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BRUNET-DERRIDA BEHAVIOR OF BRANCHING-SELECTION

PARTICLE SYSTEMS ON THE LINE

JEAN BÉRARD, JEAN-BAPTISTE GOUÉRÉ

Abstract. The term Brunet-Derrida behavior refers to the 1997 paper by E.
Brunet and B. Derrida ”Shift in the velocity of a front due to a cutoff” (see the
reference within the paper), where it is shown, based on numerical simulations and
heuristic arguments, that a certain branching-selection particle system on the line
exhibits the following behavior: as N goes to infinity, the asymptotic velocity of
the system with N particles converges to a limiting value at the surprisingly slow
rate (log N)−2. In this paper, we consider a class of branching-selection particle
systems on R with N particles, defined through iterated branching-selection steps
of the following type. During a branching step, each particle is replaced by two
new particles, whose positions are shifted from that of the original particle by
independently performing two random walk steps, according to some distribution
p. During the selection step that follows, only the N rightmost particles are kept
among the 2N particles obtained at the branching step, to form a new population
of N particles. Under generic assumptions on p, it is shown that Brunet-Derrida
behavior holds for the corresponding particle system. The proofs are based on
ideas and results by R. Pemantle, and by N. Gantert, Y. Hu and Z. Shi, and rely
on a comparison of the particle system with a family of N independent branching
random walks killed below a linear space-time barrier. The results presented here
both improve and generalize upon previous work by the first author of this paper,
which was completed just before the results by Gantert, Hu and Shi became
publicly available.

1. Introduction

In [5, 6], E. Brunet and B. Derrida studied a branching-selection particle system
on Z enjoying the following property: as the number N of particles in the system
goes to infinity, the asymptotic speed of the population of particles in the system
converges to its limiting value at an unexpectedly slow rate, of order (log N)−2. This
behavior was established both by direct numerical simulation of the particle system,
and by mathematically non-rigorous arguments of the following type: having a finite
population of N particles instead of an infinite number of particles should be more
or less equivalent, as far as the asymptotic speed is concerned, to introducing a
cutoff value of 1/N , in the deterministic equations that govern the time-evolution of
the distribution of particles in the infinite-population limit. In turn, these equations
can be viewed as discrete versions of the well-known F-KPP equations, and the
initial problem is thus related to that of assessing the effect of introducing a small
cutoff in F-KPP equations, upon the speed of the travelling wave solutions. In
turn, this problem was studied by heuristic arguments and computer simulations
(see [5, 6]), and rigorous mathematical results for this last problem have recently
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been obtained, see [1, 2, 9]. Another approach is based on adding a small white-
noise term with scale parameter σ2 = 1/N in the Fisher-KPP equation, see [7], and
rigorous results have been derived for this model too, see [8, 13]. However, to our
knowledge, no rigorous results dealing directly with a branching-selection particle
system such as the one originally studied by Brunet and Derrida, are available
(except the preliminary work [3] by the first author of this paper, the results of
which are extended here).

The branching-selection particle systems we consider are similar (but not exactly
identical) to the one considered by Brunet and Derrida in [5, 6]. To be specific,
we consider a particle system with N particles on R defined through the repeated
application of branching and selection steps defined as follows:

• Branching: each of the N particles is replaced by two new particles, whose
positions are shifted from that of the original particle by independently per-
forming two random walk steps according to a given distribution p;

• Selection: only the N rightmost particles are kept among the 2N obtained
at the branching step, to form the new population of N particles.

Our assumptions on the random walk distribution p are listed below. For the most
part, they correspond to those of the paper [11] by Gantert, Hu and Shi, with the
simplifying feature that we consider only deterministic binary branching. Introduce
the logarithmic moment generating function of p defined by

Λ(t) := log

∫

exp(tx)dp(x).

Here are the assumptions on p:

(A1) The support of p is contained in R+ = [0,+∞[;
(A2) There exists t > 0 such that Λ(t) < +∞;
(A3) There exists t∗ ∈]0,+∞[ such that t∗Λ′(t∗) − Λ(t∗) = log 2.

Under these assumptions, let

χ(p) := π2

2 t∗Λ′′(t∗).

Then (see [11]) 0 < χ(p) < +∞. A simple case for which these assumptions hold is
the Bernoulli case p = αδ+1 + (1−α)δ0, when α ∈]0, 1/2[. This is precisely the case
investigated in [3].

