Brunet-Derrida behavior of branching-selection particle systems on the line
 Jean Bérard, Jean-Baptiste Gouéré

To cite this version:

Jean Bérard, Jean-Baptiste Gouéré. Brunet-Derrida behavior of branching-selection particle systems on the line. 2008. hal-00339394v1

HAL Id: hal-00339394
https://hal.science/hal-00339394v1
Preprint submitted on 17 Nov 2008 (v1), last revised 3 Mar 2010 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

BRUNET-DERRIDA BEHAVIOR OF BRANCHING-SELECTION PARTICLE SYSTEMS ON THE LINE

JEAN BÉRARD, JEAN-BAPTISTE GOUÉRÉ

Abstract

The term Brunet-Derrida behavior refers to the 1997 paper by E. Brunet and B. Derrida "Shift in the velocity of a front due to a cutoff" (see the reference within the paper), where it is shown, based on numerical simulations and heuristic arguments, that a certain branching-selection particle system on the line exhibits the following behavior: as N goes to infinity, the asymptotic velocity of the system with N particles converges to a limiting value at the surprisingly slow rate $(\log N)^{-2}$. In this paper, we consider a class of branching-selection particle systems on \mathbb{R} with N particles, defined through iterated branching-selection steps of the following type. During a branching step, each particle is replaced by two new particles, whose positions are shifted from that of the original particle by independently performing two random walk steps, according to some distribution p. During the selection step that follows, only the N rightmost particles are kept among the $2 N$ particles obtained at the branching step, to form a new population of N particles. Under generic assumptions on p, it is shown that Brunet-Derrida behavior holds for the corresponding particle system. The proofs are based on ideas and results by R. Pemantle, and by N. Gantert, Y. Hu and Z. Shi, and rely on a comparison of the particle system with a family of N independent branching random walks killed below a linear space-time barrier. The results presented here both improve and generalize upon previous work by the first author of this paper, which was completed just before the results by Gantert, Hu and Shi became publicly available.

1. Introduction

In [[6] [6], E. Brunet and B. Derrida studied a branching-selection particle system on \mathbb{Z} enjoying the following property: as the number N of particles in the system goes to infinity, the asymptotic speed of the population of particles in the system converges to its limiting value at an unexpectedly slow rate, of order $(\log N)^{-2}$. This behavior was established both by direct numerical simulation of the particle system, and by mathematically non-rigorous arguments of the following type: having a finite population of N particles instead of an infinite number of particles should be more or less equivalent, as far as the asymptotic speed is concerned, to introducing a cutoff value of $1 / N$, in the deterministic equations that govern the time-evolution of the distribution of particles in the infinite-population limit. In turn, these equations can be viewed as discrete versions of the well-known F-KPP equations, and the initial problem is thus related to that of assessing the effect of introducing a small cutoff in F-KPP equations, upon the speed of the travelling wave solutions. In turn, this problem was studied by heuristic arguments and computer simulations (see [0, [6]) , and rigorous mathematical results for this last problem have recently
been obtained, see [1], 2, 9]. Another approach is based on adding a small whitenoise term with scale parameter $\sigma^{2}=1 / N$ in the Fisher-KPP equation, see [7], and rigorous results have been derived for this model too, see [8, 13]. However, to our knowledge, no rigorous results dealing directly with a branching-selection particle system such as the one originally studied by Brunet and Derrida, are available (except the preliminary work [3] by the first author of this paper, the results of which are extended here).

The branching-selection particle systems we consider are similar (but not exactly identical) to the one considered by Brunet and Derrida in [0], 6]. To be specific, we consider a particle system with N particles on \mathbb{R} defined through the repeated application of branching and selection steps defined as follows:

- Branching: each of the N particles is replaced by two new particles, whose positions are shifted from that of the original particle by independently performing two random walk steps according to a given distribution p;
- Selection: only the N rightmost particles are kept among the $2 N$ obtained at the branching step, to form the new population of N particles.
Our assumptions on the random walk distribution p are listed below. For the most part, they correspond to those of the paper [11] by Gantert, Hu and Shi, with the simplifying feature that we consider only deterministic binary branching. Introduce the logarithmic moment generating function of p defined by

$$
\Lambda(t):=\log \int \exp (t x) d p(x)
$$

Here are the assumptions on p :
(A1) The support of p is contained in $\mathbb{R}_{+}=[0,+\infty[$;
(A2) There exists $t>0$ such that $\Lambda(t)<+\infty$;
(A3) There exists $\left.t^{*} \in\right] 0,+\infty\left[\right.$ such that $t^{*} \Lambda^{\prime}\left(t^{*}\right)-\Lambda\left(t^{*}\right)=\log 2$.
Under these assumptions, let

$$
\chi(p):=\frac{\pi^{2}}{2} t^{*} \Lambda^{\prime \prime}\left(t^{*}\right)
$$

Then (see [11]) $0<\chi(p)<+\infty$. A simple case for which these assumptions hold is the Bernoulli case $p=\alpha \delta_{+1}+(1-\alpha) \delta_{0}$, when $\left.\alpha \in\right] 0,1 / 2[$. This is precisely the case investigated in (3].

In Section 3, it is proved that, after a large number of iterated branching-selection steps, the displacement of the whole population of N particles is ballistic, with deterministic asymptotic speed $v_{N}(p)$, and that, as N goes to infinity, $v_{N}(p)$ increases to a limit $v_{\infty}(p)$, which turns out to be equal to $\Lambda^{\prime}\left(t^{*}\right)$, and thus positive and finite. The main result concerning the branching-selection particle system is the following theorem:

Theorem 1. Assume that (A1)-(A2)-(A3) hold. Then, as N goes to infinity,

$$
\begin{equation*}
v_{\infty}(p)-v_{N}(p) \sim \chi(p)(\log N)^{-2} \tag{1}
\end{equation*}
$$

In [3], only the $(\log N)^{-2}$ order of magnitude of the difference $v_{\infty}(p)-v_{N}(p)$ was established. The recently released results by Gantert, Hu and Shi (11] on the
survival probability of a branching random walk killed below a linear space-time barrier allowed us to prove the much more precise result above.

The rest of the paper is organized as follows. In Section 2, we provide the precise notations and definitions that are needed in the sequel. Section 3 contains a discussion of various elementary properties of the model we consider. Section 4 collects the results from [11] that are used in the sequel. Section 5 contains the proof of the upper bound part of Theorem [1, while Section ${ }^{6}$ contains the proof of the lower bound part. Section 7 discusses the Bernoulli case when Assumption (A3) is not met.

2. Notations and definitions

It is convenient to represent finite populations of particles by finite counting measures on \mathbb{R}. For all $N \geq 1$, let \mathcal{C}_{N} denote the set of finite counting measures on \mathbb{R} with total mass equal to N, and \mathcal{C} the set of all finite counting measures on \mathbb{R}.

For $\nu \in \mathcal{C}$, the total mass of ν (i.e. the number of particles in the population it describes) is denoted by $M(\nu)$. We denote by $\max \nu$ and $\min \nu$ respectively the maximum and minimum of the (finite) support of μ. We also define the diameter $d(\nu):=\max \nu-\min \nu$. Given two positive measures μ, ν on \mathbb{R}, we use the notation \prec to denote the usual stochastic order: $\mu \prec \nu$ if and only if $\mu([x,+\infty[) \leq \nu([x,+\infty[)$ for all $x \in \mathbb{R}$. In particular, $\mu \prec \nu$ implies that $M(\mu) \leq M(\nu)$, and it is easily seen that, if $\mu=\sum_{i=1}^{M(\mu)} \delta_{x_{i}}$ and $\nu=\sum_{i=1}^{M(\nu)} \delta_{y_{i}}$, with $x_{1} \geq \cdots \geq x_{M(\mu)}$ and $y_{1} \geq \cdots \geq y_{M(\nu)}$, $\mu \prec \nu$ is equivalent to $M(\mu) \leq M(\nu)$ and $x_{i} \leq y_{i}$ for all $i \in \llbracket 1, M(\mu) \rrbracket$.

In the sequel, we use the notation $\left(X_{n}^{N}\right)_{n \geq 0}$ to denote a Markov chain on \mathcal{C}_{N} whose transition probabilities are given by the branching-selection mechanism with N particles, and which starts at a deterministic value $X_{0}^{N} \in \mathcal{C}_{N}$. We assume this Markov chain is defined on a reference probability space denoted by $(\Omega, \mathcal{F}, \mathbb{P})$.

3. Elementary properties of the model

As a first quite elementary property, note that, from Assumption (A1), $\mathbb{E}\left(\max X_{n}^{N}\right)<+\infty$ for all $n \geq 0$, whatever the (deterministic) initial condition $X_{0}^{N} \in \mathcal{C}_{N}$.

3.1. Estimates on the diameter.

Proposition 1. Let $u_{N}:=\left\lceil\frac{\log N}{\log 2}\right\rceil+1$. For all $N \geq 1$, all initial population $X_{0}^{N} \in$ \mathcal{C}_{N}, and all $n \geq u_{N}, d\left(X_{n}^{N}\right)$ is stochastically dominated by u_{N} times the maximum of $2 N u_{N}$ i.i.d. random variables with distribution p.

Proof. Consider $n \geq u_{N}$, and let $y=\max X_{n-u_{N}}^{N}$. Assume first that $\min X_{k}^{N}<y$ for all $n+1-u_{N} \leq k \leq n$. Since, due to (A1), all the random walk steps that are performed during branching steps are ≥ 0, this implies that all the particles descended by branching from a particle located at y at time $n-u_{N}$, are preserved by the selection steps performed from $X_{n-u_{N}}^{N}$ to X_{n}^{N}. Since there are $2^{u_{N}}>N$ such particles at time n, this is a contradiction. As a consequence, we know that there must be an index $n+1-u_{N} \leq k \leq n$ such that $\min X_{k}^{N} \geq y$. Since, by (A1),
$t \mapsto \min X_{t}^{N}$ is non-decreasing, we deduce that $\min X_{n}^{N} \geq y$. Now, let K denote the maximum of the $2 N u_{N}$ branching random walk steps that are performed between time $n-u_{N}$ and time u_{N}. We see from the definition of y that $\max X_{n}^{N} \leq y+u_{N} K$. As a consequence, $d\left(X_{n}^{N}\right)=\max X_{n}^{N}-\min X_{n}^{N} \leq u_{N} K$.

The following corollary is then a straightforward consequence, in view of Assumption (A2).
Corollary 1. For all $N \geq 1$ and all initial population $X_{0}^{N} \in \mathcal{C}_{N}$, $\lim _{n \rightarrow+\infty} n^{-1} d\left(X_{n}^{N}\right)=0$, both with probability one and in $L^{1}(\mathbb{P})$.

3.2. Monotonicity properties.

Proposition 2. For all $1 \leq N_{1} \leq N_{2}$, and $\mu \in \mathcal{C}_{N_{1}}, \nu \in \mathcal{C}_{N_{2}}$ such that $\mu \prec \nu$, there exists a coupling $\left(Z_{n}^{N_{1}}, T_{n}^{N_{2}}\right)_{n \geq 0}$ between two versions of the branching-selection particle system, with N_{1} and N_{2} particles respectively, such that $Z_{0}^{N_{1}}:=\mu, T_{0}^{N_{2}}:=\nu$, and $Z_{n}^{N_{1}} \prec T_{n}^{N_{2}}$ for all $n \geq 0$.
Proof. Consider an i.i.d. family $\left(\varepsilon_{n, i, j}\right)_{n \geq 0, i \in \llbracket 1, N_{2} \rrbracket, j=1,2}$ with common distribution p. For all $n \geq 0$, define the branching-selection particle system $\left(Z_{n}^{N_{1}}\right)_{n \geq 0}$ by $Z_{0}^{N_{1}}:=\mu$, selection steps consisting in keeping only the N_{1} rightmost particles, and branching steps defined as follows. Starting from $Z_{n, k}^{N_{1}}:=\sum_{i=1}^{N_{1}} \delta_{x_{i}}$, with $x_{1} \geq \ldots, \geq x_{N_{1}}$, let the new population be $\sum_{(i, j) \in \llbracket 1, N_{1} \rrbracket \times\{1,2\}} \delta_{x_{i}+\varepsilon_{n, i, j} .}$. Then define $\left(T_{n}^{N_{2}}\right)_{n \geq 0}$ by $T_{0}^{N_{2}}:=\nu$, selection steps consisting in keeping only the N_{2} rightmost particles, and the following branching steps. Starting from $T_{n}^{N_{2}}:=\sum_{i=1}^{N_{2}} \delta_{y_{i}}$, with $y_{1} \geq \ldots, \geq y_{N_{2}}$, let the new population be $\sum_{(i, j) \in \llbracket 1, N_{2} \rrbracket \times\{1,2\}} \delta_{y_{i}+\varepsilon_{n, i, j}}$. Now assume that, for a given $n \geq 0, Z_{n}^{N_{1}} \prec T_{n}^{N_{2}}$. With the above notations, we have that $x_{i} \leq y_{i}$, whence $x_{i}+\varepsilon_{n, i, j} \leq y_{i}+\varepsilon_{n, i, j}$, for all $1 \leq i \leq N_{1}$ and $j=1,2$. It follows that a sub-population of size $2 N_{1}$ of the population obtained from $T_{n}^{N_{2}}$ by branching, dominates (in the sense of \prec) the whole population, of size $2 N_{1}$, obtained by branching from $Z_{n}^{N_{1}}$. It is then quite easy to deduce that $Z_{n+1}^{N_{1}} \prec T_{n+1}^{N_{2}}$. The result follows by induction since we assume that $\mu \prec \nu$.

Proposition 3. There exists $v_{N}(p) \in \mathbb{R}_{+}$such that, with probability one, and in $L^{1}(\mathbb{P})$, whatever the initial population $X_{0}^{N} \in \mathcal{C}_{N}$,

$$
\lim _{n \rightarrow+\infty} n^{-1} \min X_{n}^{N}=\lim _{n \rightarrow+\infty} n^{-1} \max X_{n}^{N}=v_{N}(p)
$$

Proof. Note that, in view of Corollary II, if the two limits in the above statement exist, they must be equal. Moreover, owing to the translation invariance of our particle system, and to Proposition 2, we see that it is enough to prove the result when $X_{0}^{N}=N \delta_{0}$.

Consider an i.i.d. family $\left(\varepsilon_{k, i, j}\right)_{k \geq 0, i \in \llbracket 1, N \rrbracket, j=1,2}$ with common distribution p. For all $n \geq 0$, denote by $\left(W_{n, k}^{N}\right)_{k \geq 0}$ a branching-selection system starting at $W_{n, 0}^{N}:=N \delta_{0}$, whose selection steps consist in keeping only the N rightmost particles, and whose branching steps are specified as follows. Starting from $W_{n, k}^{N}:=\sum_{i=1}^{N} \delta_{x_{i}}$, with $x_{1} \geq \ldots, \geq x_{N}$, let the new population be $\sum_{(i, j) \in \llbracket 1, N \rrbracket \times\{1,2\}} \delta_{x_{i}+\varepsilon_{n+k, i, j}}$. Observe
that $\left(W_{0, n}^{N}\right)_{n \geq 0}$ has the same distribution as $\left(X_{n}^{N}\right)_{n \geq 0}$. Then, observe that for all $n, m \geq 0, \max W_{n+m, 0}^{N} \leq \max W_{0, n}^{N}+\max W_{n, m}^{N}$, by an argument similar to the proof of Proposition 2. Moreover, for each $d \geq 1$, the random variables $\left(W_{d n, d}^{N}\right)_{n \geq 0}$ form an i.i.d. family, and for any given k, the distribution of $W_{n, k}^{N}$ clearly does not depend on n. It is routine to check that the other hypotheses of Kingman's subadditive ergodic theorem hold (see e.g. 10), so we deduce that $\lim _{n \rightarrow+\infty} n^{-1} \max X_{n}^{N}$ exists both a.s. and in $L^{1}(\mathbb{P})$. A similar argument, using superadditivity instead of subadditivity, holds for $\min X_{n}^{N}$.
Proposition 4. The sequence $\left(v_{N}(p)\right)_{N \geq 1}$ is non-decreasing.
Proof. Consequence of the fact that, when $N_{1} \leq N_{2}, N_{1} \delta_{0} \prec N_{2} \delta_{0}$, and of the monotonic coupling property given in Proposition 2.

We can deduce from the above proposition that there exists $v_{\infty}(p) \in \mathbb{R}_{+}$such that $\lim _{N \rightarrow+\infty} v_{N}(p)=v_{\infty}(p)$. A consequence of the proof of Theorem below is that $v_{\infty}(p)$ is in fact equal to the number $v(p):=\Lambda^{\prime}\left(t^{*}\right)$, which is >0 from our assumptions on p.
3.3. Coupling with a family of N branching random walks. Let $\mathrm{BRW}_{1}, \ldots, \mathrm{BRW}_{N}$ denote N independent branching random walks, each with value zero at the root, deterministic binary branching, and i.i.d. displacements with common distribution p along each edge. For $1 \leq i \leq N$, and $n \geq 0$, let $\operatorname{BRW}_{i}(n)$ denote the set of vertices of BRW_{i} located at depth n in the tree, and let $\mathcal{T}_{n}^{N}:=\operatorname{BRW}_{1}(n) \cup \cdots \cup \operatorname{BRW}_{N}(n)$. For every n, fix an a priori (i.e. depending only on the tree structure, not on the random walk values) total order on \mathcal{T}_{n}^{N}. We now define by induction a sequence $\left(G_{n}^{N}\right)_{n \geq 0}$ of subsets such that, for each $n \geq 0$, G_{n}^{N} is a random subset of \mathcal{T}_{n}^{N} with exactly N elements. First, let us set $G_{0}^{N}:=\mathcal{T}_{0}^{N}$. Then, given $n \geq 0$ and G_{n}^{N}, let H_{n}^{N} denote the subset of \mathcal{T}_{n+1} formed by the children of the vertices in G_{n}^{N}. Then, define G_{n+1}^{N} as the subset of H_{n}^{N} formed by the N vertices that are associated with the largest values of the underlying random walk (breaking ties by using the a priori order on T_{n}^{N}). It is now quite obvious that the sequence formed by the (random) empirical distributions attached to the sequence of subsets $G_{0}^{N}, \ldots, G_{n}^{N}$, has exactly the same distribution as $X_{0}^{N}, \ldots, X_{n}^{N}$, when started from $X_{0}^{N}:=N \delta_{0}$. Thus, we can take for our reference probability space $(\Omega, \mathcal{F}, \mathbb{P})$ the one on which $\mathrm{BRW}_{1}, \ldots, \mathrm{BRW}_{N}$ are defined, and let X_{n}^{N} be equal to the empirical distribution associated with the subset G_{n}^{N}, and so obtain a coupling between $\left(X_{n}^{N}\right)_{n \geq 0}\left(\right.$ with $\left.X_{n}^{N}=N \delta_{0}\right)$ and the N branching random walks $\mathrm{BRW}_{1}, \ldots, \mathrm{BRW}_{N}$.

4. Results on the branching Random walk killed below a linear SPACE-TIME BARRIER

Throughout this section and the following, we use the notation BRW to denote a generic branching random walk with value zero at the root, deterministic binary branching, and i.i.d. displacements with common distribution p along each edge. We use the notation $\Phi(u)$ to denote the value of the random walk associated with
a vertex $u \in$ BRW. Let us start with the following definition, adapted from 14 . Given $v \in \mathbb{R}$ and $m \geq 1$, we say that a vertex $u \in$ BRW is (m, v) good if there exists an infinite descending path $u=: u_{0}, u_{1}, \ldots, u_{m}$ such that $\Phi\left(u_{i}\right)-\Phi\left(u_{0}\right) \geq v i$ for all $i \in \llbracket 0, m \rrbracket$. Similarly, we say that u is (∞, v)-good if there exists a descending path $u=: u_{0}, u_{1}, \ldots$ such that $\Phi\left(u_{i}\right)-\Phi\left(u_{0}\right) \geq v i$ for all $i \in \llbracket 0,+\infty \llbracket$.

With this terminology, the main result in (11] can be stated as follows, remembering that $\chi(p):=\frac{\pi^{2}}{2} t^{*} \Lambda^{\prime \prime}\left(t^{*}\right)$.

Theorem 2. (Theorem 1.2 in [11]) Let $\rho(\infty, \epsilon)$ denote the probability that the root of $B R W$ is $(\infty, v(p)-\epsilon)-$ good. Then, as ϵ goes to zero,

$$
\rho(\infty, \epsilon)=\exp \left(-\left[\frac{\chi(p)+o(1)}{\epsilon}\right]^{1 / 2}\right)
$$

We shall need a result which, although not stated explicitly in 11], appears there as in intermediate step in the proof of the upper bound part of Theorem 1.2.

Theorem 3. (Proof of the upper bound part of Theorem 1.2 in 11) Let $\rho(m, \epsilon)$ denote the probability that the root of of $B R W$ is $(m, v(p)-\epsilon)-$ good. For any $0<$ $\beta<\chi(p)$, there exists $\theta>0$ such that, for all large m,

$$
\rho(m, \epsilon) \leq \exp \left(-\left[\frac{\chi(p)-\beta}{\epsilon}\right]^{1 / 2}\right), \text { with } \epsilon:=\theta / m^{2 / 3}
$$

5. The upper Bound

The arguments used here in the proof of the upper bound, combine ideas from the paper 14 by Pemantle, which deals with the closely related question of obtaining complexity bounds for algorithms that seek near optimal paths in branching random walks, and the estimate on $\rho(m, \epsilon)$ from the paper (11], by Gantert, Hu and Shi. In fact, the proof given below is basically a rewriting of the proof of the lower complexity bound in [14] in the special case of algorithms that do not jump, with the following slight differences: we are dealing with N independent branching random walks being explored in parallel, rather than a single branching random walk; we consider possibly unbounded random walk steps; that we use the estimate in 11 instead of the cruder one derived in 14 .

We start with an elementary result adapted from (14].
Lemma 1. (Adapted from Lemma 5.2 in $14 \rrbracket$.) Let $0<v_{1}<v_{2}, n \geq 1, m \in \llbracket 1, n \rrbracket$, and let $0=: x_{0}, \ldots, x_{n}$ be a sequence of real numbers such that $0 \leq x_{i+1}-x_{i} \leq K$ for all $i \in \llbracket 0, n-1 \rrbracket$. Let $I:=\left\{i \in \llbracket 0, n-m \rrbracket ; x_{j}-x_{i} \geq v_{1}(j-i)\right.$ for all $\left.j \in \llbracket i, i+m \rrbracket\right\}$. If $x_{n} \geq v_{2} n$, then $\# I \geq \frac{v_{2}-v_{1}}{K-v_{1}} \frac{n}{m}-K /\left(K-v_{1}\right)$.

Since Lemma 1 admits so short a proof, we give it below for the sake of completeness, even though it is quite similar to that in 14.
Proof of Lemma [1. (Adapted from [14].) Consider a sequence $0=: x_{0}, \ldots, x_{n}$ as in the statement of the lemma. Let then $\tau_{0}:=0$, and, given $\tau_{i} \leq n$, define inductively $\tau_{i+1}:=\inf \left\{j \in \llbracket \tau_{i}+1, n \rrbracket ; x_{j}<x_{\tau_{i}}+v_{1}\left(j-\tau_{i}\right)\right.$ or $\left.j=\tau_{i}+m\right\}$, with the convention
that $\inf \emptyset=n+1$ Now color the vertices $x_{k}, k \in \llbracket 0, n-1 \rrbracket$ according to the following rules: if $x_{\tau_{i+1}} \geq x_{\tau_{i}}+v_{1}\left(\tau_{i+1}-\tau_{i}\right)$ and $\tau_{i+1} \leq n$, then $x_{\tau_{i}}, \ldots, x_{\tau_{i+1}-1}$ are colored red. Note that this yields a segment of m red vertices, and that τ_{i} then belongs to I. Otherwise, $x_{\tau_{i}}, \ldots, x_{\tau_{i+1}-1}$ are colored blue. Let $V_{r e d}$ (resp. $V_{b l u e}$) denote the number of red (resp. blue) vertices in x_{0}, \ldots, x_{n-1}. Then decompose the value of x_{n} into the contributions of the steps $x_{k+1}-x_{k}$ performed from red and blue vertices respectively. On the one hand, the contribution of red vertices is $\leq K V_{\text {red }}$. On the other hand, the contribution of blue vertices is $\leq V_{\text {blue }} \times v_{1}+K m$, where the m is added to take into account a possible last segment colored in blue only because it has reached the index n. Writing that $n=V_{\text {red }}+V_{\text {blue }}$, we deduce that $v_{2} n \leq K V_{\text {red }}+v_{1}\left(n-V_{r e d}\right)+K m$, so that $V_{r e d} \geq \frac{v_{2}-v_{1}}{K-v_{1}} n-K m /\left(K-v_{1}\right)$. Then use the fact that at least $V_{\text {red }} / m$ vertices belong to I.

In (14], Lemma 11 and an estimate of the type given by Theorem 3 are used in combination with an elaborate second moment argument. In the present context, the following quite simple first moment argument turns out to be sufficient.

Proof of the upper bound part of Theorem [1. Assume that $X_{0}^{N}=N \delta_{0}$. Let $\beta>0$ and $\theta>0$ be as in Theorem 3. Then let $\lambda>0$, and define

$$
m:=\left\lceil\theta^{3 / 2}\left(\frac{(1+\lambda)(\log N)}{(\chi(p)-\beta)^{1 / 2}}\right)^{3}\right\rceil
$$

and $\epsilon:=\theta / m^{2 / 3}$, so that, by Theorem 3,

$$
\begin{equation*}
\rho(m, \epsilon) \leq N^{-(1+\lambda)} \text { for all large } N \tag{2}
\end{equation*}
$$

Then let $0<\zeta<1$ and define $v_{2}:=v(p)-(1-\zeta) \epsilon$ and $v_{1}:=v(p)-\epsilon$.
Let also $n:=\left\lfloor N^{\xi}\right\rfloor$ for some $0<\xi<\lambda$. Now consider $\kappa>0$, and let $K:=$ $\kappa \log (2 N n)$. Consider the maximum of the random walk steps performed during the branching steps of $\left(X_{k}^{N}\right)_{k \geq 0}$ between time 0 and time n. There are $2 N n$ such steps, so that, by assumption (A2), there exists a value of κ such that the probability that this maximum is larger than or equal to K is less than $(2 N n)^{-2008}$ for all large enough N. Now denote by B_{n} the number of vertices in $\mathrm{BRW}_{1} \cup \cdots \cup \mathrm{BRW}_{N}$ that are $(m, v(p)-\epsilon)-\operatorname{good}$ (each with respect to the BRW_{i} it belongs to) and belong to $G_{0}^{N} \cup \cdots \cup G_{n}^{N}\left(G_{n}^{N}\right.$ is defined in Section (4). Observe that, with our definitions, for N large enough, $\frac{v_{2}-v_{1}}{K-v_{1}} \frac{n}{m}-K /\left(K-v_{1}\right)>0$. As a consequence, using Lemma 1, we see that, for N large enough, the event $\max X_{n}^{N} \geq v_{2} n$ implies that either there exists a random walk step between time 0 and n which is $\geq K$, or $B_{n} \geq 1$. Using the union bound and the above estimate, we deduce that

$$
\begin{equation*}
\mathbb{P}\left(\max X_{n}^{N} \geq v_{2} n\right) \leq(2 N n)^{-2008}+\mathbb{P}\left(B_{n} \geq 1\right) \tag{3}
\end{equation*}
$$

On the other hand, B_{n} can be written as

$$
\begin{equation*}
B_{n}:=\sum_{u \in \mathrm{BRW}_{1} \cup \cdots \cup \mathrm{BRW}_{N}} \mathbf{1}(u \text { is }(m, v(p)-\epsilon)-\text { good }) \mathbf{1}\left(u \in G_{0}^{N} \cup \cdots \cup G_{n}^{N}\right) . \tag{4}
\end{equation*}
$$

Now observe that, by definition, for a vertex u at depth ℓ, the event $u \in G_{0}^{N} \cup \cdots \cup G_{n}^{N}$ is measurable with respect to the random walk steps performed up to depth ℓ, while the event that u is $(m, v(p)-\epsilon)$-good is measurable with respect to the random walk steps performed starting from depth $\geq \ell$. As a consequence, these two events are independent. Since the total number of vertices in $G_{0}^{N} \cup \cdots \cup G_{n}^{N}$ is equal to $N(n+1)$, we deduce from (2) and (7) that $E\left(B_{n}\right) \leq N(n+1) N^{-(1+\lambda)}$. Using Markov's inequality, we finally deduce from (3) that

$$
\begin{equation*}
\mathbb{P}\left(\max X_{n}^{N} \geq v_{2} n\right) \leq(2 N n)^{-2008}+(n+1) N^{-\lambda} . \tag{5}
\end{equation*}
$$

Now start with the obvious inequality, valid for all $t \geq 0, \exp \left(t \max X_{n}^{N}\right) \leq$ $\sum_{u \in \mathcal{T}_{n}^{N}} \exp (t \Phi(u))$. Taking expectations, we deduce that $\mathbb{E}\left(\exp \left(t \max X_{n}^{N}\right)\right) \leq$ $2^{n} \exp (n \Lambda(t))$. Using the definition of t^{*}, we then obtain that

$$
\begin{equation*}
\mathbb{E}\left(\exp \left(t^{*}\left(\max X_{n}^{N}-v(p) n\right)\right) \leq 1 .\right. \tag{6}
\end{equation*}
$$

Using (6) and the fact that, for all large enough $x, x \leq \exp \left(t^{*} x / 2008\right)$, we deduce that, for all $b>0$, and all large enough n,
(7) $\mathbb{E}\left[\max X_{n}^{N} \mathbf{1}\left(\max X_{n}^{N} \geq(v(p)+b) n\right)\right] \leq \exp \left(-\frac{2007}{2008} t^{*} b n\right)+v(p) n \exp \left(-t^{*} b n\right)$.

Now, observe that $\mathbb{E}\left(n^{-1} \max X_{n}^{N}\right)$ is bounded above by

$$
v_{2}+(v(p)+b) \mathbb{P}\left(\max X_{n}^{N} \geq v_{2} n\right)+\mathbb{E}\left[\max X_{n}^{N} \mathbf{1}\left(\max X_{n}^{N} \geq(v(p)+b) n\right)\right]
$$

Choosing b large enough, we deduce from (5), (7), and the definition of v_{2}, that, for all large enough $N, \mathbb{E}\left(n^{-1} \max X_{n}^{N}\right) \leq(v(p)-(1-\zeta) \epsilon)+o\left((\log N)^{-2}\right)$. Using subadditivity, we easily obtain that $v_{N}(p) \leq(v(p)-(1-\zeta) \epsilon)+o\left((\log N)^{-2}\right)$. Now, as N goes to infinity, $\epsilon \sim \frac{\chi(p)-\beta}{(1+\lambda)^{2}}(\log N)^{-2}$. Since these estimates are true for arbitrarily small β, λ and ζ, the result follows.

6. The lower bound

The proof of the lower bound on the convergence rate of $v_{N}(p)$ to $v_{\infty}(p)$ that was given in [3] was in some sense a rigorous version of the heuristic argument of Brunet and Derrida according to which we should compare the behavior of the particle system with N particles, with a version of the infinite population limit modified by a cutoff value $1 / N$. The proof given here relies upon a direct comparison with branching random walks, using the fact that, above the threshold induced by the selection steps, the behavior of our branching-selection particle system is exactly that of a branching random walk.

Consider $0<\lambda<1$ and let $\epsilon:=\frac{\chi(p)}{((1-\lambda) \log N)^{2}}$. With this choice of ϵ, as N goes to infinity, Theorem 2 yields that

$$
\begin{equation*}
\rho(\infty, \epsilon)=N^{-(1-\lambda)+o(1)} \tag{8}
\end{equation*}
$$

Now consider the event A that the root is not $(\infty, v(p)-\epsilon)$-good in any of $\mathrm{BRW}_{1}, \ldots, \mathrm{BRW}_{N}$. Since these branching random walks are independent, we see that $\mathbb{P}(A)=(1-\rho(\infty, \epsilon))^{N}$, so that, using ((8),

$$
\begin{equation*}
\mathbb{P}(A) \leq \exp \left(-N^{\lambda+o(1)}\right) \tag{9}
\end{equation*}
$$

Remember the notation $u_{N}:=\left\lceil\frac{\log N}{\log 2}\right\rceil+1$, let $0<\eta<1$, and let $m:=\left\lceil\frac{v(p) u_{N}}{\eta \epsilon}\right\rceil$ and $n:=m+u_{N}$. Consider a vertex u at depth m in a branching random walk BRW, and assume that $\Phi(u) \geq(v(p)-\epsilon) m$. With our definition of m and n, we see that, for all descending path $u=: u_{m}, \ldots, u_{n}, \Phi\left(u_{i}\right) \geq(v(p)-\epsilon(1+\eta)) i$ for all $i \in \llbracket m, n \rrbracket$, using only the fact that the support of p is contained in \mathbb{R}_{+}. Now, by definition, on the event A^{c}, there exists at least one descending path u_{0}, \ldots, u_{m} in one of $\mathrm{BRW}_{1}, \ldots, \mathrm{BRW}_{N}$, such that $\Phi\left(u_{i}\right) \geq(v(p)-\epsilon) i$ for all $i \in \llbracket 1, m \rrbracket$. The previous observation allows us to deduce that, in this case, there are at least $2^{u_{N}}$ distinct descending paths of the form root $=: u_{0}, \ldots, u_{n}$ such that $\Phi\left(u_{i}\right) \geq(v(p)-\epsilon(1+\eta)) i$ for all $i \in \llbracket 1, n \rrbracket$.

Let $\delta:=\epsilon(1+\eta)$. Define the event $B:=\left\{\min \left(X_{i}^{N}\right)<(v(p)-\delta) i\right.$ for all $\left.i \in \llbracket 1, n \rrbracket\right\}$, and assume that $B \cap A^{c}$ occurs. From the definition of our branching-selection system and the above argument, we conclude that there must be at least $2^{u_{N}}$ distinct vertices in the set G_{n}^{N}, which is a contradiction since $2^{u_{N}}>N$. As a consequence, $B \cap A^{c}=\emptyset$, so that $B \subset A$. From (9), we thus obtain that

$$
\begin{equation*}
\mathbb{P}(B) \leq \exp \left(-N^{\lambda+o(1)}\right) \tag{10}
\end{equation*}
$$

To exploit this bound, we use the following result.
Proposition 5. For all N large enough,

$$
v_{N}(p) \geq(v(p)-\delta)(1-n \mathbb{P}(B))
$$

Proof. We re-use the notations of the proof of Proposition 3. Start with $\Gamma_{0}:=0$ and $J_{0}:=0$, and $i:=0$. Given $i \geq 0, \Gamma_{i}$ and J_{i}, let $L_{i+1}:=\inf \left\{k \in \llbracket 1, n \rrbracket ; \min \left(W_{\Gamma_{i}, k}^{N}\right) \geq\right.$ $(v(p)-\delta) k\}$, with the convention that $\inf \emptyset:=n$. Then let $\Gamma_{i+1}:=\Gamma_{i}+L_{i+1}$, and let $J_{i+1}:=J_{i}+\min \left(W_{\Gamma_{i}, L_{i+1}}^{N}\right)$.

This construction may be describes as follows: starting from a reference position J_{i} and a reference time index Γ_{i}, run the original branching-selection process from $N \delta_{J_{i}}$, until either n steps have been performed or the minimum value in the population of particles exceeds the reference position by an amount of at least $(v(p)-\delta)$ times the number of steps performed since the beginning of the run. Then set J_{i+1} to the minimum current position, and Γ_{i} to the current time, and repeat the procedure with $i:=i+1$. Using an argument similar to the proof of Proposition 2, it is then quite easy to deduce that,

$$
\begin{equation*}
\text { for all } i \geq 0, \min X_{\Gamma_{i}}^{N} \geq J_{i} \tag{11}
\end{equation*}
$$

Now, clearly, the sequences $\left(\Gamma_{i+1}-\Gamma_{i}\right)_{i \geq 0}$ and $\left(J_{i+1}-J_{i}\right)$ are i.i.d. The common distribution of the $\Gamma_{i+1}-\Gamma_{i}$ is that of L, while the common distribution of the $J_{i+1}-$ J_{i} is that of $\min X_{L}^{N}$, where L is the random variable $L:=\inf \left\{i \in \llbracket 1, n \rrbracket ; \min \left(X_{i}^{N}\right) \geq\right.$ $(v(p)-\delta) i\}$, with the convention that $\inf \emptyset:=n$. From the law of large numbers and Proposition 3, we have that, $\lim _{i \rightarrow+\infty} i^{-1} \min X_{\Gamma_{i}}^{N}=v_{N}(p) \mathbb{E}(L)$, while the law of large numbers and (11) imply that $\liminf _{i \rightarrow+\infty} i^{-1} \min X_{\Gamma_{i}}^{N} \geq \mathbb{E}\left(\min X_{L}^{N}\right)$. We conclude that $v_{N}(p) \geq \frac{\mathbb{E}\left(\min X_{L}^{N}\right)}{\mathbb{E}(L)}$. Now, by definition, $\min X_{L}^{N} \geq(v(p)-\delta) L \mathbf{1}\left(B^{c}\right)$, so that $\mathbb{E}\left(\min X_{L}^{N}\right) \geq(v(p)-\delta)(\mathbb{E}(L)-\mathbb{E}(L \mathbf{1}(B)))$. Using the fact that $1 \leq L \leq n$, we obtain that $\frac{\mathbb{E}\left(\min X_{L}^{N}\right)}{\mathbb{E}(L)} \geq(v(p)-\delta)(1-n \mathbb{P}(B))$.

Proof of the lower bound part in Theorem 1. In view of Proposition 5, we deduce that $v_{N}(p) \geq(v(p)-(1+\eta) \epsilon)(1-n \mathbb{P}(B))$. Then, from (10), we see that

$$
v_{N}(p) \geq v(p)-\frac{\chi(p)(1+\eta)}{(1-\lambda)^{2}}(\log N)^{-2}+o\left((\log N)^{-2}\right)
$$

Since λ and η can be taken arbitrarily small, the conclusion follows.

Remark 1. Observe that the proof does not in fact require a lower bound for $\rho(\infty, \epsilon)$, but rather for $\rho(m, \epsilon)$, and note that $m \propto(\log N)^{3}$ while $\epsilon \propto(\log N)^{-2}$. Similarly, for the upper bound proved in the previous section, an upper bound over $\rho(m, \epsilon)$ with $m \propto(\log N)^{3}$ and $\epsilon \propto(\log N)^{-2}$ was used.

7. The Bernoulli case when $1 / 2 \leq \alpha<1$

In the Bernoulli case $p=\alpha \delta_{1}+(1-\alpha) \delta_{0}$, with $\alpha=1 / 2$ or $1 / 2<\alpha<1$, the behavior turns out to be quite different from Brunet-Derrida, as stated in the following theorems.

Theorem 4. For $\alpha=1 / 2$, there exists $0<C_{*}(p) \leq C^{*}(p)<+\infty$ such that, for all large N,

$$
\begin{equation*}
C_{*}(p) N^{-1} \leq v_{\infty}(p)-v_{N}(p) \leq C^{*}(p) N^{-1} \tag{12}
\end{equation*}
$$

Theorem 5. For $\alpha>1 / 2$, there exists $0<C_{*}(p) \leq C^{*}(p)<+\infty$ such that, for all large N,

$$
\begin{equation*}
C_{*}(p) N \leq-\log \left(v_{\infty}(p)-v_{N}(p)\right) \leq C^{*}(p) N \tag{13}
\end{equation*}
$$

In the case $1 / 2 \leq \alpha<1$, it turns out that $v_{\infty}(p)=v(p)=1$.
7.1. Upper bound when $\alpha=1 / 2$. It is easily checked that, for all $m \geq 0$, the number of particles at position exactly m after m steps, that is, $X_{m}^{N}(m)$, is stochastically dominated by the total population at the m-th generation of a family of N independent Galton-Watson trees, with offspring distribution binomial($2,1 / 2$). This corresponds to the critical case of Galton-Watson trees, and the probability that such a tree survives up to the m-th generation is $\leq \mathrm{cm}^{-1}$ for some constant $c>0$ and all large m. As a consequence, for large enough $m, \mathbb{P}\left(X_{m}^{N}(m) \geq 1\right) \leq$ $\mathbb{E}\left(X_{m}^{N}(m)\right) \leq c N m^{-1}$.

On the other hand, we have by definition that $m^{-1} \mathbb{E} \max \left(X_{m}^{N}\right) \leq 1-$ $\frac{1}{m} \mathbb{P}\left(X_{m}^{N}(m)=0\right)$. Choosing $m:=A N$, where $A \geq 1$ is an integer, we see that, for large $N, m^{-1} \mathbb{E} \max \left(X_{m}^{N}\right) \leq 1-1 / A N(1-c / A)$. The upper bound in (12) follows by choosing $A>c$.
7.2. Lower bound when $p=1 / 2$. Given $m \geq 1$, define $U:=\inf \{n \in$ $\left.\llbracket 1, m \rrbracket ; X_{n}^{N}(n) \leq 2 N / 3\right\}$, with the convention that $\inf \emptyset:=m$. Let D denote the event that $\min X_{U}^{N}<U-1$.

Using an argument similar to the proof of Proposition 5 , with U and D in place of L and B respectively, we deduce that

$$
\begin{equation*}
v_{N}(p) \geq 1-\frac{1}{\mathbb{E}(D)}-m \mathbb{P}(D) \tag{14}
\end{equation*}
$$

The lower bound in (12) is then a consequence of the two following claims.
Our first claim is that there exists $c>0$ such that $\mathbb{P}(D) \leq \exp (-c N)$ for all large N. Let $N_{k}^{\ell}(x)$ denote the number of particles that are born from a particle at position x during the branching step that is applied to X_{k}^{N}, ant that are located at position $x+\ell$. perform a random walk step equal to from the proof of Lemma ??, and choose δ small enough so that $(1-\delta) 4 N / 3>N$. It is easily seen that $D \subset$ $\left\{N_{U-1}^{1}(U-1) \leq(1-\delta) 2 N / 3\right\} \cup\left\{N_{U-1}^{0}(U-1) \leq(1-\delta) 2 N / 3\right\}$. Now, by definition, one has that $X_{U-1}^{N}(U-1) \geq 2 N / 3$, so that, by a standard large deviations bound for binomial random variables (see e.g. 12]), conditional on X_{U-1}^{N}, the probabilities of $N_{U-1}^{1}(U-1) \leq(1-\delta) 2 N / 3$ and $N_{U-1}^{0}(U-1) \leq(1-\delta) 2 N / 3$ are both $\leq \exp (-c(\delta) N)$. The bound on $\mathbb{P}(D)$ follows.

Our second claim is that, for small enough $\epsilon>0$, with $m:=\lfloor\epsilon N\rfloor$, there exists $c(\epsilon)>0$ such that $\mathbb{E}(D) \geq c(\epsilon) N$ for all large N. To prove it, introduce the Markov chains $\left(V_{k}\right)_{k \geq 0}$ and $\left(Z_{k}\right)_{k \geq 0}$ on \mathbb{N}, defined as follows. First, $V_{0} \in \mathbb{N}$, and, given V_{0}, \ldots, V_{k}, the next term V_{k+1} is the minimum of N and of a random variable with a binomial $\left(2 V_{k}, 1 / 2\right)$ distribution. On the other hand, $Z_{0} \in \mathbb{N}$, and, given Z_{0}, \ldots, Z_{k}, the distribution of Z_{k+1} is binomial $\left(2 Z_{k}, 1 / 2\right)$. Observe that the sequence $\left(X_{n}^{N}(n)\right)_{n \geq 0}$ is a version of V started at $V_{0}:=N$. Now, it is easily seen that, given two starting points $x, y \in \mathbb{N}$ such that $x \leq y$, one can couple two versions of V starting from x and y respectively, in such a way that the version starting from y is always above the version starting from x. As a consequence, U stochastically dominates the random variable $T:=\inf \left\{n \in \llbracket 1, m \rrbracket ; V_{n} \leq 2 N / 3\right\}$ (again with $\inf \emptyset:=m$), where V is started at $V_{0}:=\lfloor 3 N / 4\rfloor$. Then observe that the distributions of V and Z started with $V_{0}:=Z_{0}:=\lfloor 3 N / 4\rfloor$, considered up to the hitting time of $\llbracket N,+\infty \llbracket$, coincide. As a consequence, the probabilities of the events $\left\{\sup _{k \in \llbracket 0, m \rrbracket}\left|V_{k}-\lfloor 3 N / 4\rfloor\right| \geq N / 16\right\}$ and $\left\{\sup _{k \in \llbracket 0, m \rrbracket}\left|Z_{k}-\lfloor 3 N / 4\rfloor\right| \geq N / 16\right\}$ coincide, and the first of these two events implies that $T=m$. Now, $\left(Z_{k}\right)_{k \geq 0}$ is a martingale, so that, by Doob's maximal inequality, $P\left(\sup _{k \in \llbracket 0, m \rrbracket}\left|Z_{k}-\lfloor 3 N / 4\rfloor\right| \geq N / 16\right) \leq E\left(Z_{m}-\lfloor 3 N / 4\rfloor\right)^{2}(N / 16)^{-2}$. Then, it is easily checked from the definition that $E\left(Z_{k+1}^{2} \mid Z_{k}\right)=Z_{k}^{2}+Z_{k} / 2$, and, using again the fact that $\left(Z_{k}\right)_{k \geq 0}$ is a martingale, we deduce that $E\left(Z_{m}-\lfloor 3 N / 4\rfloor\right)^{2} \leq m N / 2$. As a consequence, we see that, choosing $\epsilon>0$ small enough, we can ensure that $P\left(\sum_{k \in \llbracket 0,\lfloor\epsilon N\rfloor \rrbracket}\left|Z_{k}-\lfloor 3 N / 4\rfloor\right| \geq N / 16\right) \leq 1 / 2008$ for all large N. For such an ϵ, and all N large enough, we thus have that $\mathbb{P}(U=m) \geq P(T=m) \geq 1 / 2008$. The conclusion follows.
7.3. Upper and lower bound when $1 / 2<\alpha<1$. As for the upper bound, observe that asking all the $2 N$ particles generated during the branching step to remain at the position from which they are originated has a probability equal to at most $(1-\alpha)^{2 N}$, so that $\mathbb{E}\left(\max X_{n}\right) \leq n\left(1-(1-\alpha)^{2 N}\right)$. As for the lower bound,
observe that, starting from N particles at a site, the number of particles generated from these during a branching step and that perform +1 random walk steps has a binomial $(2 N, \alpha)$ distribution, whose expectation is $2 p N$, with $2 \alpha>1$. Using a standard large deviations bound for binomial random variables, we see that the probability for this number to be less than N is $\leq \exp (-c N)$ for some $c>0$. As a consequence, $\mathbb{E}\left(\min X_{n}\right) \geq n(1-\exp (-c N))$.

References

[1] R. Benguria and M. C. Depassier. On the speed of pulled fronts with a cutoff. Phys. Rev. E, 75(5), 2007.
[2] R. Benguria, M. C. Depassier, and M. Loss. Validity of the Brunet-Derrida formula for the speed of pulled fronts with a cutoff. arXiv:0706.3671, 2007.
[3] J. Bérard. An example of Brunet-Derrida behavior for a branching-selection particle system on Z. arXiv:0810.5567, 2008.
[4] É. Brunet, B. Derrida, A. H. Mueller, and S. Munier. Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization. Phys. Rev. E (3), 76(4):041104, 20, 2007.
[5] Eric Brunet and Bernard Derrida. Shift in the velocity of a front due to a cutoff. Phys. Rev. E (3), 56(3, part A):2597-2604, 1997.
[6] Éric Brunet and Bernard Derrida. Microscopic models of traveling wave equations. Computer Physics Communications, 121-122:376-381, 1999.
[7] Éric Brunet and Bernard Derrida. Effect of microscopic noise on front propagation. J. Statist. Phys., 103(1-2):269-282, 2001.
[8] Joseph G. Conlon and Charles R. Doering. On travelling waves for the stochastic Fisher-Kolmogorov-Petrovsky-Piscunov equation. J. Stat. Phys., 120(3-4):421-477, 2005.
[9] Freddy Dumortier, Nikola Popović, and Tasso J. Kaper. The critical wave speed for the Fisher-Kolmogorov-Petrowskii-Piscounov equation with cut-off. Nonlinearity, 20(4):855-877, 2007.
[10] Richard Durrett. Probability: theory and examples. Duxbury Press, Belmont, CA, second edition, 1996.
[11] N. Gantert, Yueyun Hu, and Zhan Shi. Asymptotics for the survival probability in a supercritical branching random walk. arXiv:0811.0262, 2008.
[12] Colin McDiarmid. Concentration. In Probabilistic methods for algorithmic discrete mathematics, volume 16 of Algorithms Combin., pages 195-248. Springer, Berlin, 1998.
[13] C. Mueller, L. Mytnik, and J. Quastel. Small noise asymptotics of traveling waves. Markov Process. Related Fields, 14, 2008.
[14] R. Pemantle. Search cost for a nearly optimal path in a binary tree. arXiv:math/0701741, 2007.
(Jean Bérard) Institut Camille Jordan, UMR CNRS 5208, 43, Boulevard du 11 novembre 1918, Villeurbanne, F-69622, France; université de Lyon, Lyon, F-69003, France; université Lyon 1, Lyon, F-69003, France
E-MAIL: jean.berard@univ-lyon1.fr
(Jean-Baptiste Gouéré) Laboratoire MAPMO - UMR 6628, Université d'Orléans, B.P. 6759, 45067 Orléans Cedex 2, France.
E-MAIL: Jean-Baptiste.Gouere@univ-orleans.fr.

