)], we have
1) (Mf)a ∈ L2(R), ∀f ∈ Cc(R).
2) There exists µ(a) ∈ L∞(R) such that

∫

R

(Mf)(x)eaxe−itxdx = µ(a)(t)

∫

R

f(x)eaxe−itxdx, a.e.
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i.e.

(̂Mf)a = µ(a)(̂f)a.

3) If
◦

I 6= ∅ then the function µ(z) = µ(Im z)(Re z) is holomorphic on
◦

Ω.

Definition 2. Given M ∈ M, if
◦

Ω 6= ∅, we call symbol of M the function µ defined by

µ(z) = µ(Im z)(Re z), ∀z ∈
◦

Ω.

Moreover, if a = − ln ρ(S−1) or a = ln ρ(S), the symbol µ is defined for z = x+ ia by the same
formula for almost all x ∈ R.

We will say that a ∈ R verifies the property (P) if for every M ∈ M we have:
(1) (Mf)a ∈ L2(R), ∀f ∈ Cc(R)
(2) There exists µ(a) ∈ L∞(R) such that

∫

R

(Mf)(x)eaxe−itxdx = µ(a)(t)

∫

R

f(x)eaxe−itxdx, a.e.

Denote by σ(A) the spectrum of the operator A. First we have the following

Proposition 1. We have

σ(S) =
{
z ∈ C,

1

ρ(S−1)
≤ |z| ≤ ρ(S)

}

and the real a satisfies the property (P) if and only if a ∈ [− ln ρ(S−1), ln ρ(S)] .

Theorem 4 implies that if a ∈ [− ln ρ(S−1), ln ρ(S)], then a satisfies the property (P).

Lemma 1. If a ∈ R verifies the property (P), then ea+ib ∈ σ(S), for all b ∈ R.

Proof. Let α ∈ C be such that eα /∈ σ(S). Then it is clear that T = (S − eαI)−1 is a
multiplier. Let a ∈ R verify the property (P). Then there exists ν(a) ∈ L∞(R) such that

(̂Tf)a = ν(a)(̂f)a, ∀f ∈ Cc(R), a.e.

Replacing f by (S − eαI)g, for g ∈ Cc(R) we get

(̂g)a(x) = ν(a)(x)F
(
[(S − eαI)g]a

)
(x), ∀g ∈ Cc(R), a.e.

and

(̂g)a(x) = ν(a)(x)ĝa(x)[e
a−ix − eα], ∀g ∈ Cc(R), a.e.

Choosing a suitable g ∈ Cc(R), we have

ν(a)(x)(e
a−ix − eα) = 1, a.e.

Since ν(a) ∈ L∞(R), we obtain that Reα 6= a and we conclude that

ea+ib ∈ σ(S), ∀b ∈ R.

�

Taking into account Theorem 4 and Lemma 1, Proposition 1 follows directly.
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3. Spectrum of Mφ

In this section we characterize the spectrum of Mφ, for φ ∈ Cc(R) by using the results of
the previous one. We recall that Mφ denotes the operator of convolution by φ ∈ Cc(R). We
recall that Ω is the set

Ω =
{
z ∈ C, − ln ρ(S−1) ≤ Im z ≤ ln ρ(S)

}
.

First notice that 0 ∈ σ(Mφ). Indeed, suppose that Mφ is invertible. Then M−1
φ ∈ M and let µ

be its symbol. For a ∈ I, we have

F
(
M−1
φ (Mφf)a

)
= (̂f)a, ∀f ∈ Cc(R).

Then, we get

µ(a)(x)(̂φ)a(x)(̂f)a(x) = (̂f)a(x), ∀f ∈ Cc(R), a.e.

and

µ(a)(x)(̂φ)a(x) = 1, a.e.

Taking into account that µ(a) ∈ L∞(R) and limx→+∞ (̂φ)a(x) = 0, we obtain a contradiction.
Thus, we conclude that 0 ∈ σ(Mφ).

