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DILATATION OF A ONE-DIMENSIONAL NONLINEAR CRACK

IMPACTED BY A PERIODIC ELASTIC WAVE∗

STÉPHANE JUNCA† AND BRUNO LOMBARD‡

Abstract. The interactions between linear elastic waves and a nonlinear crack with finite com-
pressibility are studied in the one-dimensional context. Numerical studies on a hyperbolic model of
contact with sinusoidal forcing have shown that the mean values of the scattered elastic displace-
ments are discontinuous across the crack. The mean dilatation of the crack also increases with the
amplitude of the forcing levels. The aim of the present theoretical study is to analyse these nonlin-
ear processes under a larger range of nonlinear jump conditions. For this purpose, the problem is
reduced to a nonlinear differential equation. The dependence of the periodic solution on the forcing
amplitude is quantified under sinusoidal forcing conditions. Bounds for the mean, maximum and
minimum values of the solution are presented. Lastly, periodic forcing with a null mean value is
addressed. In that case, a result about the mean dilatation of the crack is obtained.

Key words. Elastic wave scattering, contact acoustic nonlinearity, nonlinear jump conditions,
periodic solutions of differential equations, dependence of solutions on parameters

AMS subject classifications. 34C11, 35B30, 37C60, 74J20

1. Introduction.

1.1. Aims. The modeling of interactions between ultrasonic waves and cracks
is of great interest in many fields of applied mechanics. When the wavelengths are
much larger than the width of the cracks, the latter are usually replaced by zero-
thickness interfaces with appropriate jump conditions. Linear models for crack-face
interactions have been widely developed [21]. However, these models do not prevent
the non-physical penetration of crack faces. In addition, laboratory experiments have
shown that ultrasonic methods based on linear models often fail to detect partially
closed cracks [25].

A well-known nonlinear model for cracks is the unilateral contact model [22, 12]. A
more realistic hyperbolic model accounting for the finite compressibility of crack faces
under normal loading conditions has been presented for applications in engineering [2]
and geomechanical contexts [4]. The well-posedness and the numerical modeling of
the latter model in the context of 1-D linear elastodynamics was previously studied in
[15]. The generation of harmonics and the distortion of simulated scattered velocity
and stress waves were also observed.

Subsequent numerical experiments have brought to light an interesting property.
In the case of a sinusoidal incident wave, the mean values of the elastic displacements
around a crack were found to be discontinuous. The simulations conducted also indi-
cated that the mean dilatation of the crack increases with the amplitude of the forcing
levels. This purely nonlinear phenomenon (the linear models predict no dilatation) is
of physical interest: experimenters can measure the dilatation [14] and use the data
obtained to deduce the properties of the crack.

A preliminary theoretical study based on the use of a perturbation method was
presented in [16]. An analytical expression for the dilatation was obtained in that
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study and successfully compared with the numerical results. However, this expres-
sion gives only a local estimate, valid in the particular case of the hyperbolic model
subjected to very low sinusoidal forcing levels. The aim of the present study is to
provide a theoretical analysis which can be applied to any range of forcing levels and
to a larger number of contact models.

1.2. Design of the study. The present paper is organized as follows:

• In section 2, the physical configuration is described. The family of strictly
increasing convex jump conditions dealt with in this study is introduced.
Numerical simulations of the process of interest are presented;

• In section 3, the problem is reduced to a nonautonomous differential equation.
Up to section 6, only the case of sinusoidal forcing, which allows a complete
understanding of the phenomena involved, is studied;

• In section 4, preliminary results on the differential equation are presented.
Classical tools for dynamical systems are used: Poincaré map, phase portrait,
lower and upper solutions [10, 18];

• In section 5, the main qualitative results of this study are presented. The
mean, maximum and minimum aperture of the crack are bounded, and local
estimates for small forcing are also proved;

• In section 6, some of the previous results are extended to non-monochromatic
periodic forcing conditions. The increase of the mean dilatation with the
forcing parameter is proved in theorem 6.3. The most general quantitative
result of the paper is given in equation (6.6);

• In section 7, some conclusions are drawn about the physical observables.
Some future perspectives are also suggested.

2. Statement of the problem.
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Fig. 2.1. Elastic media Ω0 and Ω1 with rough contact surfaces, under constant static stress p.
Static (left) and dynamic (right) case, with incident (I), reflected (R) and transmitted (T) waves.

2.1. Physical modeling. We consider the case of a single crack with rough
faces separating two media Ω0 and Ω1, which are both linearly elastic and isotropic,
taking ρ to denote the density and c to denote the elastic speed of the compressional
waves. These parameters are piecewise constant and may be discontinuous around
the crack: (ρ0, c0) if x ∈ Ω0, (ρ1, c1) if x ∈ Ω1. The media are subject to a constant
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static stress p. At rest, the distance between the planes of average height is ξ0(p) > 0
(figure 2.1, left).

Elastic compressional waves are emitted by a singular source of stress at x = xs <
α in Ω0, where α is a median plane of the actual flaw surface. The wave impacting
α gives rise to reflected (in Ω0) and transmitted (in Ω1) compressional waves. These
perturbations in Ω0 and Ω1 are described by the 1-D elastodynamic equations

ρ
∂ v

∂ t
=
∂ σ

∂ x
,

∂ σ

∂ t
= ρ c2

∂ v

∂ x
+ S(t) δ(x− xs), (2.1)

where S(t) denotes the causal stress source, v = ∂ u
∂ t is the elastic velocity, u is the

elastic displacement, and σ is the elastic stress perturbation around p. The dynamic
stresses induced by the elastic waves affect the thickness ξ(t) of the crack (figure 2.1,
right). The constraint

ξ = ξ0 + [u] ≥ ξ0 − d > 0 (2.2)

must be satisfied, where [u] = u+ − u− is the difference between the elastic displace-
ments on the two sides of the crack, and d(p) > 0 is the maximum allowable closure
[4]. We also assume that the wavelengths are much larger than ξ, so that the propa-
gation time across the crack is neglected, the latter being replaced by a zero-thickness
interface at x = α: [u] = [u(α, t)] = u(α+, t) − u(α−, t).

σ

0 [u]

K d

− d

K

* σ

0 [u]− d
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*

Fig. 2.2. Sketch of the nonlinear relation between the stress and the jump of the elastic dis-
placement at α. Left row: model 1 (2.7), right row: model 2 (2.8).

Two independent jump conditions at α need to be defined to obtain a well-posed
problem. The discontinuity of σ is proportional to the mass of the interstitial medium
present between Ω0 and Ω1 [24]. Since the crack is dry and contains only air, the
density of which is much smaller than ρ0 or ρ1, the elastic stress is assumed to be
continuous:

[σ(α, t)] = 0 ⇒ σ(α+, t) = σ(α−, t) = σ∗(t). (2.3)

Establishing the second jump condition is a more complex task. Experimental and
theoretical studies have shown that u is discontinuous, and that the discontinuity is
proportional to the stress applied. The linear model has often been considered [21]:

σ∗(t) = K [u(α, t)] , (2.4)

where K is the interfacial stiffness. Welded conditions [u(α, t)] = 0 are obtained if
K → +∞. However, the linear condition (2.4) violates (2.2) under large compression
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loadings conditions: σ∗(t) < −K δ ⇒ ξ < ξ0 − δ. The linear condition (2.4) is
therefore realistic only with very small perturbations. With larger ones, a nonlinear
jump condition is required.