In Section 3, it is proved that, after a large number of iterated branching-selection
steps, the displacement of the whole population of N particles is ballistic, with
deterministic asymptotic speed vN (p), and that, as N goes to infinity, vN (p) increases
to a limit v∞(p), which turns out to be equal to Λ′(t∗), and thus positive and finite.
The main result concerning the branching-selection particle system is the following
theorem:

Theorem 1. Assume that (A1)-(A2)-(A3) hold. Then, as N goes to infinity,

(1) v∞(p) − vN (p) ∼ χ(p)(log N)−2.

In [3], only the (log N)−2 order of magnitude of the difference v∞(p) − vN (p)
was established. The recently released results by Gantert, Hu and Shi [11] on the
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survival probability of a branching random walk killed below a linear space-time
barrier allowed us to prove the much more precise result above.

The rest of the paper is organized as follows. In Section 2, we provide the precise
notations and definitions that are needed in the sequel. Section 3 contains a discus-
sion of various elementary properties of the model we consider. Section 4 collects
the results from [11] that are used in the sequel. Section 5 contains the proof of
the upper bound part of Theorem 1, while Section 6 contains the proof of the lower
bound part. Section 7 discusses the Bernoulli case when Assumption (A3) is not
met.

2. Notations and definitions

It is convenient to represent finite populations of particles by finite counting mea-
sures on R. For all N ≥ 1, let CN denote the set of finite counting measures on R

with total mass equal to N , and C the set of all finite counting measures on R.
For ν ∈ C, the total mass of ν (i.e. the number of particles in the population

it describes) is denoted by M(ν). We denote by max ν and min ν respectively the
maximum and minimum of the (finite) support of µ. We also define the diameter
d(ν) := max ν−min ν. Given two positive measures µ, ν on R, we use the notation ≺
to denote the usual stochastic order: µ ≺ ν if and only if µ([x,+∞[) ≤ ν([x,+∞[) for
all x ∈ R. In particular, µ ≺ ν implies that M(µ) ≤ M(ν), and it is easily seen that,

if µ =
∑M(µ)

i=1 δxi
and ν =

∑M(ν)
i=1 δyi

, with x1 ≥ · · · ≥ xM(µ) and y1 ≥ · · · ≥ yM(ν),
µ ≺ ν is equivalent to M(µ) ≤ M(ν) and xi ≤ yi for all i ∈ [[1,M(µ)]].

In the sequel, we use the notation (XN
n )n≥0 to denote a Markov chain on CN

whose transition probabilities are given by the branching-selection mechanism with
N particles, and which starts at a deterministic value XN

0 ∈ CN . We assume this
Markov chain is defined on a reference probability space denoted by (Ω,F , P).

3. Elementary properties of the model

As a first quite elementary property, note that, from Assumption (A1),
E(maxXN

n ) < +∞ for all n ≥ 0, whatever the (deterministic) initial condition
XN

0 ∈ CN .

3.1. Estimates on the diameter.

Proposition 1. Let uN := ⌈ log N
log 2 ⌉ + 1. For all N ≥ 1, all initial population XN

0 ∈

CN , and all n ≥ uN , d(XN
n ) is stochastically dominated by uN times the maximum

of 2NuN i.i.d. random variables with distribution p.

Proof. Consider n ≥ uN , and let y = max XN
n−uN

. Assume first that min XN
k < y

for all n + 1 − uN ≤ k ≤ n. Since, due to (A1), all the random walk steps that
are performed during branching steps are ≥ 0, this implies that all the particles
descended by branching from a particle located at y at time n − uN , are preserved
by the selection steps performed from XN

n−uN
to XN

n . Since there are 2uN > N such
particles at time n, this is a contradiction. As a consequence, we know that there
must be an index n + 1 − uN ≤ k ≤ n such that minXN

k ≥ y. Since, by (A1),
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t 7→ min XN
t is non-decreasing, we deduce that min XN

n ≥ y. Now, let K denote the
maximum of the 2NuN branching random walk steps that are performed between
time n−uN and time uN . We see from the definition of y that maxXN

n ≤ y +uNK.
As a consequence, d(XN

n ) = maxXN
n − min XN

n ≤ uNK. �

The following corollary is then a straightforward consequence, in view of Assump-
tion (A2).

Corollary 1. For all N ≥ 1 and all initial population XN
0 ∈ CN ,

limn→+∞ n−1d(XN
n ) = 0, both with probability one and in L1(P).