Now, we establish the following

Lemma 2. Let φ ∈ Cc(R). If λ ∈ σ(Mφ) \ {0} then there exists α ∈ Ω such that

λ = φ̂(α).

Proof. Following [9], we have σ(Mφ) = {γ(Mφ), γ ∈ M̂}. Let γ ∈ M̂ be fixed such that
λ = γ(Mφ). We have

Mφf =

∫

R

Sx(f)φ(x)dx

but we cannot deduce that

γ(Mφ) =

∫

R

γ(Sx)φ(x)dx,

since we do not have the convergence of the Bochner integral
∫

R
Sxφ(x)dx with respect to the

operator norm. However, we claim that

γ(Mψ) =

∫

R

γ(Mφ ◦ Sx)

γ(Mφ)
ψ(x)dx, ∀ψ ∈ Cc(R). (3.1)

Consider the application

η : Cc(R) ∋ ψ −→ η(ψ) = γ(Mψ)

which is a continuous linear form on Cc(R). Here Cc(R) is equipped by the topology given by
the inductive limit of CK(R), K being a compact subset of R. Indeed, if K is a compact subset
of R and if (ψn)n∈N ⊂ CK(R) is a sequence uniformly convergent to ψ ∈ CK(R), for every
g ∈ L2

ω(R), we have

‖Mψn
g −Mψg‖ ≤

∫

K

‖ψn − ψ‖∞ sup
y∈K

‖Sy‖‖g‖dy
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and so
lim
n→∞

‖Mψn
−Mψ‖ = 0.

We deduce that the application

Cc(R) ∋ ψ −→Mψ ∈ A

is sequentially continuous and so it is continuous from Cc(R) to A. It follows that η is a
continuous linear form on Cc(R) and there exists a measure m (see [2], Chapter 3) such that

η(ψ) =

∫

R

ψ(x)dm(x), ∀ψ ∈ Cc(R)

and hence

γ(Mψ) =

∫
ψ(x)dm(x).

This implies that for every ψ ∈ Cc(R) we have

γ(Mψ ◦Mφ) =

∫

R

(ψ ∗ φ)(t)dm(t)

=

∫

R

( ∫

R

ψ(x)φ(t− x)dx
)
dm(t).

Using Fubini theorem, we get

γ(Mψ ◦Mφ) = γ(Mψ◦φ) =

∫
ψ(x)

( ∫

R

φ(t− x)dm(t)
)
dx

=

∫

R

ψ(x)γ(Sx ◦Mφ)dx

and this yields the claim (3.1). Consequently, we conclude that

γ(Mψ) =

∫

R

ψ(x)γ(Sx)dx, ∀ψ ∈ Cc(R). (3.2)

Since γ ∈ M̂, it is clear that γ(Sx) ∈ σ(Sx) (see [9]). Set

θγ(x) = γ(Sx) =
γ(Mφ ◦ Sx)

γ(Mφ)
, ∀x ∈ R.

The application
x −→ Sx ◦Mφ = MSx(φ)

is continuous from R into A and we deduce that θγ is a continuous morphism from R to C. The
function θγ verifies

θγ(x+ y) = θγ(x)θγ(y), ∀x ∈ R, ∀x ∈ R.

Therefore there exists α ∈ C such that

θγ(x) = e−iαx, ∀x ∈ R.

Applying (3.1) we get

γ(Mφ) =

∫

R

φ(x)e−iαxdx = φ̂(α).

Since e−iα ∈ σ(S), an application of Proposition 1 yields

1

ρ(S−1)
≤ eImα ≤ ρ(S)
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which implies α ∈ Ω. This completes the proof of Lemma 2. �

Proof of Theorem 1. We will prove that φ̂(Ω) ⊂ σ(Mφ). Let λ = φ̂(α), with α ∈ Ω and
a = Im(α) ∈ [− ln ρ(S−1), ln ρ(S)]. Suppose that λ /∈ σ(Mφ). Then, the operator Mφ − λI is
invertible and (Mφ − λI)−1 is a multiplier on L2

ω(R). Since a ∈ [− ln(ρ(S−1)), ln(ρ(S))] there
exists ν(a) ∈ L∞(R) such that

F
(
((Mφ − λI)−1f)a

)
(x) = ν(a)(x)(̂f)a(x), ∀f ∈ Cc(R), a.e.