To develop this relation, it should be noted that compression loading increases
the surface area of the contacting faces. A smaller stress is therefore needed to open
than to close a crack; an infinite stress is even required to close the crack completely.
In addition, the constraint (2.2) must be satisfied, and the model must comply with
(2.4) in the case of small stresses. Lastly, concave stress-closure relations have been
observed experimentally [17]. Dimensional analysis shows that the general relation

σ∗(t) = K dF ([u(α, t)]/d) (2.5)

is suitable, where F is a smooth increasing concave function

F : ] − 1, +∞[→] −∞, Fmax[, lim
X→−1

F(X) = −∞, 0 < Fmax ≤ +∞,

F(0) = 0, F ′

(0) = 1, F ′′

< 0 < F ′

.
(2.6)

Two models illustrate the nonlinear relation (2.5). First, the so-called model 1 pre-
sented in [2, 4] is

σ∗(t) =
K [u(α, t)]

1 + [u(α, t)] /d
⇔ F(X) =

X

1 +X
, Fmax = 1. (2.7)

Secondly, the so-called model 2 presented in [17] is

σ∗(t) = K d ln (1 + [u(α, t)]/d) ⇔ F(X) = ln(1 +X), Fmax = +∞. (2.8)

These two models are sketched in figure 2.2. The straight line with a slope K tan-
gential to the curves at the origin gives the linear jump conditions (2.4).

2.2. Numerical experiments. Here, we describe the influence of the nonlinear
jump condition (2.5) on the wave scattering. For this purpose, we consider a single
crack described by model 1 (2.7), a sinusoidal source S with a frequency of 50 Hz,
and parameters

{

ρ0 = ρ1 = 1200 kg.m−3, K = 1.3 109 kg.m−1.s−2,

c0 = c1 = 2800 m.s−1, d = 6.1 10−6 m.

The amplitude v0 of the incident elastic velocity ranges from 10−4 m/s to 5 10−3 m/s.
This latter maximal amplitude corresponds to a maximal strain ε = v0/c0 ≈ 10−6,
so that the linear elastodynamic equations (2.1) are always valid [1]. The linear
first-order hyperbolic system (2.1) and the jump conditions (2.3) and (2.7) are solved
numerically on a (x, t) grid. For this purpose, a fourth-order finite-difference ADER
scheme is combined with an immersed interface method to account for the jump
conditions [15]. At each time step, numerical integration of v also gives u.

Figure 2.3 shows snapshots of u after the transients have disappeared and the
periodic regime has been reached. The mean values of the incident and reflected dis-
placements (x < α) and the transmitted displacement (x > α) are given by horizontal
dotted lines. With v0 = 10−4 m/s (a), these mean values are continuous across α.
At higher amplitudes, a positive jump from α− to α+ is observed. This jump, which
amounts to a mean dilatation of the crack, also increases with v0 (b,c,d).
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Fig. 2.3. Model 1 (2.7): snapshots of the elastic displacement, for various amplitudes v0 of the
incident elastic velocity: 10−4 m/s (a), 10−3 m/s (b), 2 10−3 m/s (c) and 5 10−3 m/s (d). The
vertical solid line denotes the location α = 200 m of the crack. The red and green dotted horizontal
lines denote the mean value of the elastic displacement on both sides of α.

These properties can be more clearly seen in figure 2.4, where the numerically
measured time history of [u] is shown, with v0 = 2 10−3 m/s (a) and v0 = 5 10−3 m/s
(b). It can also be seen from this figure that the maximum value of [u] increases with
v0, whereas the minimum value of [u] decreases and is bounded by −d, as required by
(2.2). These findings will be analysed whatever F in (2.5) in the following sections.

Distortion of the scattered fields can also be observed in figures 2.3 and 2.4,
increasing with the amplitude of the forcing levels. It is beyond the scope of this
paper to sudy this classical nonlinear phenomenon. A local analysis in the case of
model 1 (2.7) was presented in [16].

3. Model problem.

3.1. Link with an ODE. To explain the numerical findings, we look for an
evolution equation satisfied by [u(α, t)]. Considering the elastic wave emitted by the
source S in (2.1), which impacts a single crack modeled by (2.3) and (2.5), leads to
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Fig. 2.4. Time history of [u(α, t)], at two incident elastic velocities: v0 = 210−3 m/s (a) and
v0 = 510−3 m/s (b). The horizontal dotted line denotes −d.

the following proposition.

Proposition 3.1. The nondimensionalized jump of displacement y = [u(α, t)]/d
satisfies the nonautonomous scalar differential equation:

d y

d t
= −F(y) +

1

β d

1

ρ0 c
2
0

S (t/β) , y(0) = y0 = 0, (3.1)

where β = K((ρ0 c0)
−1 + (ρ1 c1)

−1) > 0. The time t in (3.1) has been successively
shifted: t− (α − xs)/c0 → t, and rescaled: t→ β t.

Proof. We adapt a procedure described in [22, 5, 13]. The elastic displacement
interacting with the crack is

u(x, t) =

{
uI(t− x/c0) + uR(t+ x/c0) if x < α,

uT (t− x/c1) if x > α,
(3.2)

where uI , uR and uT are the incident, reflected and transmitted displacements, re-
spectively. The elastic stress deduced from (3.2) is [1]

σ(x, t) =

{
−ρ0 c0 u

′

I(t− x/c0) + ρ0 c0 u
′

R(t+ x/c0) if x < α,

−ρ1 c1 u
′

T (t− x/c1) if x > α.
(3.3)

Calculations based on (3.2) and (3.3) yield

σ(α−, t) = −2 ρ0 c0 u
′

I(t− α/c0) + ρ0 c0 u
′

(α−, t),

σ(α+, t) = −ρ1 c1 u
′

(α+, t).
(3.4)

At α, the jump in the displacement χ and the weighted displacement ψ are introduced

χ(t) = [u(α, t)] = u(α+, t) − u(α−, t),

ψ(t) =
1

2

(

u(α−, t) +
ρ1 c1
ρ0 c0

u(α+, t)

)

,
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or, alternatively,

u(α+, t) =
2 ρ0 c0

ρ0 c0 + ρ1 c1
ψ(t) +

ρ0 c0
ρ0 c0 + ρ1 c1

χ(t),

u(α−, t) =
2 ρ0 c0

ρ0 c0 + ρ1 c1
ψ(t) − ρ1 c1

ρ0 c0 + ρ1 c1
χ(t).

(3.5)

The continuity of σ (2.3) means

dψ

d t
= u

′

I(t− α/c0). (3.6)

The nonlinear relation (2.5) and the first equation of (3.4) give

u
′

(α−, t) = 2 u
′

I(t− α/c0) +
K d

ρ0 c0
F(χ/d).

Using (3.5) and (3.6), we obtain after some operations

dχ

d t
= −β dF(χ/d) − 2 u

′

I(t− α/c0),

where β is defined in proposition 3.1. Classical calculations of elastodynamics yield
the incident elastic velocity generated by S and impacting the crack [1]

v(x, t) = u
′

I(t− x/c0) = − 1

2 ρ0 c20
S

(

t− x− xs

c0

)

. (3.7)

The time shift t− (α − xs)/c0 → t therefore gives the differential equation

dχ

d t
= −β dF(χ/d) +

1

ρ0 c
2
0

S(t).

Nondimensionalization y = χ/d and time scaling t → β t give the ODE (3.1). Since
the source S is causal and xs < α, then y(0) = 0.

3.2. Sinusoidal forcing. From t = 0, the source is assumed to be sinusoidal
with the angular frequency Ω

S(t) = 2 v0 ρ0 c
2
0 sin Ωt, (3.8)

which results in an incident elastic velocity with the amplitude v0 (3.7). The source
(3.8) is injected in (3.1). Then, setting the nondimensionalized parameters

A =
2 v0
β d

, ω =
Ω

β
, T =

2 π

ω
=

2 π β

Ω
,

y =
[u(α, t)]

d
, f(y) = −F(y), fmin = −Fmax,

(3.9)

the model problem becomes a nonautonomous differential equation with sinusoidal
forcing:







d y

d t
= f(y) +A sinωt = F (t, y), ω > 0, 0 ≤ A < +∞,

f : ] − 1, +∞[→]fmin, +∞[, lim
y→−1

f(y) = +∞, −∞ ≤ fmin < 0,

f(0) = 0, f
′

(0) = −1, f
′

(y) < 0 < f
′′

(y),

y(0) = y0 ∈] − 1, +∞[.

(3.10)
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For the sake of generality, contrary to what occured in proposition 3.1, y0 can differ
here from 0. The properties of f in (3.10) mean that the reciprocal function f−1

satisfies

f−1 : ]fmin, +∞[→] − 1, +∞[, lim
y→+∞

f−1(y) = −1,

f−1(0) = 0, (f−1)
′

< 0 < (f−1)
′′

.
(3.11)

In model 1 (2.7), f is involutive and fmin = −1. The function f and its derivatives
are

f(y) = − y

1 + y
, f

′

(y) = − 1

(1 + y)2
, f

′′

(y) =
2

(1 + y)3
, f

′′′

(y) = − 6

(1 + y)4
.

In model 2 (2.8), fmin = −∞, and the function f and its derivatives are

f(y) = − ln(1 + y), f
′

(y) = − 1

1 + y
, f

′′

(y) =
1

(1 + y)2
, f

′′′

(y) = − 2

(1 + y)3
.

In the next sections, solutions of (3.10) and related ODE will be presented. These
solutions are computed numerically using a fourth-order Runge-Kutta method, with
model 1 (2.7). The parameters are those used in section 2.2, with nondimensionaliza-
tion (3.9). In addition and for the sake of clarity, the dependence of solutions on the
parameters A and ω is omitted, except when necessary. Lastly, we use an overline to
denote the mean value of a function during one period [0, T ]: given s(t),

s =
1

T

∫ T

0

s(t) dt.

4. Preliminary results.

4.1. Existence and uniqueness of a periodic solution Y . The T -periodic
isocline of zero slope deduced from (3.10) is

Iy
0 (t) = f−1(−A sinωt). (4.1)

Proposition 4.1. There is a unique T -periodic solution Y (t) of (3.10). This
solution is asymptotically stable.

Proof. For the sequel, we denote Y0 = Y (0) the unique initial data such that the
solution of (3.10) is T -periodic. Three cases can be distinguished.

Case 1: A = 0. Equation (3.10) becomes a scalar autonomous equation with the
steady state solution Y = 0. Since f is a C1 function and f

′

(0) = −1, the fixed point
0 is asymptotically stable. In the case of model 1 (2.7), the exact solution is a known
special function: y ey = y0 e

y0−t ⇒ y(t) = L (y0 e
y0−t), where L is the Lambert

function [6].
Case 2: 0 < A < |fmin|. The T -periodic isocline (4.1) is defined on R, with

lower and upper bounds f−1(A) < 0 and f−1(−A) > 0 (figure 4.1-a). Below Iy
0 , we

obtain d y
d t > 0; and above Iy

0 , we obtain d y
d t < 0. Consequently, the null slope of the

horizontal line f−1(A) is smaller than F (t, y) when these curves intersect, except at
t = 3T/4, where they are both equal to zero: f−1(A) is called a weak lower fence
for (3.10) [10]. Similarly, F (t, y) ≤ (f−1(−A))

′

= 0, where equality occurs only at
T/4: f−1(−A) is called a weak upper fence for (3.10). Since y 7→ F (t, y) is Lipschitz
continuous, f−1(±A) are nonporous fences: once a solution has crossed these fences,
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it cannot sneak through them [10]. Based on the funnel’s theorem, the subset of the
(t, y) plane defined by

K = R
+ ×K0, K0 =

[
f−1(A), f−1(−A)

]
,

is a funnel [10]: once a solution has entered K, it stays inside. Defining the subsets

U+ =
{
t ≥ 0; −1 < y < f−1(A)

}
, U− =

{
t ≥ 0; y > f−1(−A)

}
,

the solution of (3.10) increases in U+ and decreases in U− as t increases. In addition,
zero slope d y

d t = 0 in U± occurs only at T/4 and 3T/4. The solution therefore
enters K in finite time, and K0 is invariant under the flow ϕ : R

+×] − 1, +∞[→
] − 1, +∞[; (t, y0) 7→ y(t) = ϕ(t, y0). The solutions of (3.10) are therefore always
bounded, which ensures that the solutions are global solutions in time.

The invariance of K0 ensures Π(K0) ⊂ K0, with the Poincaré map Π :]−1, +∞[→
] − 1, +∞[; y0 7→ Π(y0) = ϕ(T, y0). Since Π is continuous on K, it has at least one
fixed point Y0. The solutions Y (t) = ϕ(t, Y0) and YT (t) = ϕ(t + T, Y0) both satisfy
the same ODE with the same initial value: YT (0) = ϕ(T, Y0) = Π(Y0) = Y0 = Y (0).
Therefore Y (t+ T ) = Y (t) at all values of t, which proves that Y (t) is T -periodic.

(a) (b)

0 T/4 T/2 3T/4 T

−1 

−0.5 

0 

0.5 

1 

1.5 

2 

t

Y

isocline of zero slope

upper fence f  (-A)  -1

lower fence f  (A)  -1

0 T/4 T/2 3T/4 T

−1 

0 

1 

2 

3 

4 

5 

t 

Y

isocline of zero slope

lower fence f  (A)  -1

T1 T2

Fig. 4.1. Phase portrait of (3.10) with model 1 (2.7), at A = 0.6 (a) and A = 1.2 (b): isocline
of zero slope Iy

0
and periodic solution Y . Dashed horizontal lines: lower fence f−1(A) < 0, upper

fence f−1(−A) > 0 (a). The dotted horizontal line stands for y = −1. In (b), the dotted vertical
lines stand for asymptotes at T1 and T2.

Let us consider another T -periodic solution Ỹ (t) of (3.10), with Ỹ (0) = Ỹ0. As-
suming that Y0 > Ỹ0 yields Y (t) > Ỹ (t) at all values of t ∈ [0, T ], hence f(Y (t)) <
f(Ỹ (t)). The integral forms of Y (T ) and Ỹ (T ), together with the T -periodicity, give

YT − ỸT = Y0 − Ỹ0 +

∫ T

0

(

f(Y (t)) − f(Ỹ (t)
)

dt < Y0 − Ỹ0,

= Y0 − Ỹ0.