3.2. Monotonicity properties.

Proposition 2. For all 1 ≤ N1 ≤ N2, and µ ∈ CN1
, ν ∈ CN2

such that µ ≺ ν,
there exists a coupling (ZN1

n , TN2
n )n≥0 between two versions of the branching-selection

particle system, with N1 and N2 particles respectively, such that ZN1

0 := µ, TN2

0 := ν,
and ZN1

n ≺ TN2
n for all n ≥ 0.

Proof. Consider an i.i.d. family (εn,i,j)n≥0,i∈[[1,N2]], j=1,2 with common distribution p.

For all n ≥ 0, define the branching-selection particle system (ZN1
n )n≥0 by ZN1

0 := µ,
selection steps consisting in keeping only the N1 rightmost particles, and branching
steps defined as follows. Starting from ZN1

n,k :=
∑N1

i=1 δxi
, with x1 ≥ . . . ,≥ xN1

,

let the new population be
∑

(i,j)∈[[1,N1]]×{1,2} δxi+εn,i,j
. Then define (TN2

n )n≥0 by

TN2

0 := ν, selection steps consisting in keeping only the N2 rightmost particles, and

the following branching steps. Starting from TN2
n :=

∑N2

i=1 δyi
, with y1 ≥ . . . ,≥ yN2

,
let the new population be

∑

(i,j)∈[[1,N2]]×{1,2} δyi+εn,i,j
. Now assume that, for a given

n ≥ 0, ZN1
n ≺ TN2

n . With the above notations, we have that xi ≤ yi, whence
xi+εn,i,j ≤ yi+εn,i,j, for all 1 ≤ i ≤ N1 and j = 1, 2. It follows that a sub-population
of size 2N1 of the population obtained from TN2

n by branching, dominates (in the
sense of ≺) the whole population, of size 2N1, obtained by branching from ZN1

n . It

is then quite easy to deduce that ZN1

n+1 ≺ TN2

n+1. The result follows by induction since
we assume that µ ≺ ν. �

Proposition 3. There exists vN (p) ∈ R+ such that, with probability one, and in
L1(P), whatever the initial population XN

0 ∈ CN ,

lim
n→+∞

n−1 min XN
n = lim

n→+∞
n−1 maxXN

n = vN (p).

Proof. Note that, in view of Corollary 1, if the two limits in the above statement
exist, they must be equal. Moreover, owing to the translation invariance of our
particle system, and to Proposition 2, we see that it is enough to prove the result
when XN

0 = Nδ0.
Consider an i.i.d. family (εk,i,j)k≥0,i∈[[1,N ]], j=1,2 with common distribution p. For

all n ≥ 0, denote by (W N
n,k)k≥0 a branching-selection system starting at W N

n,0 := Nδ0,
whose selection steps consist in keeping only the N rightmost particles, and whose
branching steps are specified as follows. Starting from W N

n,k :=
∑N

i=1 δxi
, with

x1 ≥ . . . ,≥ xN , let the new population be
∑

(i,j)∈[[1,N ]]×{1,2} δxi+εn+k,i,j
. Observe
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that (W N
0,n)n≥0 has the same distribution as (XN

n )n≥0. Then, observe that for all

n,m ≥ 0, maxW N
n+m,0 ≤ max W N

0,n+maxW N
n,m, by an argument similar to the proof

of Proposition 2. Moreover, for each d ≥ 1, the random variables (W N
dn,d)n≥0 form an

i.i.d. family, and for any given k, the distribution of W N
n,k clearly does not depend on

n. It is routine to check that the other hypotheses of Kingman’s subadditive ergodic
theorem hold (see e.g. [10]), so we deduce that limn→+∞ n−1 maxXN

n exists both a.s.
and in L1(P). A similar argument, using superadditivity instead of subadditivity,
holds for minXN

n . �

Proposition 4. The sequence (vN (p))N≥1 is non-decreasing.

Proof. Consequence of the fact that, when N1 ≤ N2, N1δ0 ≺ N2δ0, and of the
monotonic coupling property given in Proposition 2. �

We can deduce from the above proposition that there exists v∞(p) ∈ R+ such
that limN→+∞ vN (p) = v∞(p). A consequence of the proof of Theorem 1 below is
that v∞(p) is in fact equal to the number v(p) := Λ′(t∗), which is > 0 from our
assumptions on p.

3.3. Coupling with a family of N branching random walks. Let
BRW1, . . . ,BRWN denote N independent branching random walks, each with value
zero at the root, deterministic binary branching, and i.i.d. displacements with
common distribution p along each edge. For 1 ≤ i ≤ N , and n ≥ 0, let
BRWi(n) denote the set of vertices of BRWi located at depth n in the tree, and
let T N

n := BRW1(n) ∪ · · · ∪ BRWN (n). For every n, fix an a priori (i.e. depending
only on the tree structure, not on the random walk values) total order on T N

n . We
now define by induction a sequence (GN

n )n≥0 of subsets such that, for each n ≥ 0,
GN

n is a random subset of T N
n with exactly N elements. First, let us set GN

0 := T N
0 .

Then, given n ≥ 0 and GN
n , let HN

n denote the subset of Tn+1 formed by the chil-
dren of the vertices in GN

n . Then, define GN
n+1 as the subset of HN

n formed by the
N vertices that are associated with the largest values of the underlying random
walk (breaking ties by using the a priori order on TN

n ). It is now quite obvious
that the sequence formed by the (random) empirical distributions attached to the
sequence of subsets GN

0 , . . . , GN
n , has exactly the same distribution as XN

0 , . . . ,XN
n ,

when started from XN
0 := Nδ0. Thus, we can take for our reference probability

space (Ω,F , P) the one on which BRW1, . . . ,BRWN are defined, and let XN
n be

equal to the empirical distribution associated with the subset GN
n , and so obtain a

coupling between (XN
n )n≥0 (with XN

n = Nδ0) and the N branching random walks
BRW1, . . . ,BRWN .

4. Results on the branching random walk killed below a linear

space-time barrier

Throughout this section and the following, we use the notation BRW to denote
a generic branching random walk with value zero at the root, deterministic binary
branching, and i.i.d. displacements with common distribution p along each edge.
We use the notation Φ(u) to denote the value of the random walk associated with
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a vertex u ∈ BRW. Let us start with the following definition, adapted from [14].
Given v ∈ R and m ≥ 1, we say that a vertex u ∈ BRW is (m, v)−good if there exists
an infinite descending path u =: u0, u1, . . . , um such that Φ(ui) − Φ(u0) ≥ vi for all
i ∈ [[0,m]]. Similarly, we say that u is (∞, v)−good if there exists a descending path
u =: u0, u1, . . . such that Φ(ui) − Φ(u0) ≥ vi for all i ∈ [[0,+∞[[.

With this terminology, the main result in [11] can be stated as follows, remem-

bering that χ(p) := π2

2 t∗Λ′′(t∗).

Theorem 2. (Theorem 1.2 in [11]) Let ρ(∞, ǫ) denote the probability that the root
of BRW is (∞, v(p) − ǫ)−good. Then, as ǫ goes to zero,

ρ(∞, ǫ) = exp

(

−

[

χ(p) + o(1)

ǫ

]1/2
)

.

We shall need a result which, although not stated explicitly in [11], appears there
as in intermediate step in the proof of the upper bound part of Theorem 1.2.

Theorem 3. (Proof of the upper bound part of Theorem 1.2 in [11]) Let ρ(m, ǫ)
denote the probability that the root of of BRW is (m, v(p) − ǫ)−good. For any 0 <
β < χ(p), there exists θ > 0 such that, for all large m,

ρ(m, ǫ) ≤ exp

(

−

[

χ(p) − β

ǫ

]1/2
)

, with ǫ := θ/m2/3.

5. The upper bound

The arguments used here in the proof of the upper bound, combine ideas from the
paper [14] by Pemantle, which deals with the closely related question of obtaining
complexity bounds for algorithms that seek near optimal paths in branching random
walks, and the estimate on ρ(m, ǫ) from the paper [11], by Gantert, Hu and Shi.
In fact, the proof given below is basically a rewriting of the proof of the lower
complexity bound in [14] in the special case of algorithms that do not jump, with the
following slight differences: we are dealing with N independent branching random
walks being explored in parallel, rather than a single branching random walk; we
consider possibly unbounded random walk steps; that we use the estimate in [11]
instead of the cruder one derived in [14].

We start with an elementary result adapted from [14].

Lemma 1. (Adapted from Lemma 5.2 in [14].) Let 0 < v1 < v2, n ≥ 1, m ∈ [[1, n]],
and let 0 =: x0, . . . , xn be a sequence of real numbers such that 0 ≤ xi+1−xi ≤ K for
all i ∈ [[0, n− 1]]. Let I := {i ∈ [[0, n−m]]; xj −xi ≥ v1(j − i) for all j ∈ [[i, i+m]]}.
If xn ≥ v2n, then #I ≥ v2−v1

K−v1

n
m − K/(K − v1).

Since Lemma 1 admits so short a proof, we give it below for the sake of complete-
ness, even though it is quite similar to that in [14].