Replacing f by (Mφ − λI)g which is obviously also in Cc(R) if g ∈ Cc(R), we get

(̂g)a(x) = ν(a)(x)F
(
((Mφ − λI)g)a

)
(x)

= ν(a)(x)
(
(̂φ)a(x) − λ

)
(̂g)a(x), ∀g ∈ Cc(R), a.e.

Choosing a suitable g ∈ Cc(R), we conclude that

1 = ν(a)(x)[φ̂(x+ ia) − λ], a.e.

Let Reα = x0 and let V be a neighborhood of x0 such that |ν(a)(x)| ≤ m, for all x ∈ V . Then,
we have

|φ̂(x+ ia) − λ| ≥
1

m
,

which yields a contradiction for x suitably close to x0, because φ̂(α) = φ̂(x+ ia) = λ and φ̂ is

continuous. Thus λ ∈ σ(Mφ) and so φ̂(Ω) ⊂ σ(Mφ). Lemma 2 implies σ(Mφ) \ {0} ⊂ φ̂(Ω) and
the proof of the theorem is complete. �

4. Generalization

In this section we investigate the spectrum of a general multiplier on L2
ω(R). We recall that

the symbol µ of a multiplier M is in H∞(
◦

Ω) and it is essentially bounded on the boundary δ(Ω)
of Ω (see Theorem 4). Introduce the set

µ(Ω) = {µ(z) : z ∈ Ω \ N},

N being a set of measure zero.

Proof of Theorem 3 Assume that λ /∈ σ(M). Then (M − λI)−1 is a multiplier and for
every a ∈ [− ln ρ(S−1), ln ρ(S)], we introduce the symbol ν(a) ∈ L∞(R) such that

F
(
((M − λI)−1f)a

)
(x) = ν(a)(x)(̂f)a(x), ∀f ∈ Cc(R), a.e.

Replacing f by (M − λI)g where g ∈ Cc(R), we get

(̂g)a(x) = ν(a)(x)F
(
((M − λI)g)a

)
(x)

= ν(a)(x)(µ(a)(x) − λ)(̂g)a(x), a. e.

Choosing a suitable g ∈ Cc(R), we get

1 = ν(a)(x)(µ(a)(x) − λ), a.e.
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Given x ∈ R, satisfying

|µ(a)(x)| ≤ ‖µ(a)‖∞ and |ν(a)(x)| ≤ ‖ν(a)‖∞, (4.1)

it is clear that if λ = µ(a)(x) = µ(x+ ia) we obtain a contradiction. For every x for which (4.1)

holds and for a ∈ [− ln ρ(S−1), ln ρ(S)] we deduce that

µ(a)(x) = µ(x+ ia) ∈ σ(M).

According to Theorem 4, ν and µ are holomorphic on
◦

Ω, and so ν(a) and µ(a) are continuous

on R, for every a ∈ [− ln ρ(S−1), ln ρ(S)]. Consequently, (4.1) holds for almost every x and the
proof is complete. �

Notice that ν may not be continuous on the boundary of Ω. Indeed, for ω = 1, let h ∈ L∞(R)
be a function which is not continuous on R. Define the operator H on L2(R) by the formula

Hf = F−1(hf̂).

Then H is a multiplier on L2(R), but its symbol h is not continuous on Ω = R.

Now we present one example. Suppose that χ is a complex Borel measure such that
∫ +∞

−∞

‖St‖d|χ|(t) < +∞. (4.2)

Then the operator Mχ defined by the formula

Mχ(f) =

∫ +∞

−∞

St(f)dχ(t), ∀f ∈ L2
ω(R),

is obviously a multiplier on L2
ω(R). The condition (4.2) implies that

∫

R

eaxd|χ|(x) < +∞, ∀a ∈ [− ln ρ(S−1), ln ρ(S)],

so the integral ∫

R

e−iαxdχ(x)

converges for all α ∈ Ω. Clearly, the symbol of Mχ, defined in Section 2, becomes

χ̂(α) =

∫

R

e−iαxdχ(x).

The results of the previous sections imply

χ̂(σ(S)) ⊂ σ(Mχ) (4.3)

The inclusion (4.3) has been established by other methods in [1] and [4]. We see that the
inclusion (4.3) may also be obtained by the tools of our paper.

Now we give an illustration of Theorem 3. Let Tt = etM , where M ∈ M. It is clear that
the group (Tt)t∈R is included in M. For t ∈ R, a ∈ I and f ∈ Cc(R), we have

̂(etMf )a(y) =
∑

k≥0

̂tk(Mkf)a
k!

(y)
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=
∑

k≥0

tk

k!
(µ(a)(y))

k (̂f)a(y) = etµ(a)(y)(̂f)a(y) a.e.,

where µ(a) is the symbol of M . Then the symbol of Tt is the function z −→ etµ(z). Now suppose

that M = S. Then we have µ(a)(y) = e−(iy−a) and µ(z) = e−iz, ∀z ∈ Ω. Following Theorem 3,

we obtain {ete
−iz

, z ∈ Ω} ⊂ σ(Tt) and

etσ(S) ⊂ σ(etS), ∀t ∈ R. (4.4)

The inclusion (4.4) follows also from a classical result about the spectrum of a semi-group (see
[4], [3]).

5. Spectrum of M ∈ A

Now we examine the spectrum of multipliers forming a larger class than those of operators
Mφ. We will show that if M ∈ A and ν is the symbol of M , then ν is a continuous function on
Ω and we have

σ(M) = ν(Ω).

Proof of Theorem 2. First, we show that ν is continuous on Ω. Let (φn)n∈N be a
sequence of Cc(R) such that limn→+∞ ‖Mφn

− M‖ = 0. The construction of ν(a) for a ∈

[− ln ρ(S−1), ln ρ(S)], given in [6], defines ν(a) as the limit of (̂ψn)a with respect to the weak

topology of L2(R), where (ψn)n∈N is a special sequence in Cc(R) such that (Mψn
)n∈N converges

to M with respect to the strong operator topology. Using the same argument as in [6], we get

ν(a)(x) = lim
n→∞

(̂φn)a(x)

with respect to the weak topology of L2(R). For fixed a ∈ [− ln ρ(S−1), ln ρ(S)] and x ∈ R

there exists γ ∈ M̂ (see section 2) such that

(̂φ)a(x) = γ(Mφ), ∀φ ∈ Cc(R).

This implies that for every k ∈ N, n ∈ N, we have

|(̂φn)a(x) − (̂φk)a(x)| = |γ(Mφn
) − γ(Mφk

)| ≤ ‖Mφn
−Mφk

‖. (5.1)

Since (Mφn
)n∈N converges to M in A, we conclude that (̂φn)a converges uniformly on R to a

continuous function µ(a) and that there exists a constant C such that

|(̂φn)a(x)| ≤ C, ∀a ∈ [− ln ρ(S−1), ln ρ(S)], ∀x ∈ R, ∀n ∈ N.

Moreover, we have limx→+∞ µ(a)(x) = 0. We obtain that (̂φn)a converges to µ(a) with respect

to the weak topology of L2(R). Thus we can identify the symbol of M with the function µ
defined by

µ(x+ ia) = µ(a)(x), ∀a ∈ [− ln ρ(S−1), ln ρ(S)], ∀x ∈ R.

Taking into account (5.1), it is clear that µ is continuous on Ω.

Given λ ∈ σ(M) \ {0}, there exists γ ∈ M̂ such that λ = γ(M). Then we have

λ = lim
n→∞

γ(Mφn
).
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According to the results in section 2, there exists α ∈ Ω such that

γ(Mφn
) = φ̂n(α), ∀n ∈ N.

Consequently, we have

λ = lim
n→∞

γ(Mφn
) = lim

n→∞
φ̂n(α) = µ(α).

Since µ is equal to the symbol ν of M , we conclude that

σ(M) \ {0} ⊂ ν(Ω).

Taking into account the result of the previous section, the proof is complete. �

6. Spectrum of multipliers on L2
ω(Rk)

Theorems 1-3 can be generalized for multipliers on L2
ω(Rk), k > 1, where ω is a weight on

Rk satisfying the following condition

ω = ω1 × ...× ωk,

where ω1,..., ωk are weights on R. From now on, ω denotes a weight on Rk having the above form.

Given φ ∈ Cc(R
k), the Fourier transform φ̂ is defined on Ck. Set

em = (em,1, ..., em,k),

where em,i = 0, if m 6= i and em,m = 1. For m = 1, ..., k, let Sm be the translation by em defined

on L2
ω(Rk). Introduce

U = {z = (z1, ..., zk) ∈ Ck, Im zi ∈ [− ln ρ(S−1
i ), ln ρ(Si)], for i = 1, ..., k}.

We have (see [7] and [8]) the following representation theorem for multipliers on L2
ω(Rk).

Theorem 5. Let M be a multiplier on L2
ω(Rk). Then there exists ν ∈ L∞(U) such that

∫

Rk

(Mf)(x)e−i<x,z>dx = ν(z)

∫

Rk

f(x)e−i<x,z>dx,

for all z ∈
◦

U and for almost every z ∈ δ(U).

Given a multiplier M on L2
ω(Rk), we call symbol of M the function ν introduced in the

previous theorem. Moreover, in [8] the following result was established.

Proposition 2. We have z = (z1, ..., zk) ∈ U if and only if

e−izm ∈ σ(Sm), form = 1, ..., k.

The set U is related to the joint spectrum of S1, ..., Sk. Let A be a commutative Banach
algebra with unit I. We recall the following

Definition 3. The joint spectrum σs(A1, ..., Ak) of the operators A1, ...., Ak ∈ A is the set

{(α1, ..., αk) ∈ Ck,
∑k

m=1(Am − αmI)Jm is not invertible in A, ∀(J1, ..., Jk) ∈ A
k}.

In general σs(A1, ..., Ak) 6= σ(A1) × ...× σ(Ak) and the determination of σs(A1, ..., Ak) is a
quite difficult problem. However, in the spaces L2

ω(Rk), we have the equality

σs(S1, ..., Sk) = σ(S1) × ...× σ(Sk)
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(see ([8]). Using Theorem 5, Proposition 2 and the arguments in Section 3, we obtain the
following

Theorem 6. For φ ∈ Cc(R
k), we have

σ(Mφ) = φ̂(U).

Moreover, repeating the arguments in Sections 4-5, we obtain

Theorem 7. Let M ∈ A and let ν be the symbol of M . Then ν is a continuous function on U
and we have

σ(M) = ν(U).

Let M ∈ M and let ν be its symbol. Then

ν(U) ⊂ σ(M).

References

[1] E. Frasangova and P.J. Miana, Spectral mapping inclusions for Phillips functional calculus in Banach spaces

and algebras, Studia Math. 167 (2005), 219-226.
[2] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Volume 1, Springer Verlag, Berlin (1970).
[3] L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. AMS, 236 (1978), 385-394.
[4] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. (1957).
[5] J. Howland, On a theorem of Gearhart, Integral Equations and operator Theory, 7 (1984), 138-142.
[6] V. Petkova, Symbole d’un multiplicateur sur L2

ω(R), Bull. Sci. Math. 128 (2004), 391-415.
[7] V. Petkova, Multipliers on Banach spaces of functions on a locally compact abelian group, J. London Math.

Soc. 75 (2007), 369-390.
[8] V. Petkova, Joint spectrum of translations on L2

w(R2), Far East Journal of Mathematical Sciences (FJMS)
28 (2008), 1-15.

[9] W. Zelasko, Banach algebras, Elsevier Science Publishers, Amsterdam (1973).
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