(4.2)

This results in Y0 − Ỹ0 < Y0 − Ỹ0, which is impossible. The opposite case Y0 < Ỹ0 can
be handled in the same way, which proves the uniqueness of the T -periodic solution.
Lastly, the properties of f in (3.10) mean that

a0 =

∫ T

0

∂ F

∂ y
(t, ϕ(t, y0)) dt =

∫ T

0

f
′

(ϕ(t, y0)) dt < 0, (4.3)
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therefore Y (t) is asymptotically stable (see e.g. theorem 4-22 in [8]).
Case 3: A ≥ |fmin|. This case can occur only if fmin > −∞. The isocline (4.1) is

defined outside the two vertical asymptotes at T1 and T2

0 < T1 =
1

ω
arcsin

( |fmin|
A

)

<
T

4
< T2 =

T

2
− T1. (4.4)

(figure 4.1-b). The set [f−1(A), +∞[ is invariant under the flow but not compact.
To prove the existence of solutions at all time, let us examine the subset of the (t, y)
plane where the solution can blow up: Γ = {0 < t < T/2; y > 0}. In Γ, y > 0 and
f(y) < 0, hence d y

d t < A sinωt. By integrating, we obtain

0 < y < y0 +

∫ T/2

0

A sinωt dt = y0 +
2A

ω
< +∞,

which proves that the solution is global in time.
To obtain an invariant set, we take y > 0, which means that fmin < f(y) < 0 and

thus fmin + A sinωt < d y
d t < A sinωt. As long as y > 0, integration will ensure that

y is bounded by a lower solution and an upper solution

y0 + fmin t+
A

ω
(1 − cosωt) < y(t) < y0 +

A

ω
(1 − cosωt) .

Taking y0 > |fmin|T , for instance y0 = 2 |fmin|T , ensures that y > 0 for all values of
t ∈ [0, T ] and that y(T ) < y0. Therefore, upon defining the subset of the (t, y) plane

K = R
+ ×K0, K0 =

[
f−1(A), 2 |fmin|T

]
,

then K0 is invariant under the Poincaré map, yielding Π(K0) ⊂ K0. The same argu-
ments as those given in case 2 hold here, which proves the existence, uniqueness and
asymptotic stability of the T -periodic solution.

As seen in the previous proof, the phase portrait of (3.10) depends on A. However,
the evolution of Y with t is the same at all values of A, as seen in figure 4.1 and
proved in section 5. Some auxiliary solutions are first introduced. These solutions
make it possible to investigate how the attractive periodic solution Y evolves with the
parameter A.

4.2. Auxiliary solutions. The first derivative of Y with respect to A is intro-
duced: Z(t, A) = ∂ Y

∂ A . Applying the chain-rule to (3.10) shows that the T -periodic
solution Z satisfies







dZ

d t
= f

′

(Y )Z + sinωt,

Z(0, A) = Z0 =
d Y0

dA
.

(4.5)

The isocline of zero slope of (4.5) is deduced from (3.10):

IZ
0 (t) = − sinωt

f
′

(Y (t))
=

sinωt
∣
∣
∣f

′

(Y (t))
∣
∣
∣

. (4.6)

Below IZ
0 , we obtain d Z

d t > 0; and above IZ
0 , we obtain d Z

d t < 0. The phase portrait
of (4.5) obtained in the case of model 1 is displayed in figure 4.2, which shows the
qualitative properties of Z that will be described in the next lemma and proposition.
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(a) (b)
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0 T/4 T/2 3T/4 T
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4 

8 

t 

Z

isocline of zero slope

Fig. 4.2. Phase portrait of (4.5) with model 1 (2.7), at A = 0.6 (a) and A = 1.2 (b): isocline
of zero slope IZ

0
and periodic solution Z.

Lemma 4.2. Setting

B(s) = −
∫ s

0

f
′

(Y (τ)) dτ > 0,

the initial value of the T -periodic solution Z in (4.5) satisfies

Z0 =
1

eB(T ) − 1

∫ T

0

eB(s) sinωs ds < 0. (4.7)

Proof. Given Y (t), the ODE (4.5) is linear, which leads to the closed-form ex-
pression

Z(t) =

(

D +

∫ T

0

eB(s) sinωs ds

)

e−B(t).

T -periodicity of Z givesD and proves the equality established in (4.7). Since s 7→ eB(s)

is a strictly positive and increasing function of s, we obtain the following bound
∫ T

0

eB(s) sinωs ds < eB(T/2)

∫ T/2

0

sinωs ds+ eB(T/2)

∫ T

T/2

sinωs ds = 0.

Substituting this inequality into (4.7) proves that Z0 < 0.

Proposition 4.3. In [0, T ], the T -periodic solution Z of (4.5) has two roots tZ1

and tZ2
, which are ordered as follows:

0 < tZ1
< T/2 < tZ2

< T.

Therefore Z < 0 in [0, tZ1
[∪]tZ2

T ], and Z > 0 on ]tZ1
, tZ2

[. In the limit of null-
forcing case A = 0, Z and its roots are determined analytically:

∥
∥
∥
∥
∥
∥
∥
∥
∥

Z(t, 0) =
1√

1 + ω2
sin(ωt− θ), θ = arctanω,

tZ1
(0) =

θ

ω
, tZ2

(0) =
θ

ω
+
T

2
.

(4.8)
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Proof. T -periodicity of Z and integration of (4.5) over one period gives

∫ T

0

f
′

(Y (τ))Z(τ) dτ = 0.

Since f
′

< 0, the sign of Z changes in [0, T ]. From lemma 4.2 and the phase portrait
of (4.5), it can be deduced that Z must cross the t-axis twice, at tZ1

and tZ2
in

]0, T [. Let us assume tZ1
≥ T/2, where the isocline (4.6) is negative (figure 4.2).

Then Z will intersect IZ
0 twice at negative values and will never cross the t-axis,

which is impossible. After tZ1
, Z increases and intersects IZ

0 with a zero slope at
tZ1

< t < T/2. It then decreases but cannot intersect again IZ
0 as long as IZ

0 > 0 i.e.
at t < T/2. This means that tZ2

> T/2.
Taking A = 0 results in Y = 0, as stated in the proof of proposition 4.1 (case 1),

and hence (4.5) becomes the linear ODE

Z
′

= −Z + sinωt,

the T -periodic solution of which is given in (4.8).

(a) (b)

0 T/4 T/2 3T/4 T

0 

1 

2 

3 

4 

5 

t

W

isocline of zero slope

0 T/4 T/2 3T/4 T

0 

1 

2 

3 

4 

5 

6 

7 

t

W

isocline of zero

slope

Fig. 4.3. Phase portrait of (4.9) with model 1 (2.7), at A = 0.6 (a) and A = 1.2 (b): isocline
of zero slope IW

0
and periodic solution W .

The second derivative of Y with respect to A is also introduced: W (t, A) = ∂2 Y
∂ A2 .

Applying the chain-rule to (4.5) shows that the T -periodic solution W satisfies







dW

d t
= f

′′

(Y )Z2 + f
′

(Y )W,

W (0, A) = W0 =
d2 Y0

dA2 .
(4.9)

The isocline of zero slope of W , which is deduced from (3.10) and (4.9), is

IW
0 (t) =

f
′′

(Y (t))
∣
∣
∣f

′

(Y (t))
∣
∣
∣

Z2(t) ≥ 0. (4.10)
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This isocline, which is shown in figure 4.3, is equal to zero only at tZ1
and tZ2

, when
Z vanishes (proposition 4.3). Below IW

0 , we obtain d W
d t > 0; and above IW

0 , we obtain
d W
d t < 0.

Proposition 4.4. The T -periodic solution W of (4.9) is strictly positive: for all
t ∈ [0, T ], W (t, A) > 0.

Proof. If W0 ≤ 0, the phase portrait of (4.9) entails that W (T ) > W0, which is
contradictory with the T -periodicity of W : hence, W0 > 0. We then consider

{

w
′

= f
′

(Y )w,

0 < w(0) < W0.

Since f ′′ > 0 and W0 > w(0), w is a lower solution of W , hence W (t) > w(t) at all t.
However, the T -periodic lower solution is w = 0, which completes the proof.

Lemma 4.5. In the limit case of null forcing, the T -periodic solution W of (4.9)
contains only the harmonics sin 2ωt and cos 2ωt, and has a non-null mean value

W (0) =
f

′′

(0)

2

1

1 + ω2 . (4.11)

Proof. We inject Y = 0 into (3.10) and (4.9). Using (4.8) gives

W
′

(t, 0) =
f

′′

(0)

1 + ω2 sin2(ωt− θ) −W (t, 0).

Integrating the latter equation over [0, T ] gives the result.

Lastly, the third derivative of Y with respect to A is introduced: X(t, A) = ∂3 Y
∂ A3 .

Applying the chain-rule to (4.9) shows that the T -periodic solution X satisfies







dX

d t
= f

′′′

(Y )Z3 + 3 f
′′

(Y )Z W + f
′

(Y )X,

X(0, A) = X0 =
∂3 Y0

∂ A3 .
(4.12)

Lemma 4.6. In the limit case of null forcing, the mean value of the T -periodic
solution X of (4.12) is X(0) = 0.

Proof. Upon substituting Y = 0 into (3.10), then (4.12) becomes

X
′

(t, 0) = f
′′′

(0)Z3(t, 0) + 3 f
′′

(0)Z(t, 0)W (t, 0) −X(t, 0).

Integrating this differential equation over [0, T ] and the T -periodicity of X give

X(0) = f
′′′

(0)Z(t, 0)3 + 3 f
′′

(0)Z(t, 0)W (t, 0).

In (4.8), Z(t, 0) is a sinusoidal function with a null mean value, hence Z(t, 0)3 = 0.
Likewise, (4.8) and the properties ofW (t, 0) stated in lemma 4.5 give Z(t, 0)W (t, 0) =
0, which proves the result obtained.
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0 0.5 1 1.5 2 2.5 3

−1 

−0.8 

−0.6 

−0.4 

−0.2 

0 

A

Y0

local estimate

lower fence

Fig. 5.1. Evolution of Y0 with the forcing amplitude A in the case of model 1 (2.7). See
proposition 5.1.

5. Qualitative properties of Y .

5.1. Phase portrait of Y . The properties of Z and W provide qualitative
insight about Y , stated in the next propositions and corollary.

Proposition 5.1. The initial value Y0 in (3.10) is a strictly decreasing convex
function of A, which satisfies

−1 < max

(

f−1(A), − Aω

1 + ω2

)

≤ Y0(A) ≤ 0.

Equality Y0 = 0 occurs only at A = 0. At low forcing levels, we obtain the local
estimate

Y0 = − Aω

1 + ω2 + O(A2).

Proof. Propositions 4.3 and 4.4 yield d Y0

d A = Z(0, A) < 0 and d2 Y0

d A2 = W (0, A) >
0, which proves the convex decreasing of Y0. Since Y0(0) = Y (0, 0) = 0, then Y0(A) ≤
0, which gives the upper bound of Y0.

We now prove the lower bounds of Y0. In the proof of proposition 4.1, it was
established that f−1(A) is a lower nonporous fence, which means that Y (t) ≥ f−1(A),
and hence that Y0 ≥ f−1(A). On the other hand, lemma 4.2 and proposition 4.4
show that A 7→ Y0(A) is a convex function, which reaches a maximum at A = 0, with
Y0(0) = 0. Y0(A) is therefore always above the straight line going through the origin
with slope A ∂ Y

∂ A (0): Y0 ≥ AZ0(0), where Z0(0) is deduced from (4.8).
At A≪ 1, a Taylor expansion of Y is written as follows

Y0(A) = Y0(0) +A
∂ Y0

∂ A
(0) + O(A2).

If A = 0, then Y0 = Y = 0, and (4.8) again provides Z0(0) = ∂ Y0

∂ A (0).

The evolution of Y0 with A is shown in figure 5.1. Critical times in Y are defined
and estimated in the following proposition and corollary.

Proposition 5.2. In [0, T ], the T -periodic solution Y of (3.10), which has two
roots tY1

, tY2
, is maximum and positive at tYmax

, and minimum and negative at tYmin
.
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(a) (b)
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Fig. 5.2. Critical times in Y and Z, in the case of model 1 (2.7). Snapshot at A = 0.6 (a): the
vertical dotted lines denote successively tZ1

, tY1
, tYmax

, tY2
, tZ2

and tYmin
. Parametric study with

A (b): a horizontal dotted line has been added at T/2, and four horizontal dashed lines have been
added at θ/ω + i T/4 (i = 0, ...,3) to show the locations of critical times for A → 0. See proposition
5.2 and corollary 5.3.

The critical points are ordered as follows:

0 < tY1
< T/2 < tY2

< T, tY1
< tYmax

< tY2
< tYmin

,

T/4 < tYmax
< T/2, 3T/4 < tYmin

< T.

Wit A≪ 1 and using θ defined in (4.8), we also obtain the following local estimates

∥
∥
∥
∥
∥
∥
∥
∥

Y (t, A) =
A√

1 + ω2
sin (ωt− θ) + O

(
A2
)
,

tY1
(0+) =

θ

ω
, tYmax

(0+) =
θ

ω
+
T

4
, tY2

(0+) =
θ

ω
+
T

2
, tYmin

(0+) =
θ

ω
+

3T

4
.

(5.1)

Proof. The phase portrait of (3.10) and the proposition 5.1 mean that Y (t) must
cross the t-axis twice, at tY1

and tY2
in ]0, T [. At t ≥ T/2, the isocline Iy

0 (4.1)
is negative (figure 4.1). Consequently, tY1

≥ T/2 means that Y crosses Iy
0 twice at

negative values of Y , preventing Y from crossing the t-axis, which is impossible.
The slope of Y is null at tYmax

, which means that Y crosses Iy
0 . This occurs

only when the slope of Iy
0 is negative, between T/4 and 3T/4. Since Iy

0 must also
be positive at the intersection point, it is possible only when T/4 < tYmax

< T/2. Y
subsequently decreases but cannot cross the t-axis as long as Iy

0 positive, which means
that tY2

> T/2.
Lastly, the slope of Y is equal to zero at tYmin

, which means that Y crosses Iy
0 .

This is possible only when the slope of Iy
0 is positive. Since Iy

0 must also be negative,
this means that tYmin

> 3T/4.
To prove the local estimates, a Taylor expansion of Y is written as follows

Y (t, A) = Y (t, 0) +A
∂ Y

∂ A
(t, 0) + O(A2),

= AZ(t, 0) + O(A2).
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Equation (4.8) and straightforward calculations complete the proof.

Corollary 5.3. The following properties hold for all A > 0:
(i) [tY1

, tY2
] ⊂ [tZ1

, tZ2
], or equivalently Z(tY1

, A) ≥ 0 and Z(tY2
, A) ≥ 0;

(ii)
∂ tY1

∂ A
< 0,

∂ tY2

∂ A
> 0;

(iii) tY1
<
θ

ω
<
T

4
, tY2

>
θ

ω
+
T

2
;

(iv) if |fmin| <∞, then lim
A→+∞

tYmax
=
T

2
.

Proof.
Property (i). Two subsets of the t-plane are defined:

I(A) = {t ∈]0, T [; Y (t, A) > 0} , J(A) = {t ∈]0, T [; Z(t, A) > 0} .

Equations (4.8) and (5.1) prove that I(0+) = J(0). Phase portraits of (3.10) and
(4.5) show that I and J are open intervals:

I(A) = ]tY1
, tY2

[ , J(A) = ]tZ1
, tZ2

[ .

Let us consider two forcing parameters A1 and A2, with A2 > A1 > 0. Proposition
4.4 gives ∂ Z

∂ A > 0, and hence Z(t, A1) < Z(t, A2). Taking t ∈ J(A1) gives 0 <
Z(t, A1) < Z(t, A2), and therefore t ∈ J(A2): the interval J increases strictly with
A. To prove I(A) ⊂ J(A), we take t ∈ I(A), and hence Y (t, A) > 0. Two cases can
be distinguished:

• t /∈ I(0+) ⇒ Y (t, 0+) < 0. The formula

Y (t, A) = Y (t, 0+) +

∫ A

0+

Z(t, s) ds

and the monotonic increase in J with A yields Z(t, A) > 0, hence t ∈ J(A);
• t ∈ I(0+). Arguments mentioned above yield t ∈ J(0) ⊂ J(A), which com-

pletes the proof of (i).
Property (ii). First we differentiate Y (tY1

, A) = 0 in terms of A:

∂ Y

∂ t

∂ tY1

∂ A
+
∂ Y

∂ A
= 0.

The time derivative is replaced via (3.10)

(f(Y (tY1
, A)) +A sinωtY1

)
∂ tY1

∂ A
+ Z(tY1

, A) = 0.

Since f(0) = 0, we obtain

∂ tY1

∂ A
= − Z(tY1

, A)

A sinωtY1

.

Property (i) and proposition 5.2 then prove
∂ tY1

∂ A < 0. A similar derivation gives

∂ tY2

∂ A
= − Z(tY2

, A)

A sinωtY2

.
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Property (ii) and proposition 5.2 give Z(tY2
, A) ≥ 0 and sinωtY2

< 0, and hence
∂ tY2

∂ A > 0.
Property (iii). The bounds of tY1

and tY2
follow from (5.1) and property (ii).

From the definition of θ (4.8) and the property of arctan, we also obtain

θ

ω
≤ 1

ω

π

2
=
T

4
,

which provides an additional bound for tY1
.

Property (iv). If A ≥ |fmin|, Y crosses the isocline Iy
0 at tYmax

> T2: see (4.1),
(4.4) and figure 4.1-(b). The bounds of proposition 5.2 ensure T2 < tYmax

< T/2.
Using lim

A→+∞
T2 = T/2 completes the proof.

Numerical computations illustrating proposition 5.2 and corollary 5.3 are shown

in figure 5.2. No theoretical results have been obtained about
∂ tYmax

∂ A and
∂ tYmin

∂ A . The
numerical simulations indicate that tYmax

strictly increases with A, whereas tYmin
first

decreases up to a critical value, and then increases (b). Numerical simulations also
indicate that tZ2

tends asymptotically towards tYmin
at large values of A.
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Fig. 5.3. Evolution of Y with the forcing amplitude A, at 0 ≤ A ≤ 2 (a) and 0 ≤ A ≤ 20 (b),
in the case of model 1 (2.7). See theorem 5.4.

5.2. Mean dilatation of the crack. As stated in the introduction, the main
aim of this study was to prove that a jump in the mean elastic displacement occurs
around the crack, as observed numerically. This jump amounts to a mean dilatation
of the crack. The next theorem addresses this typically nonlinear phenomenon.

Theorem 5.4. The mean value of the T -periodic solution Y in (3.10) is positive
and increases strictly with the forcing amplitude:

Y > 0,
∂ Y

∂ A
> 0.

At small forcing levels, the following local estimate holds:

Y =
f

′′

(0)

4

A2

1 + ω2 + O(A4). (5.2)
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Proof. T -periodicity of Y and sinωt in (3.10) yields f(Y ) = 0. Applying Jensen’s
inequality to convex f gives f(Y ) < f(Y ) = 0. Since f(0) = 0 and f

′

< 0, then

Y > 0. Proposition 4.4 and (4.8) yield Z(0) = 0 and W = ∂ Z
∂ A > 0, and hence Z(A) =

∂ Y
∂ A (A) > 0, which proves the second inequality. At A≪ 1, a Taylor expansion gives

Y (A) = Y (0) +A
∂ Y

∂ A
(0) +

A2

2

∂2 Y

∂ A2
(0) +

A3

6

∂3 Y

∂ A3
(0) + O(A4),

= Y (0) +AZ(0) +
A2

2
W (0) +

A3

6
X(0) + O(A4).

From (5.1) and (4.8), we obtain Y (0) = 0 and Z(0) = 0. Lemmas 4.5 and 4.6 then
give the local estimate of Y .

The evolution of Y with A is presented in figure 5.3. With A = 2, the relative
error between Y and its local estimate (5.2) is less than 5%. Figure 5.3-(a) may be
rather misleading as far as moderate values of A are concerned: it might seem to
suggest that Y is always greater than the local estimate in (5.2). This is not in fact
the case with greater values of A: the position of Y relative to its local estimate is
not constant (b).

5.3. Maximum aperture of the crack. Let

Ymax = Y (tYmax
) = sup

t∈[0, T ]

Y (t)

be the maximum value of the T -periodic solution Y . We introduce a technical lemma.
Lemma 5.5. Let h ∈ C3 (I × Λ, R), where I and Λ are open subsets of R. The

following properties are assumed to hold whatever the value of λ in Λ:
(i) h+(λ) = sup

z∈I
h(z, λ) is reached at a single point z+(λ) ∈ I;

(ii)
∂2 h

∂ z2 (z+(λ), λ) < 0;

(iii) ∀z ∈ I,
∂ h

∂ λ
> 0,

∂2 h

∂ λ2 > 0.

Then h+(λ) ∈ C2(I, R), and λ 7→ h+(λ) is a strictly increasing and convex function.

Proof. The definition of z+ in (i) gives

∂ h

∂ z

(
z+(λ), λ

)
= 0. (5.3)

In addition, (ii) ensures that ∂2 h
∂ z2 (z+(λ), λ) 6= 0. The implicit function theorem can

be applied to ∂ h
∂ z ∈ C2(I × Λ, R): therefore, λ 7→ z+(λ) ∈ C2(Λ, R), and h+(λ) =

h(z+, λ) ∈ C2(I, R).
Based on the first property in (iii) and (5.3),

d h+

d λ
(λ) =

∂ h

∂ λ
(z+, λ) +

∂ h

∂ z
(z+, λ)

d z+

d λ
,

=
∂ h

∂ λ
(z+, λ) > 0,

which proves that h+ is a strictly increasing function of λ. On the other hand,
differentiating (5.3) in terms of λ gives

∂2 h

∂ λ∂ z
(z+, λ) +

∂2 h

∂ z2 (z+, λ)
d z+

d λ
= 0. (5.4)
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Using (ii), the second property in (iii), and (5.4), we obtain

d2 h+

d λ2 (λ) =
∂2 h

∂ λ2 (z+, λ) +
∂2 h

∂ z ∂ λ
(z+, λ)

d z+

d λ
,

=
∂2 h

∂ λ2 (z+, λ) − ∂2 h

∂ z2 (z+, λ)

(
d z+

d λ

)2

> 0,

which proves that h+ is a strictly convex function of λ.

Theorem 5.6. Ymax is a strictly increasing convex function of A, and the fol-
lowing bounds hold for all A:

max

(
A√

1 + ω2
,
A

ω

1√
1 + ω2

− T

2
|fmin|

)

< Ymax <
2A

ω
. (5.5)

The first lower bound of Ymax is also a local estimate for small forcing levels A≪ 1

Ymax =
A√

1 + ω2
+ O

(
A2
)
. (5.6)
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Fig. 5.4. Evolution of Ymax with the forcing amplitude A, at 0 ≤ A ≤ 2 (a) and 0 ≤ A ≤ 20
(b), in the case of model 1 (2.7). See theorem 5.6.

Proof. To analyse the evolution of Ymax in terms of A, we proceed in three steps.
First, the phase portrait of Y and the proposition 5.2 show that Y (t, A) reaches its
maximum value at a single time between T/4 and T/2. Secondly, the definition of
tYmax

and proposition 5.2 give

∂2 Y

∂ t2
(tYmax

, A) = f
′

(Ymax)
∂ Y

∂ t
(tYmax

, A) +Aω cosωtYmax
,

= Aω cosωtYmax
< 0.

Thirdly, corollary 5.3 and proposition 4.4 yield ∂ Y
∂ A > 0 and ∂ Y 2

∂ A2 > 0 on [T/4, T/2].
The three hypotheses in lemma 5.5 are therefore satisfied, which proves the convex
increasing of Ymax with A.
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The bounds of Ymax are proved by building upper and lower solutions of Y , as
in the proof of proposition 4.1, case 3. In ]tY1

, tYmax
[, proposition 5.2 ensures Y > 0,

which means that fmin < f(Y ) < 0, and hence fmin + A sinωt < d Y
d t < A sinωt.

Integrating this inequality from tY1
to tYmax

gives

A

ω
(cosωtY1

− cosωtYmax
) + (tY1

− tYmax
) |fmin| < Ymax <

A

ω
(cosωtY1

− cosωtYmax
) .

Proposition 5.2 and corollary 5.3-(iii) give the bounds T/4 < tYmax
< T/2 and 0 <

tY1
< θ/ω, and hence

{
cos θ < cosωtY1

< 1,

0 < − cosωtYmax
< 1.

These inequalities, together with the definition of θ in (4.8), yield

A

ω

1√
1 + ω2

<
A

ω
(cosωtY1

− cosωtYmax
) <

2A

ω
.

Proposition 5.2 also gives tY1
−tYmax

> −T/2, which gives the upper bound and a first
lower bound in (5.5). The latter lower bound is not always an optimum bound: when
A < T

2 |fmin|ω
√

1 + ω2, it is negative, whereas proposition 5.2 states that Ymax > 0
at all values of A. We therefore take advantage of the convex increasing of Ymax with
A, which was previously proved. Since Ymax(0) = 0, then Ymax(A) is always above the
straight line going through the origin with the slope AZ(tYmax

(0+), 0). Proposition
5.2 and equation (4.8) therefore give a second lower bound in (5.5). A second-order
Taylor expansion of Ymax(A) proves that this lower bound is also the local estimate
of Ymax when A≪ 1.

The evolution of Ymax stated in theorem 5.6 is shown in figure 5.4. If |fmin| <∞
and ω 6= 1, the two lower bounds given in (5.5) intersect at A = T

2 |fmin| ω
1−ω

√
1 + ω2.

At higher values of A, the second lower bound is more accurate than the first one.

(a) (b)

0 0.4 0.8 1.2 1.6 2

−1 

−0.8 

−0.6 

−0.4 

−0.2 

0 

A

m
in

im
um

 v
al

ue
 o

f Y

Ymin

lower bound

local estimate

0 4 8 12 16 20

−1 

−0.8 

−0.6 

−0.4 

−0.2 

0 

A

m
in

im
um

 v
al

ue
 o

f Y

Ymin

lower bound 
local estimate

Fig. 5.5. Evolution of Ymin with the forcing amplitude A, with 0 ≤ A ≤ 2 (a) and 0 ≤ A ≤ 20
(b), in the case of model 1 (2.7). See theorem 5.7.

5.4. Maximum closure of the crack. Let

Ymin = Y (tYmin
) = inf

t∈[0, T ]
Y (t)
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be the minimum value of the T -periodic solution Y .
Theorem 5.7. The following properties are satisfied by Ymin:

(i) for all A, we obtain the bounds:

− 1 < f−1(A) ≤ Ymin ≤ 0; (5.7)

(ii) at small forcing levels, we also obtain the local estimate

Ymin = − A√
1 + ω2

+ O
(
A2
)
; (5.8)

(iii) at infinite forcing levels, the crack is completely closed:

lim
A→+∞

Ymin = −1.

Proof.
Property (i). Proposition 5.2 shows that Ymin is negative. As in the proof of

proposition 5.1, the existence of the lower nonporous fence f−1(A) means that Ymin ≥
f−1(A).

Property (ii). As in the proofs of proposition 5.1 and theorem 5.6, the local
estimate when A ≪ 1 follows from a second-order Taylor expansion of Y and from
(4.8).

Property (iii). First we consider the property f(Y ) = 0 used in the proof of
theorem 5.4. Evolution of f in (3.10) and the definition of tY1

, tY2
in proposition 5.2

give

0 =

∫ tY1

0

f(Y (τ)) dτ +

∫ tY2

tY1

f(Y (τ)) dτ +

∫ T

tY2

f(Y (τ)) dτ,

= −
(
∫ tY1

0

|f(Y (τ))| dτ +

∫ T

tY2

|f(Y (τ))| dτ
)

+

∫ tY2

tY1

|f(Y (τ))| dτ,

hence
(
∫ tY1

0

|f(Y (τ))| dτ +

∫ T

tY2

|f(Y (τ))| dτ
)

︸ ︷︷ ︸

I

=

∫ tY2

tY1

|f(Y (τ))| dτ
︸ ︷︷ ︸

J

. (5.9)

Secondly, let us consider the ODE







d s

d t
= −s+A sinωt,

s(tY1
) = 0.

(5.10)

Straightforward calculations and property (iii) of corollary 5.3 give

s(t) =
A√

1 + ω2

(

| sin(ωtY1
− θ)| e−(t−tY1

) + sin(ωt− θ)
)

, (5.11)

with θ (4.8). Comparison between (3.10) and (5.10) shows that s is a lower solution
of Y when Y ≥ 0: ∀ t ∈ [tY1

, tY2
], Y (t) ≥ s(t). Since tYmax

< tY2
, it follows from (5.9)
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and (5.11) that

J ≥
∫ tYmax

tY1

|f(Y (τ))| dτ ≥
∫ tYmax

tY1

|f(s(τ))| dτ,

≥ A√
1 + ω2

∫ tYmax

tY1

(

| sin(ωtY1
− θ)| e−(τ−tY1

) + sin(ωτ − θ)
)

dτ,

≥ A√
1 + ω2

∆,

with

∆ = | sin(ωtY1
− θ)|

(

1 − e(tYmax−tY1
)
)

+
1

ω
(cos(ωtY1

− θ) − cos(ωtYmax
− θ)) .

Proposition 5.2 and property (iii) of corollary 5.3 give






1 − eT/2 < 1 − e(tYmax−tY1
) < 1 − eT/4−θ/ω,

0 < | sin(ωtY1
− θ)| < sin θ,

2 cos θ

ω
<

1

ω
(cos(ωtY1

− θ) − cos(ωtYmax
− θ)) <

1 − sin θ

ω
,

hence ∆ is bounded independently of A. Finally, we obtain

J ≥ 2A

ω
(
1 + ω2

) .

J blows up when A → +∞. Equation (5.9) means that I behaves in a similar way.
Since Y < 0 in ]0, tY1

[∪]tY2
, T [ and given f in (3.10), Y must tend towards -1 when

A→ +∞, to make I blow up, which concludes the proof.

The evolution of Ymin stated in theorem 5.7 is shown in figure 5.5. At moderate
forcing levels (a), one cannot distinguish between Ymin and its lower bound. At higher
forcing levels (b), one observes that Ymin is above its lower bound, as stated in theorem
5.7. Although no rigorous proof has been obtained so far, the numerical simulations
indicate that Ymin decreases strictly as A increases.

6. Generalization.

6.1. Periodic forcing. Most of the results obtained in sections 4 and 5 were
based on the simple analytical expression of sinusoidal forcing. In the case of more
general forcing, the key properties stated in proposition 5.2 and corollary 5.3 are lost,
which makes it impossible to obtain estimates such as theorems 5.6 and 5.7. However,
some properties are maintained if two assumptions are made about S in (3.1): T0-
periodicity, and a null mean value. The latter assumption is physically meaningfull:
as deduced from (3.7), a non-null mean value of S results in an amplitude of uI that
increases linearly with t.

Since the techniques required are the same as those used in the above sections, the
derivations will be shortened. Setting the parameters and the Fourier decomposition
of the source as follows

v0 =
1

2 ρ0 c
2
0

max
t∈[0, T ]

|S(t/β)| , A =
2 v0
β d

, y =
[u(α, t)]

d
, f(y) = −F(y),

g(t) =
1

2 ρ0 c
2
0 v0

|S(t/β)| =

∞∑

n=1

(an sinnωt+ bn cosnωt) , T = β T0, ω =
2 π

T
,

(6.1)
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we obtain the model problem






d y

d t
= f(y) +Ag(t) = F (t, y),

f : ] − 1, +∞[→]fmin, +∞[, lim
y→−1

f(y) = +∞, −∞ ≤ fmin < 0,

f(0) = 0, f
′

(0) = −1, f
′

(y) < 0 < f
′′

(y),

g(t+ T ) = g(t), g = 0, |g(t)| ≤ 1, max
t∈[0, T ]

|g(t)| = 1, 0 ≤ A < +∞,

y(0) = y0 ∈] − 1, +∞[.

(6.2)

The isocline of zero slope of (6.2) is

Iy
0 (t) = f−1(−Ag(t)). (6.3)

6.2. Periodic solution. The following result generalizes the proposition 4.1:
since the same notations and processes are used, the proof is only sketched here.

Proposition 6.1. There is a unique T -periodic solution Y (t) of (6.2). This
solution is asymptotically stable.

Proof. Three cases can be distinguished.
Case 1: A = 0. This case is identical to case 1 in proposition 4.1.
Case 2: 0 < A < |fmin|. Based on the funnel’s theorem, the compact set

K0 =
[
f−1(A), f−1(−A)

]

is invariant under the flow of (6.2), and hence Π(K0) ⊂ K0. A fixed point argument
shows the existence of a T -periodic solution Y . Equations (4.2) and (4.3) still hold:
the uniqueness and attractivity of Y are straightforward consequences of f

′

(y) < 0.
Case 3: A ≥ |fmin|. The isocline (6.3) is not defined when Ag(t) ≥ −fmin.

In these cases, the invariant set deduced from the isocline is the non-compact set
[f−1(A), +∞[, which makes it impossible to apply the fixed point argument. To build
a compact invariant set, we take y > 0, which means that fmin+Ag(t) < d y

d t < Ag(t).
As long as y > 0, integration gives lower and upper solutions of y

y0 + fmin t+

∫ t

0

Ag(ξ) dξ < y(t) < y0 +

∫ t

0

Ag(ξ) dξ.

From the T -periodicity of g, it follows that

y0 + fmin T < y(T ) < y0.

It is then only necessary to bound y0 to establish that y > 0 on [0, T ]. Setting

gmin = min
t∈[0, T ]

g(t) < 0,

the lower solution of y gives

y0 − t (|fmin| +A|gmin|) ≤ y(t), ∀t ∈ [0, T ].

Taking y0 > T (|fmin| +A|gmin|) therefore gives y > 0. The compact set

K0 =
[
f−1(A), 2T (|fmin| +A|gmin|)

]

is therefore invariant under the Poincaré map, which completes the proof.
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6.3. Auxiliary solution. Like in section 4, the first derivative of Y with respect
to A is introduced: Z(t, A) = ∂ Y

∂ A . Applying the chain-rule to (6.2) shows that the
T -periodic solution Z satisfies

dZ

d t
= f

′

(Y )Z + g(t). (6.4)

Lemma 6.2. In the limit of null forcing A = 0, the mean values of Z and Z2 are

Z(0) = 0, Z2(0) =
1

2

∞∑

n=1

a2
n + b2n

1 + (nω)2
, (6.5)

where an and bn are the Fourier coefficients of the source (6.1).
Proof. Null forcing gives Y = 0, hence (6.4) becomes

dZ

d t
= −Z + g(t).

This equation is integrated over [0, T ]. T -periodicity of Z and g = 0 yield Z(0) = 0.
The solution Z is therefore sought as a Fourier series with null mean value

Z(t, 0) =

∞∑

n=1

(An sinnωt+Bn cosnωt) .

Injecting this series in the ODE satisfied by Z(t, 0) and using (6.1) provides

An =
an + nω bn

1 + (nω)
2 , Bn =

bn − nω an

1 + (nω)
2 , with A2

n +B2
n =

a2
n + b2n

1 + (nω)
2 .

Now, Parseval’s formula leads to the last equality in (6.5).

6.4. Mean dilatation of the crack. The next result extends the theorem 5.4.
It shows that a positive jump in the mean elastic displacement still occurs.

Theorem 6.3. The mean value of the T -periodic solution Y in (6.2) is positive
and increases strictly with the forcing amplitude:

Y > 0,
∂ Y

∂ A
> 0.

At small forcing levels, the following local estimate holds

Y = f
′′

(0)

(
A

2

)2 ∞∑

n=1

a2
n + b2n

1 + (nω)
2 + O

(
A3
)
, (6.6)

where an and bn are the Fourier coefficients of the source (6.1).
Proof. Based on the T -periodicity and the null mean value of g, the proof of

theorem 5.4 can be straightforwardly extended to prove Y > 0. To prove the second
inequality, we proceed in three steps. First, as stated in the proof of proposition 6.1,
null forcing gives Y = 0, and hence Y (0) = 0. Secondly, lemma 6.2 gives Z(0) = 0.

Thirdly, the T -periodic function W = ∂2 Y
∂ A2 = ∂ Z

∂ A satisfies (4.9). The sign of f
′

and

f
′′

in (6.2) show that the isocline of zero slope (4.10) is positive or null: IW
0 (t) = 0

occurs only at points where Z vanishes. The proof of proposition 4.4 therefore still
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holds here, yielding W (t) > 0 at all t ∈ [0, T ]. We therefore obtain W (A) > 0, and
hence Z(A) > