SPECTRAL THEOREM FOR MULTIPLIERS ON $L_{\omega}^{2}(\mathbb{R})$

VIOLETA PETKOVA

Abstract

We study the spectrum $\sigma(M)$ of the multipliers M which commute with the translations in weighted spaces $L_{\omega}^{2}(\mathbb{R})$. For operators M in the algebra generated by the convolutions with $\phi \in C_{c}(\mathbb{R})$ we show that $\overline{\mu(\Omega)}=\sigma(M)$, where the set Ω is determined by the spectrum of the shift S and μ is the symbol of M. For the general multipliers M we establish that $\overline{\mu(\Omega)}$ is included in $\sigma(M)$. A generalization of these results is given for the weighted spaces $L_{\omega}^{2}\left(\mathbb{R}^{k}\right)$ where the weight ω has a special form.

AMS Classification: 47A10

1. Introduction

In this paper we examine the spectrum of multipliers M in a weighted space $L_{\omega}^{2}(\mathbb{R})$. Our approach is based heavily on the existence of symbols for this class of operators and we show that the spectrum $\sigma(M)$ can be expressed by the symbol μ of M applied to a set Ω defined by the spectrum of the shift operator S. To announce our results we need some definitions. A weight ω on \mathbb{R} is a non negative function on \mathbb{R} such that

$$
\sup _{x \in \mathbb{R}} \frac{\omega(x+y)}{\omega(x)}<+\infty, \forall y \in \mathbb{R}
$$

Denote by $L_{\omega}^{2}(\mathbb{R})$ the space of measurable functions on \mathbb{R} such that

$$
\int_{\mathbb{R}}|f(x)|^{2} \omega(x)^{2} d x<+\infty
$$

Let $C_{c}(\mathbb{R})$ be the set of continuous functions on \mathbb{R} with compact support. For a compact K of \mathbb{R} denote by $C_{K}(\mathbb{R})$ the subset of functions of $C_{c}(\mathbb{R})$ with support in K. The space $L_{\omega}^{2}(\mathbb{R})$ equipped by the norm

$$
\|f\|=\left(\int_{\mathbb{R}}|f(x)|^{2} \omega(x)^{2} d x\right)^{\frac{1}{2}}
$$

is a Banach space and $C_{c}(\mathbb{R})$ is dense in $L_{\omega}^{2}(\mathbb{R})$. We denote by \hat{f} or by $\mathcal{F}(f)$ the usual Fourier transform of $f \in L^{2}(\mathbb{R})$. Denote by S_{x} the operator of translation by x defined on $L_{\omega}^{2}(\mathbb{R})$ by

$$
\left(S_{x} f\right)(t)=f(t-x), \forall t \in \mathbb{R}
$$

Let S (resp. S^{-1}) be the translation by 1 (resp. -1) on the space $L_{\omega}^{2}(\mathbb{R})$. Define the set

$$
\Omega=\left\{z \in \mathbb{C},-\ln \rho\left(S^{-1}\right) \leq \operatorname{Im} z \leq \ln \rho(S)\right\}
$$

where $\rho(A)$ is the spectral radius of A. For $\phi \in C_{c}(\mathbb{R})$ denote by M_{ϕ} the operator of convolution by ϕ on $L_{\omega}^{2}(\mathbb{R})$. Let \mathcal{A} (resp. $\left.\mathcal{B}\right)$ be the closed algebra generated by operators M_{ϕ}, for $\phi \in C_{c}(\mathbb{R})$
(resp. $S_{x}, x \in \mathbb{R}$) with respect to the topology of the operator norm. Denote by \widehat{A} the set of characters of a commutatif algebra A.

Definition 1. A bounded operator M on $L_{\omega}^{2}(\mathbb{R})$ is called a multiplier if

$$
M S_{x}=S_{x} M, \forall x \in \mathbb{R}
$$

We will denote by \mathcal{M} the algebra of the multipliers on $L_{\omega}^{2}(\mathbb{R})$. First we treat the operators in the algebra \mathcal{A} working with the symbol of M defined in Section 2. Notice that if M_{ϕ} is the convolution by $\phi \in C_{c}(\mathbb{R})$, the symbol of M_{ϕ} is $\hat{\phi}$. Our first result concerns the spectrum of M_{ϕ}.

Theorem 1. For $\phi \in C_{c}(\mathbb{R})$, we have

$$
\sigma\left(M_{\phi}\right)=\overline{\hat{\phi}(\Omega)}
$$

On the other hand, for every $M \in \mathcal{A}$ we obtain
Theorem 2. Let $M \in \mathcal{A}$ and let ν be the symbol of M. Then ν is a continuous function on Ω and we have

$$
\begin{equation*}
\sigma(M)=\overline{\nu(\Omega)} \tag{1.1}
\end{equation*}
$$

For general multipliers M we have a weaker result leading to the inclusion of $\mu(\Omega)$ in the spectrum of M.
Theorem 3. Let M be a multiplier on $L_{\omega}^{2}(\mathbb{R})$ and let μ be the symbol of M. Then we have

$$
\begin{equation*}
\overline{\mu(\Omega)} \subset \sigma(M) \tag{1.2}
\end{equation*}
$$

We should mention that our results cannot be obtained by using known spectral mapping theorems since in general we have no spectral calculus for the operators in the algebra \mathcal{M}. For this reason we exploit the existence of symbols μ for such operators established in [6] for $L_{\omega}^{2}(\mathbb{R})$ and in [8] for $L_{\omega}^{2}\left(\mathbb{R}^{k}\right)$ assuming that the weight is a product of weights $\omega=\omega_{1} \times \ldots \times \omega_{k}$. The symbols μ are holomorphic in the set $\stackrel{\circ}{\Omega}$ and this plays a crucial role in our analysis since we may characterize the spectrum of M by the set $\mu(\Omega)$. For example if $T_{t}=e^{t S}$, then Theorem 3 yields the well known inclusion

$$
e^{t \sigma(S)} \subset \sigma\left(e^{t S}\right)
$$

On the other hand for the operators in \mathcal{M} it seems difficult to obtain an analog of (1.2) by using the techniques developed for C_{0}-semi-groups and special Banach algebra (see [4], [3], [5], [1]).

2. Preliminaries

First, we explain the link between the spectrum of S and the set where the symbol of a multiplier is defined. For $a \in \mathbb{R}$, denote by g_{a} the function $g_{a}(x)=g(x) e^{a x}$. In [6], we have established the following theorem.
Theorem 4. For every $M \in \mathcal{M}$, and for every $a \in I=\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right]$, we have 1) $(M f)_{a} \in L^{2}(\mathbb{R}), \forall f \in C_{c}(\mathbb{R})$.
2) There exists $\mu_{(a)} \in L^{\infty}(\mathbb{R})$ such that

$$
\int_{\mathbb{R}}(M f)(x) e^{a x} e^{-i t x} d x=\mu_{(a)}(t) \int_{\mathbb{R}} f(x) e^{a x} e^{-i t x} d x \text {, a.e. }
$$

i.e.

$$
\widehat{(M f)_{a}}=\mu_{(a)} \widehat{(f)_{a}} .
$$

3) If $\stackrel{\circ}{I} \neq \emptyset$ then the function $\mu(z)=\mu_{(\operatorname{Im} z)}(\operatorname{Re} z)$ is holomorphic on $\stackrel{\circ}{\Omega}$.

Definition 2. Given $M \in \mathcal{M}$, if $\stackrel{\circ}{\Omega} \neq \emptyset$, we call symbol of M the function μ defined by

$$
\mu(z)=\mu_{(\operatorname{Im} z)}(\operatorname{Re} z), \forall z \in \stackrel{\circ}{\Omega}
$$

Moreover, if $a=-\ln \rho\left(S^{-1}\right)$ or $a=\ln \rho(S)$, the symbol μ is defined for $z=x+i a$ by the same formula for almost all $x \in \mathbb{R}$.

We will say that $a \in \mathbb{R}$ verifies the property (P) if for every $M \in \mathcal{M}$ we have:
(1) $(M f)_{a} \in L^{2}(\mathbb{R}), \forall f \in C_{c}(\mathbb{R})$
(2) There exists $\mu_{(a)} \in L^{\infty}(\mathbb{R})$ such that

$$
\int_{\mathbb{R}}(M f)(x) e^{a x} e^{-i t x} d x=\mu_{(a)}(t) \int_{\mathbb{R}} f(x) e^{a x} e^{-i t x} d x, \text { a.e. }
$$

Denote by $\sigma(A)$ the spectrum of the operator A. First we have the following
Proposition 1. We have

$$
\sigma(S)=\left\{z \in \mathbb{C}, \frac{1}{\rho\left(S^{-1}\right)} \leq|z| \leq \rho(S)\right\}
$$

and the real a satisfies the property (P) if and only if $a \in\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right]$.
Theorem 4 implies that if $a \in\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right]$, then a satisfies the property (P).
Lemma 1. If $a \in \mathbb{R}$ verifies the property (P), then $e^{a+i b} \in \sigma(S)$, for all $b \in \mathbb{R}$.
Proof. Let $\alpha \in \mathbb{C}$ be such that $e^{\alpha} \notin \sigma(S)$. Then it is clear that $T=\left(S-e^{\alpha} I\right)^{-1}$ is a multiplier. Let $a \in \mathbb{R}$ verify the property (P). Then there exists $\nu_{(a)} \in L^{\infty}(\mathbb{R})$ such that

$$
\widehat{(T f)_{a}}=\nu_{(a)} \widehat{(f)_{a}}, \forall f \in C_{c}(\mathbb{R}), \text { a.e. }
$$

Replacing f by $\left(S-e^{\alpha} I\right) g$, for $g \in C_{c}(\mathbb{R})$ we get

$$
\widehat{(g)_{a}}(x)=\nu_{(a)}(x) \mathcal{F}\left(\left[\left(S-e^{\alpha} I\right) g\right]_{a}\right)(x), \forall g \in C_{c}(\mathbb{R}), \text { a.e. }
$$

and

$$
\widehat{(g)_{a}}(x)=\nu_{(a)}(x) \widehat{g_{a}}(x)\left[e^{a-i x}-e^{\alpha}\right], \forall g \in C_{c}(\mathbb{R}), \text { a.e. }
$$

Choosing a suitable $g \in C_{c}(\mathbb{R})$, we have

$$
\nu_{(a)}(x)\left(e^{a-i x}-e^{\alpha}\right)=1, \text { a.e. }
$$

Since $\nu_{(a)} \in L^{\infty}(\mathbb{R})$, we obtain that $\operatorname{Re} \alpha \neq a$ and we conclude that

$$
e^{a+i b} \in \sigma(S), \forall b \in \mathbb{R}
$$

Taking into account Theorem 4 and Lemma 1, Proposition 1 follows directly.

3. Spectrum of M_{ϕ}

In this section we characterize the spectrum of M_{ϕ}, for $\phi \in C_{c}(\mathbb{R})$ by using the results of the previous one. We recall that M_{ϕ} denotes the operator of convolution by $\phi \in C_{c}(\mathbb{R})$. We recall that Ω is the set

$$
\Omega=\left\{z \in \mathbb{C},-\ln \rho\left(S^{-1}\right) \leq \operatorname{Im} z \leq \ln \rho(S)\right\}
$$

First notice that $0 \in \sigma\left(M_{\phi}\right)$. Indeed, suppose that M_{ϕ} is invertible. Then $M_{\phi}^{-1} \in \mathcal{M}$ and let μ be its symbol. For $a \in I$, we have

$$
\mathcal{F}\left(M_{\phi}^{-1}\left(M_{\phi} f\right)_{a}\right)=\widehat{(f)_{a}}, \forall f \in C_{c}(\mathbb{R})
$$

Then, we get

$$
\mu_{(a)}(x) \widehat{(\phi)_{a}}(x) \widehat{(f)_{a}}(x)=\widehat{(f)_{a}}(x), \forall f \in C_{c}(\mathbb{R}) \text {, a.e. }
$$

and

$$
\mu_{(a)}(x) \widehat{(\phi)_{a}}(x)=1, \text { a.e. }
$$

Taking into account that $\mu_{(a)} \in L^{\infty}(\mathbb{R})$ and $\lim _{x \rightarrow+\infty} \widehat{(\phi)_{a}}(x)=0$, we obtain a contradiction. Thus, we conclude that $0 \in \sigma\left(M_{\phi}\right)$.

Now, we establish the following
Lemma 2. Let $\phi \in C_{c}(\mathbb{R})$. If $\lambda \in \sigma\left(M_{\phi}\right) \backslash\{0\}$ then there exists $\alpha \in \Omega$ such that

$$
\lambda=\hat{\phi}(\alpha)
$$

Proof. Following [9], we have $\sigma\left(M_{\phi}\right)=\left\{\gamma\left(M_{\phi}\right), \gamma \in \widehat{\mathcal{M}}\right\}$. Let $\gamma \in \widehat{\mathcal{M}}$ be fixed such that $\lambda=\gamma\left(M_{\phi}\right)$. We have

$$
M_{\phi} f=\int_{\mathbb{R}} S_{x}(f) \phi(x) d x
$$

but we cannot deduce that

$$
\gamma\left(M_{\phi}\right)=\int_{\mathbb{R}} \gamma\left(S_{x}\right) \phi(x) d x
$$

since we do not have the convergence of the Bochner integral $\int_{\mathbb{R}} S_{x} \phi(x) d x$ with respect to the operator norm. However, we claim that

$$
\begin{equation*}
\gamma\left(M_{\psi}\right)=\int_{\mathbb{R}} \frac{\gamma\left(M_{\phi} \circ S_{x}\right)}{\gamma\left(M_{\phi}\right)} \psi(x) d x, \forall \psi \in C_{c}(\mathbb{R}) \tag{3.1}
\end{equation*}
$$

Consider the application

$$
\eta: C_{c}(\mathbb{R}) \ni \psi \longrightarrow \eta(\psi)=\gamma\left(M_{\psi}\right)
$$

which is a continuous linear form on $C_{c}(\mathbb{R})$. Here $C_{c}(\mathbb{R})$ is equipped by the topology given by the inductive limit of $C_{K}(\mathbb{R}), K$ being a compact subset of \mathbb{R}. Indeed, if K is a compact subset of \mathbb{R} and if $\left(\psi_{n}\right)_{n \in \mathbb{N}} \subset C_{K}(\mathbb{R})$ is a sequence uniformly convergent to $\psi \in C_{K}(\mathbb{R})$, for every $g \in L_{\omega}^{2}(\mathbb{R})$, we have

$$
\left\|M_{\psi_{n}} g-M_{\psi} g\right\| \leq \int_{K}\left\|\psi_{n}-\psi\right\|_{\infty} \sup _{y \in K}\left\|S_{y}\right\|\|g\| d y
$$

and so

$$
\lim _{n \rightarrow \infty}\left\|M_{\psi_{n}}-M_{\psi}\right\|=0
$$

We deduce that the application

$$
C_{c}(\mathbb{R}) \ni \psi \longrightarrow M_{\psi} \in \mathcal{A}
$$

is sequentially continuous and so it is continuous from $C_{c}(\mathbb{R})$ to \mathcal{A}. It follows that η is a continuous linear form on $C_{c}(\mathbb{R})$ and there exists a measure m (see [2], Chapter 3) such that

$$
\eta(\psi)=\int_{\mathbb{R}} \psi(x) d m(x), \forall \psi \in C_{c}(\mathbb{R})
$$

and hence

$$
\gamma\left(M_{\psi}\right)=\int \psi(x) d m(x)
$$

This implies that for every $\psi \in C_{c}(\mathbb{R})$ we have

$$
\begin{aligned}
& \gamma\left(M_{\psi} \circ M_{\phi}\right)=\int_{\mathbb{R}}(\psi * \phi)(t) d m(t) \\
& =\int_{\mathbb{R}}\left(\int_{\mathbb{R}} \psi(x) \phi(t-x) d x\right) d m(t)
\end{aligned}
$$

Using Fubini theorem, we get

$$
\begin{aligned}
\gamma\left(M_{\psi} \circ M_{\phi}\right)= & \gamma\left(M_{\psi \circ \phi}\right)=\int \psi(x)\left(\int_{\mathbb{R}} \phi(t-x) d m(t)\right) d x \\
= & \int_{\mathbb{R}} \psi(x) \gamma\left(S_{x} \circ M_{\phi}\right) d x
\end{aligned}
$$

and this yields the claim (3.1). Consequently, we conclude that

$$
\begin{equation*}
\gamma\left(M_{\psi}\right)=\int_{\mathbb{R}} \psi(x) \gamma\left(S_{x}\right) d x, \forall \psi \in C_{c}(\mathbb{R}) \tag{3.2}
\end{equation*}
$$

Since $\gamma \in \widehat{\mathcal{M}}$, it is clear that $\gamma\left(S_{x}\right) \in \sigma\left(S_{x}\right)$ (see [9]). Set

$$
\theta_{\gamma}(x)=\gamma\left(S_{x}\right)=\frac{\gamma\left(M_{\phi} \circ S_{x}\right)}{\gamma\left(M_{\phi}\right)}, \forall x \in \mathbb{R}
$$

The application

$$
x \longrightarrow S_{x} \circ M_{\phi}=M_{S_{x}(\phi)}
$$

is continuous from \mathbb{R} into \mathcal{A} and we deduce that θ_{γ} is a continuous morphism from \mathbb{R} to \mathbb{C}. The function θ_{γ} verifies

$$
\theta_{\gamma}(x+y)=\theta_{\gamma}(x) \theta_{\gamma}(y), \forall x \in \mathbb{R}, \forall x \in \mathbb{R} .
$$

Therefore there exists $\alpha \in \mathbb{C}$ such that

$$
\theta_{\gamma}(x)=e^{-i \alpha x}, \forall x \in \mathbb{R}
$$

Applying (3.1) we get

$$
\gamma\left(M_{\phi}\right)=\int_{\mathbb{R}} \phi(x) e^{-i \alpha x} d x=\hat{\phi}(\alpha)
$$

Since $e^{-i \alpha} \in \sigma(S)$, an application of Proposition 1 yields

$$
\frac{1}{\rho\left(S^{-1}\right)} \leq e^{\operatorname{Im} \alpha} \leq \rho(S)
$$

which implies $\alpha \in \Omega$. This completes the proof of Lemma 2.
Proof of Theorem 1. We will prove that $\hat{\phi}(\Omega) \subset \sigma\left(M_{\phi}\right)$. Let $\lambda=\hat{\phi}(\alpha)$, with $\alpha \in \Omega$ and $a=\operatorname{Im}(\alpha) \in\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right]$. Suppose that $\lambda \notin \sigma\left(M_{\phi}\right)$. Then, the operator $M_{\phi}-\lambda I$ is invertible and $\left(M_{\phi}-\lambda I\right)^{-1}$ is a multiplier on $L_{\omega}^{2}(\mathbb{R})$. Since $a \in\left[-\ln \left(\rho\left(S^{-1}\right)\right), \ln (\rho(S))\right]$ there exists $\nu_{(a)} \in L^{\infty}(\mathbb{R})$ such that

$$
\mathcal{F}\left(\left(\left(M_{\phi}-\lambda I\right)^{-1} f\right)_{a}\right)(x)=\nu_{(a)}(x) \widehat{(f)_{a}}(x), \forall f \in C_{c}(\mathbb{R}) \text {, a.e. }
$$

Replacing f by $\left(M_{\phi}-\lambda I\right) g$ which is obviously also in $C_{c}(\mathbb{R})$ if $g \in C_{c}(\mathbb{R})$, we get

$$
\begin{gathered}
\widehat{(g)_{a}}(x)=\nu_{(a)}(x) \mathcal{F}\left(\left(\left(M_{\phi}-\lambda I\right) g\right)_{a}\right)(x) \\
=\nu_{(a)}(x)\left(\widehat{(\phi)_{a}}(x)-\lambda\right) \widehat{(g)_{a}}(x), \forall g \in C_{c}(\mathbb{R}), \text { a.e. }
\end{gathered}
$$

Choosing a suitable $g \in C_{c}(\mathbb{R})$, we conclude that

$$
1=\nu_{(a)}(x)[\hat{\phi}(x+i a)-\lambda], \text { a.e. }
$$

Let $\operatorname{Re} \alpha=x_{0}$ and let V be a neighborhood of x_{0} such that $\left|\nu_{(a)}(x)\right| \leq m$, for all $x \in V$. Then, we have

$$
|\hat{\phi}(x+i a)-\lambda| \geq \frac{1}{m}
$$

which yields a contradiction for x suitably close to x_{0}, because $\hat{\phi}(\alpha)=\hat{\phi}(x+i a)=\lambda$ and $\hat{\phi}$ is continuous. Thus $\lambda \in \sigma\left(M_{\phi}\right)$ and so $\hat{\phi}(\Omega) \subset \sigma\left(M_{\phi}\right)$. Lemma 2 implies $\sigma\left(M_{\phi}\right) \backslash\{0\} \subset \hat{\phi}(\Omega)$ and the proof of the theorem is complete.

4. Generalization

In this section we investigate the spectrum of a general multiplier on $L_{\omega}^{2}(\mathbb{R})$. We recall that the symbol μ of a multiplier M is in $\mathcal{H}^{\infty}(\stackrel{\circ}{\Omega})$ and it is essentially bounded on the boundary $\delta(\Omega)$ of Ω (see Theorem 4). Introduce the set

$$
\mu(\Omega)=\{\mu(z): z \in \Omega \backslash \mathcal{N}\}
$$

\mathcal{N} being a set of measure zero.
Proof of Theorem 3 Assume that $\lambda \notin \sigma(M)$. Then $(M-\lambda I)^{-1}$ is a multiplier and for every $a \in\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right]$, we introduce the symbol $\nu_{(a)} \in L^{\infty}(\mathbb{R})$ such that

$$
\mathcal{F}\left(\left((M-\lambda I)^{-1} f\right)_{a}\right)(x)=\nu_{(a)}(x) \widehat{(f)_{a}}(x), \forall f \in C_{c}(\mathbb{R}), \text { a.e. }
$$

Replacing f by $(M-\lambda I) g$ where $g \in C_{c}(\mathbb{R})$, we get

$$
\begin{gathered}
\widehat{(g)_{a}}(x)=\nu_{(a)}(x) \mathcal{F}\left(((M-\lambda I) g)_{a}\right)(x) \\
\quad=\nu_{(a)}(x)\left(\mu_{(a)}(x)-\lambda\right) \widehat{(g)_{a}}(x), \text { a.e. }
\end{gathered}
$$

Choosing a suitable $g \in C_{c}(\mathbb{R})$, we get

$$
1=\nu_{(a)}(x)\left(\mu_{(a)}(x)-\lambda\right), \text { a.e. }
$$

Given $x \in \mathbb{R}$, satisfying

$$
\begin{equation*}
\left|\mu_{(a)}(x)\right| \leq\left\|\mu_{(a)}\right\|_{\infty} \text { and }\left|\nu_{(a)}(x)\right| \leq\left\|\nu_{(a)}\right\|_{\infty}, \tag{4.1}
\end{equation*}
$$

it is clear that if $\lambda=\mu_{(a)}(x)=\mu(x+i a)$ we obtain a contradiction. For every x for which (4.1) holds and for $a \in\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right]$ we deduce that

$$
\mu_{(a)}(x)=\mu(x+i a) \in \sigma(M) .
$$

According to Theorem 4, ν and μ are holomorphic on $\stackrel{\circ}{\Omega}$, and so $\nu_{(a)}$ and $\mu_{(a)}$ are continuous on \mathbb{R}, for every $a \in\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right]$. Consequently, (4.1) holds for almost every x and the proof is complete.
Notice that ν may not be continuous on the boundary of Ω. Indeed, for $\omega=1$, let $h \in L^{\infty}(\mathbb{R})$ be a function which is not continuous on \mathbb{R}. Define the operator H on $L^{2}(\mathbb{R})$ by the formula

$$
H f=\mathcal{F}^{-1}(h \hat{f})
$$

Then H is a multiplier on $L^{2}(\mathbb{R})$, but its symbol h is not continuous on $\Omega=\mathbb{R}$.
Now we present one example. Suppose that χ is a complex Borel measure such that

$$
\begin{equation*}
\int_{-\infty}^{+\infty}\left\|S_{t}\right\| d|\chi|(t)<+\infty \tag{4.2}
\end{equation*}
$$

Then the operator M_{χ} defined by the formula

$$
M_{\chi}(f)=\int_{-\infty}^{+\infty} S_{t}(f) d \chi(t), \forall f \in L_{\omega}^{2}(\mathbb{R})
$$

is obviously a multiplier on $L_{\omega}^{2}(\mathbb{R})$. The condition (4.2) implies that

$$
\int_{\mathbb{R}} e^{a x} d|\chi|(x)<+\infty, \forall a \in\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right]
$$

so the integral

$$
\int_{\mathbb{R}} e^{-i \alpha x} d \chi(x)
$$

converges for all $\alpha \in \Omega$. Clearly, the symbol of M_{χ}, defined in Section 2, becomes

$$
\widehat{\chi}(\alpha)=\int_{\mathbb{R}} e^{-i \alpha x} d \chi(x)
$$

The results of the previous sections imply

$$
\begin{equation*}
\overline{\hat{\chi}(\sigma(S))} \subset \sigma\left(M_{\chi}\right) \tag{4.3}
\end{equation*}
$$

The inclusion (4.3) has been established by other methods in [1] and [4]. We see that the inclusion (4.3) may also be obtained by the tools of our paper.

Now we give an illustration of Theorem 3. Let $T_{t}=e^{t M}$, where $M \in \mathcal{M}$. It is clear that the group $\left(T_{t}\right)_{t \in \mathbb{R}}$ is included in \mathcal{M}. For $t \in \mathbb{R}, a \in I$ and $f \in C_{c}(\mathbb{R})$, we have

$$
\widehat{\left(e^{t M f}\right)_{a}}(y)=\sum_{k \geq 0} \frac{\left.t^{k} \widehat{\left(M^{k} f\right.}\right)_{a}}{k!}(y)
$$

$$
=\sum_{k \geq 0} \frac{t^{k}}{k!}\left(\mu_{(a)}(y)\right)^{k} \widehat{(f)_{a}}(y)=e^{t \mu_{(a)}(y)} \widehat{(f)_{a}}(y) \text { a.e. }
$$

where $\mu_{(a)}$ is the symbol of M. Then the symbol of T_{t} is the function $z \longrightarrow e^{t \mu(z)}$. Now suppose that $M=S$. Then we have $\mu_{(a)}(y)=e^{-(i y-a)}$ and $\mu(z)=e^{-i z}, \forall z \in \Omega$. Following Theorem 3, we obtain $\left\{e^{t e^{-i z}}, z \in \Omega\right\} \subset \sigma\left(T_{t}\right)$ and

$$
\begin{equation*}
e^{t \sigma(S)} \subset \sigma\left(e^{t S}\right), \forall t \in \mathbb{R} \tag{4.4}
\end{equation*}
$$

The inclusion (4.4) follows also from a classical result about the spectrum of a semi-group (see [4], [3]).

5. Spectrum of $M \in \mathcal{A}$

Now we examine the spectrum of multipliers forming a larger class than those of operators M_{ϕ}. We will show that if $M \in \mathcal{A}$ and ν is the symbol of M, then ν is a continuous function on Ω and we have

$$
\sigma(M)=\overline{\nu(\Omega)}
$$

Proof of Theorem 2. First, we show that ν is continuous on Ω. Let $\left(\phi_{n}\right)_{n \in \mathbb{N}}$ be a sequence of $C_{c}(\mathbb{R})$ such that $\lim _{n \rightarrow+\infty}\left\|M_{\phi_{n}}-M\right\|=0$. The construction of $\nu_{(a)}$ for $a \in$ $\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right]$, given in [6], defines $\nu_{(a)}$ as the limit of $\widehat{\left(\psi_{n}\right)_{a}}$ with respect to the weak topology of $L^{2}(\mathbb{R})$, where $\left(\psi_{n}\right)_{n \in \mathbb{N}}$ is a special sequence in $C_{c}(\mathbb{R})$ such that $\left(M_{\psi_{n}}\right)_{n \in \mathbb{N}}$ converges to M with respect to the strong operator topology. Using the same argument as in [6], we get

$$
\nu_{(a)}(x)=\lim _{n \rightarrow \infty} \widehat{\left(\phi_{n}\right)_{a}}(x)
$$

with respect to the weak topology of $L^{2}(\mathbb{R})$. For fixed $a \in\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right]$ and $x \in \mathbb{R}$ there exists $\gamma \in \widehat{\mathcal{M}}$ (see section 2) such that

$$
\widehat{(\phi)_{a}}(x)=\gamma\left(M_{\phi}\right), \forall \phi \in C_{c}(\mathbb{R}) .
$$

This implies that for every $k \in \mathbb{N}, n \in \mathbb{N}$, we have

$$
\begin{equation*}
\left|\widehat{\left(\phi_{n}\right)_{a}}(x)-\widehat{\left(\phi_{k}\right)_{a}}(x)\right|=\left|\gamma\left(M_{\phi_{n}}\right)-\gamma\left(M_{\phi_{k}}\right)\right| \leq\left\|M_{\phi_{n}}-M_{\phi_{k}}\right\| . \tag{5.1}
\end{equation*}
$$

Since $\left(M_{\phi_{n}}\right)_{n \in \mathbb{N}}$ converges to M in \mathcal{A}, we conclude that $\widehat{\left(\phi_{n}\right)_{a}}$ converges uniformly on \mathbb{R} to a continuous function $\mu_{(a)}$ and that there exists a constant C such that

$$
\widehat{\mid\left(\phi_{n}\right)_{a}}(x) \mid \leq C, \forall a \in\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right], \forall x \in \mathbb{R}, \forall n \in \mathbb{N}
$$

Moreover, we have $\lim _{x \rightarrow+\infty} \mu_{(a)}(x)=0$. We obtain that $\widehat{\left(\phi_{n}\right)_{a}}$ converges to $\mu_{(a)}$ with respect to the weak topology of $L^{2}(\mathbb{R})$. Thus we can identify the symbol of M with the function μ defined by

$$
\mu(x+i a)=\mu_{(a)}(x), \forall a \in\left[-\ln \rho\left(S^{-1}\right), \ln \rho(S)\right], \forall x \in \mathbb{R}
$$

Taking into account (5.1), it is clear that μ is continuous on Ω.
Given $\lambda \in \sigma(M) \backslash\{0\}$, there exists $\gamma \in \widehat{\mathcal{M}}$ such that $\lambda=\gamma(M)$. Then we have

$$
\lambda=\lim _{n \rightarrow \infty} \gamma\left(M_{\phi_{n}}\right)
$$

According to the results in section 2 , there exists $\alpha \in \Omega$ such that

$$
\gamma\left(M_{\phi_{n}}\right)=\widehat{\phi_{n}}(\alpha), \forall n \in \mathbb{N} .
$$

Consequently, we have

$$
\lambda=\lim _{n \rightarrow \infty} \gamma\left(M_{\phi_{n}}\right)=\lim _{n \rightarrow \infty} \widehat{\phi_{n}}(\alpha)=\mu(\alpha)
$$

Since μ is equal to the symbol ν of M, we conclude that

$$
\sigma(M) \backslash\{0\} \subset \nu(\Omega)
$$

Taking into account the result of the previous section, the proof is complete.

6. Spectrum of multipliers on $L_{\omega}^{2}\left(\mathbb{R}^{k}\right)$

Theorems 1-3 can be generalized for multipliers on $L_{\omega}^{2}\left(\mathbb{R}^{k}\right), k>1$, where ω is a weight on \mathbb{R}^{k} satisfying the following condition

$$
\omega=\omega_{1} \times \ldots \times \omega_{k}
$$

where $\omega_{1}, \ldots, \omega_{k}$ are weights on \mathbb{R}. From now on, ω denotes a weight on \mathbb{R}^{k} having the above form.
Given $\phi \in C_{c}\left(\mathbb{R}^{k}\right)$, the Fourier transform $\widehat{\phi}$ is defined on \mathbb{C}^{k}. Set

$$
e_{m}=\left(e_{m, 1}, \ldots, e_{m, k}\right)
$$

where $e_{m, i}=0$, if $m \neq i$ and $e_{m, m}=1$. For $m=1, \ldots, k$, let S_{m} be the translation by e_{m} defined on $L_{\omega}^{2}\left(\mathbb{R}^{k}\right)$. Introduce

$$
\mathcal{U}=\left\{z=\left(z_{1}, \ldots, z_{k}\right) \in \mathbb{C}^{k}, \operatorname{Im} z_{i} \in\left[-\ln \rho\left(S_{i}^{-1}\right), \ln \rho\left(S_{i}\right)\right], \text { for } i=1, \ldots, k\right\}
$$

We have (see [7] and [8]) the following representation theorem for multipliers on $L_{\omega}^{2}\left(\mathbb{R}^{k}\right)$.
Theorem 5. Let M be a multiplier on $L_{\omega}^{2}\left(\mathbb{R}^{k}\right)$. Then there exists $\nu \in L^{\infty}(\mathcal{U})$ such that

$$
\int_{\mathbb{R}^{k}}(M f)(x) e^{-i<x, z>} d x=\nu(z) \int_{\mathbb{R}^{k}} f(x) e^{-i<x, z>} d x
$$

for all $z \in \dot{\mathcal{U}}$ and for almost every $z \in \delta(\mathcal{U})$.
Given a multiplier M on $L_{\omega}^{2}\left(\mathbb{R}^{k}\right)$, we call symbol of M the function ν introduced in the previous theorem. Moreover, in [8] the following result was established.
Proposition 2. We have $z=\left(z_{1}, \ldots, z_{k}\right) \in \mathcal{U}$ if and only if

$$
e^{-i z_{m}} \in \sigma\left(S_{m}\right), \text { for } m=1, \ldots, k
$$

The set \mathcal{U} is related to the joint spectrum of S_{1}, \ldots, S_{k}. Let \mathfrak{A} be a commutative Banach algebra with unit I. We recall the following

Definition 3. The joint spectrum $\sigma_{s}\left(A_{1}, \ldots, A_{k}\right)$ of the operators $A_{1}, \ldots, A_{k} \in \mathfrak{A}$ is the set $\left\{\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \mathbb{C}^{k}, \sum_{m=1}^{k}\left(A_{m}-\alpha_{m} I\right) J_{m}\right.$ is not invertible in $\left.\mathfrak{A}, \forall\left(J_{1}, \ldots, J_{k}\right) \in \mathfrak{A}^{k}\right\}$.

In general $\sigma_{s}\left(A_{1}, \ldots, A_{k}\right) \neq \sigma\left(A_{1}\right) \times \ldots \times \sigma\left(A_{k}\right)$ and the determination of $\sigma_{s}\left(A_{1}, \ldots, A_{k}\right)$ is a quite difficult problem. However, in the spaces $L_{\omega}^{2}\left(\mathbb{R}^{k}\right)$, we have the equality

$$
\sigma_{s}\left(S_{1}, \ldots, S_{k}\right)=\sigma\left(S_{1}\right) \times \ldots \times \sigma\left(S_{k}\right)
$$

(see ([8]). Using Theorem 5, Proposition 2 and the arguments in Section 3, we obtain the following

Theorem 6. For $\phi \in C_{c}\left(\mathbb{R}^{k}\right)$, we have

$$
\sigma\left(M_{\phi}\right)=\overline{\hat{\phi}(\mathcal{U})} .
$$

Moreover, repeating the arguments in Sections 4-5, we obtain
Theorem 7. Let $M \in \mathcal{A}$ and let ν be the symbol of M. Then ν is a continuous function on \mathcal{U} and we have

$$
\sigma(M)=\overline{\nu(\mathcal{U})}
$$

Let $M \in \mathcal{M}$ and let ν be its symbol. Then

$$
\overline{\nu(\mathcal{U})} \subset \sigma(M)
$$

References

[1] E. Frasangova and P.J. Miana, Spectral mapping inclusions for Phillips functional calculus in Banach spaces and algebras, Studia Math. 167 (2005), 219-226.
[2] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Volume 1, Springer Verlag, Berlin (1970).
[3] L. Gearhart, Spectral theory for contraction semigroups on Hilbert space, Trans. AMS, 236 (1978), 385-394.
[4] E. Hille and R. S. Phillips, Functional analysis and semi-groups, Amer. Math. Soc. (1957).
[5] J. Howland, On a theorem of Gearhart, Integral Equations and operator Theory, 7 (1984), 138-142.
[6] V. Petkova, Symbole d'un multiplicateur sur $L_{\omega}^{2}(\mathbb{R})$, Bull. Sci. Math. 128 (2004), 391-415.
[7] V. Petkova, Multipliers on Banach spaces of functions on a locally compact abelian group, J. London Math. Soc. 75 (2007), 369-390.
[8] V. Petkova, Joint spectrum of translations on $L_{w}^{2}\left(\mathbb{R}^{2}\right)$, Far East Journal of Mathematical Sciences (FJMS) 28 (2008), 1-15.
[9] W. Zelasko, Banach algebras, Elsevier Science Publishers, Amsterdam (1973).
LMAM, Université de Metz UMR 7122,Ile du Saulcy 57045 Metz Cedex 1, France.
E-mail address: petkova@univ-metz.fr