Proof of Lemma 1. (Adapted from [14].) Consider a sequence 0 =: x0, . . . , xn as in
the statement of the lemma. Let then τ0 := 0, and, given τi ≤ n, define inductively
τi+1 := inf{j ∈ [[τi + 1, n]]; xj < xτi

+ v1(j − τi) or j = τi + m}, with the convention
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that inf ∅ = n+1 Now color the vertices xk, k ∈ [[0, n−1]] according to the following
rules: if xτi+1

≥ xτi
+ v1(τi+1 − τi) and τi+1 ≤ n, then xτi

, . . . , xτi+1−1 are colored
red. Note that this yields a segment of m red vertices, and that τi then belongs
to I. Otherwise, xτi

, . . . , xτi+1−1 are colored blue. Let Vred (resp. Vblue) denote
the number of red (resp. blue) vertices in x0, . . . , xn−1. Then decompose the value
of xn into the contributions of the steps xk+1 − xk performed from red and blue
vertices respectively. On the one hand, the contribution of red vertices is ≤ KVred.
On the other hand, the contribution of blue vertices is ≤ Vblue × v1 + Km, where
the m is added to take into account a possible last segment colored in blue only
because it has reached the index n. Writing that n = Vred + Vblue, we deduce that
v2n ≤ KVred + v1(n − Vred) + Km, so that Vred ≥ v2−v1

K−v1
n − Km/(K − v1). Then

use the fact that at least Vred/m vertices belong to I. �

In [14], Lemma 1 and an estimate of the type given by Theorem 3 are used in
combination with an elaborate second moment argument. In the present context,
the following quite simple first moment argument turns out to be sufficient.

Proof of the upper bound part of Theorem 1. Assume that XN
0 = Nδ0. Let β > 0

and θ > 0 be as in Theorem 3. Then let λ > 0, and define

m :=

⌈

θ3/2

(

(1 + λ)(log N)

(χ(p) − β)1/2

)3
⌉

,

and ǫ := θ/m2/3, so that, by Theorem 3,

(2) ρ(m, ǫ) ≤ N−(1+λ) for all large N.

Then let 0 < ζ < 1 and define v2 := v(p) − (1 − ζ)ǫ and v1 := v(p) − ǫ.
Let also n := ⌊N ξ⌋ for some 0 < ξ < λ. Now consider κ > 0, and let K :=

κ log(2Nn). Consider the maximum of the random walk steps performed during the
branching steps of (XN

k )k≥0 between time 0 and time n. There are 2Nn such steps,
so that, by assumption (A2), there exists a value of κ such that the probability that
this maximum is larger than or equal to K is less than (2Nn)−2008 for all large
enough N . Now denote by Bn the number of vertices in BRW1 ∪ · · · ∪ BRWN that
are (m, v(p) − ǫ)−good (each with respect to the BRWi it belongs to) and belong

to GN
0 ∪ · · · ∪ GN

n (G
N

n is defined in Section 4). Observe that, with our definitions,
for N large enough, v2−v1

K−v1

n
m − K/(K − v1) > 0. As a consequence, using Lemma 1,

we see that, for N large enough, the event max XN
n ≥ v2n implies that either there

exists a random walk step between time 0 and n which is ≥ K, or Bn ≥ 1. Using
the union bound and the above estimate, we deduce that

(3) P
(

maxXN
n ≥ v2n

)

≤ (2Nn)−2008 + P(Bn ≥ 1).

On the other hand, Bn can be written as

(4) Bn :=
∑

u∈BRW1∪···∪BRWN

1( u is (m, v(p) − ǫ)−good)1(u ∈ GN
0 ∪ · · · ∪ GN

n ).
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Now observe that, by definition, for a vertex u at depth ℓ, the event u ∈ GN
0 ∪· · ·∪GN

n

is measurable with respect to the random walk steps performed up to depth ℓ, while
the event that u is (m, v(p) − ǫ)−good is measurable with respect to the random
walk steps performed starting from depth ≥ ℓ. As a consequence, these two events
are independent. Since the total number of vertices in GN

0 ∪ · · · ∪ GN
n is equal to

N(n + 1), we deduce from (2) and (4) that E (Bn) ≤ N(n + 1)N−(1+λ). Using
Markov’s inequality, we finally deduce from (3) that

(5) P(maxXN
n ≥ v2n) ≤ (2Nn)−2008 + (n + 1)N−λ.

Now start with the obvious inequality, valid for all t ≥ 0, exp(t max XN
n ) ≤

∑

u∈T N
n

exp(tΦ(u)). Taking expectations, we deduce that E(exp(t max XN
n )) ≤

2n exp(nΛ(t)). Using the definition of t∗, we then obtain that

(6) E(exp(t∗(maxXN
n − v(p)n)) ≤ 1.

Using (6) and the fact that, for all large enough x, x ≤ exp(t∗x/2008), we deduce
that, for all b > 0, and all large enough n,

(7) E
[

max XN
n 1(max XN

n ≥ (v(p) + b)n)
]

≤ exp
(

−2007
2008t∗bn

)

+ v(p)n exp(−t∗bn).

Now, observe that E(n−1 maxXN
n ) is bounded above by

v2 + (v(p) + b)P(max XN
n ≥ v2n) + E

[

maxXN
n 1(max XN

n ≥ (v(p) + b)n)
]

.

Choosing b large enough, we deduce from (5), (7), and the definition of v2, that,
for all large enough N , E(n−1 max XN

n ) ≤ (v(p) − (1 − ζ)ǫ) + o((log N)−2). Using
subadditivity, we easily obtain that vN (p) ≤ (v(p)−(1−ζ)ǫ)+o((log N)−2). Now, as

N goes to infinity, ǫ ∼ χ(p)−β
(1+λ)2

(log N)−2. Since these estimates are true for arbitrarily

small β, λ and ζ, the result follows. �

6. The lower bound

The proof of the lower bound on the convergence rate of vN (p) to v∞(p) that was
given in [3] was in some sense a rigorous version of the heuristic argument of Brunet
and Derrida according to which we should compare the behavior of the particle
system with N particles, with a version of the infinite population limit modified
by a cutoff value 1/N . The proof given here relies upon a direct comparison with
branching random walks, using the fact that, above the threshold induced by the
selection steps, the behavior of our branching-selection particle system is exactly
that of a branching random walk.

Consider 0 < λ < 1 and let ǫ := χ(p)
((1−λ) log N)2 . With this choice of ǫ, as N goes to

infinity, Theorem 2 yields that

(8) ρ(∞, ǫ) = N−(1−λ)+o(1).

Now consider the event A that the root is not (∞, v(p) − ǫ)−good in any of
BRW1, . . . ,BRWN . Since these branching random walks are independent, we see
that P(A) = (1 − ρ(∞, ǫ))N , so that, using (8),

(9) P(A) ≤ exp(−Nλ+o(1)).



BRUNET-DERRIDA BEHAVIOR OF BRANCHING-SELECTION PARTICLE SYSTEMS ON THE LINE9

Remember the notation uN := ⌈ log N
log 2 ⌉ + 1, let 0 < η < 1, and let m := ⌈v(p)uN

ηǫ ⌉
and n := m+uN . Consider a vertex u at depth m in a branching random walk BRW,
and assume that Φ(u) ≥ (v(p) − ǫ)m. With our definition of m and n, we see that,
for all descending path u =: um, . . . , un, Φ(ui) ≥ (v(p)− ǫ(1+ η))i for all i ∈ [[m,n]],
using only the fact that the support of p is contained in R+. Now, by definition,
on the event Ac, there exists at least one descending path u0, . . . , um in one of
BRW1, . . . ,BRWN , such that Φ(ui) ≥ (v(p) − ǫ)i for all i ∈ [[1,m]]. The previous
observation allows us to deduce that, in this case, there are at least 2uN distinct
descending paths of the form root =: u0, . . . , un such that Φ(ui) ≥ (v(p)− ǫ(1 + η))i
for all i ∈ [[1, n]].

Let δ := ǫ(1+η). Define the event B := {min(XN
i ) < (v(p)−δ)i for all i ∈ [[1, n]]},

and assume that B∩Ac occurs. From the definition of our branching-selection system
and the above argument, we conclude that there must be at least 2uN distinct vertices
in the set GN

n , which is a contradiction since 2uN > N . As a consequence, B∩Ac = ∅,
so that B ⊂ A. From (9), we thus obtain that

(10) P(B) ≤ exp(−Nλ+o(1)).

To exploit this bound, we use the following result.

Proposition 5. For all N large enough,

vN (p) ≥ (v(p) − δ)(1 − nP(B)).

Proof. We re-use the notations of the proof of Proposition 3. Start with Γ0 := 0 and
J0 := 0, and i := 0. Given i ≥ 0, Γi and Ji, let Li+1 := inf{k ∈ [[1, n]]; min(W N

Γi,k
) ≥

(v(p) − δ)k}, with the convention that inf ∅ := n. Then let Γi+1 := Γi + Li+1, and
let Ji+1 := Ji + min(W N

Γi,Li+1
).

This construction may be describes as follows: starting from a reference position Ji

and a reference time index Γi, run the original branching-selection process from NδJi
,

until either n steps have been performed or the minimum value in the population
of particles exceeds the reference position by an amount of at least (v(p)− δ) times
the number of steps performed since the beginning of the run. Then set Ji+1 to the
minimum current position, and Γi to the current time, and repeat the procedure
with i := i + 1. Using an argument similar to the proof of Proposition 2, it is then
quite easy to deduce that,

(11) for all i ≥ 0, minXN
Γi

≥ Ji.

Now, clearly, the sequences (Γi+1 − Γi)i≥0 and (Ji+1 − Ji) are i.i.d. The common
distribution of the Γi+1−Γi is that of L, while the common distribution of the Ji+1−
Ji is that of minXN

L , where L is the random variable L := inf{i ∈ [[1, n]]; min(XN
i ) ≥

(v(p) − δ)i}, with the convention that inf ∅ := n. From the law of large numbers
and Proposition 3, we have that, limi→+∞ i−1 minXN

Γi
= vN (p)E(L), while the law

of large numbers and (11) imply that lim infi→+∞ i−1 min XN
Γi

≥ E(min XN
L ). We

conclude that vN (p) ≥
E(min XN

L )
E(L) . Now, by definition, min XN

L ≥ (v(p) − δ)L1(Bc),

so that E(min XN
L ) ≥ (v(p) − δ)(E(L) − E(L1(B))). Using the fact that 1 ≤ L ≤ n,

we obtain that
E(min XN

L )
E(L) ≥ (v(p) − δ)(1 − nP(B)). �
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Proof of the lower bound part in Theorem 1. In view of Proposition 5, we deduce
that vN (p) ≥ (v(p) − (1 + η)ǫ)(1 − nP(B)). Then, from (10), we see that

vN (p) ≥ v(p) −
χ(p)(1 + η)

(1 − λ)2
(log N)−2 + o((log N)−2).

Since λ and η can be taken arbitrarily small, the conclusion follows.
�

Remark 1. Observe that the proof does not in fact require a lower bound for ρ(∞, ǫ),
but rather for ρ(m, ǫ), and note that m ∝ (log N)3 while ǫ ∝ (log N)−2. Similarly,
for the upper bound proved in the previous section, an upper bound over ρ(m, ǫ) with
m ∝ (log N)3 and ǫ ∝ (log N)−2 was used.

7. The Bernoulli case when 1/2 ≤ α < 1

In the Bernoulli case p = αδ1 + (1 − α)δ0, with α = 1/2 or 1/2 < α < 1,
the behavior turns out to be quite different from Brunet-Derrida, as stated in the
following theorems.

Theorem 4. For α = 1/2, there exists 0 < C∗(p) ≤ C∗(p) < +∞ such that, for all
large N ,

(12) C∗(p)N−1 ≤ v∞(p) − vN (p) ≤ C∗(p)N−1.

Theorem 5. For α > 1/2, there exists 0 < C∗(p) ≤ C∗(p) < +∞ such that, for all
large N ,

(13) C∗(p)N ≤ − log(v∞(p) − vN (p)) ≤ C∗(p)N.

In the case 1/2 ≤ α < 1, it turns out that v∞(p) = v(p) = 1.

7.1. Upper bound when α = 1/2. It is easily checked that, for all m ≥ 0, the
number of particles at position exactly m after m steps, that is, XN

m (m), is stochas-
tically dominated by the total population at the m−th generation of a family of
N independent Galton-Watson trees, with offspring distribution binomial(2, 1/2).
This corresponds to the critical case of Galton-Watson trees, and the probability
that such a tree survives up to the m−th generation is ≤ cm−1 for some constant
c > 0 and all large m. As a consequence, for large enough m, P(XN

m (m) ≥ 1) ≤
E(XN

m (m)) ≤ cNm−1.
On the other hand, we have by definition that m−1

E max(XN
m ) ≤ 1 −

1
mP(XN

m (m) = 0). Choosing m := AN , where A ≥ 1 is an integer, we see that,

for large N , m−1
E max(XN

m ) ≤ 1 − 1/AN(1 − c/A). The upper bound in (12)
follows by choosing A > c.

7.2. Lower bound when p = 1/2. Given m ≥ 1, define U := inf{n ∈
[[1,m]]; XN

n (n) ≤ 2N/3}, with the convention that inf ∅ := m. Let D denote the
event that min XN

U < U − 1.
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Using an argument similar to the proof of Proposition 5, with U and D in place
of L and B respectively, we deduce that

(14) vN (p) ≥ 1 −
1

E(D)
− mP(D).

The lower bound in (12) is then a consequence of the two following claims.
Our first claim is that there exists c > 0 such that P(D) ≤ exp(−cN) for all

large N . Let N ℓ
k(x) denote the number of particles that are born from a particle at

position x during the branching step that is applied to XN
k , ant that are located at

position x + ℓ. perform a random walk step equal to from the proof of Lemma ??,
and choose δ small enough so that (1 − δ)4N/3 > N . It is easily seen that D ⊂
{N1

U−1(U − 1) ≤ (1− δ)2N/3} ∪ {N0
U−1(U − 1) ≤ (1− δ)2N/3}. Now, by definition,

one has that XN
U−1(U−1) ≥ 2N/3, so that, by a standard large deviations bound for

binomial random variables (see e.g. [12]), conditional on XN
U−1, the probabilities of

N1
U−1(U−1) ≤ (1−δ)2N/3 and N0

U−1(U−1) ≤ (1−δ)2N/3 are both ≤ exp(−c(δ)N).
The bound on P(D) follows.

Our second claim is that, for small enough ǫ > 0, with m := ⌊ǫN⌋, there ex-
ists c(ǫ) > 0 such that E(D) ≥ c(ǫ)N for all large N . To prove it, introduce the
Markov chains (Vk)k≥0 and (Zk)k≥0 on N, defined as follows. First, V0 ∈ N, and,
given V0, . . . , Vk, the next term Vk+1 is the minimum of N and of a random vari-
able with a binomial(2Vk, 1/2) distribution. On the other hand, Z0 ∈ N, and, given
Z0, . . . , Zk,the distribution of Zk+1 is binomial(2Zk, 1/2). Observe that the sequence
(XN

n (n))n≥0 is a version of V started at V0 := N . Now, it is easily seen that, given
two starting points x, y ∈ N such that x ≤ y, one can couple two versions of V start-
ing from x and y respectively, in such a way that the version starting from y is always
above the version starting from x. As a consequence, U stochastically dominates the
random variable T := inf{n ∈ [[1,m]]; Vn ≤ 2N/3} (again with inf ∅ := m), where V
is started at V0 := ⌊3N/4⌋. Then observe that the distributions of V and Z started
with V0 := Z0 := ⌊3N/4⌋, considered up to the hitting time of [[N,+∞[[, coincide. As
a consequence, the probabilities of the events {supk∈[[0,m]] |Vk−⌊3N/4⌋| ≥ N/16} and

{supk∈[[0,m]] |Zk−⌊3N/4⌋| ≥ N/16} coincide, and the first of these two events implies

that T = m. Now, (Zk)k≥0 is a martingale, so that, by Doob’s maximal inequal-

ity, P
(

supk∈[[0,m]] |Zk − ⌊3N/4⌋| ≥ N/16
)

≤ E(Zm − ⌊3N/4⌋)2(N/16)−2. Then, it

is easily checked from the definition that E(Z2
k+1|Zk) = Z2

k +Zk/2, and, using again

the fact that (Zk)k≥0 is a martingale, we deduce that E(Zm − ⌊3N/4⌋)2 ≤ mN/2.
As a consequence, we see that, choosing ǫ > 0 small enough, we can ensure that

P
(

∑

k∈[[0,⌊ǫN⌋]] |Zk − ⌊3N/4⌋| ≥ N/16
)

≤ 1/2008 for all large N . For such an ǫ, and

all N large enough, we thus have that P(U = m) ≥ P (T = m) ≥ 1/2008. The
conclusion follows.

7.3. Upper and lower bound when 1/2 < α < 1. As for the upper bound,
observe that asking all the 2N particles generated during the branching step to
remain at the position from which they are originated has a probability equal to at
most (1 − α)2N , so that E(maxXn) ≤ n(1 − (1 − α)2N ). As for the lower bound,
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observe that, starting from N particles at a site, the number of particles generated
from these during a branching step and that perform +1 random walk steps has
a binomial(2N,α) distribution, whose expectation is 2pN , with 2α > 1. Using a
standard large deviations bound for binomial random variables, we see that the
probability for this number to be less than N is ≤ exp(−cN) for some c > 0. As a
consequence, E(min Xn) ≥ n(1 − exp(−cN)).
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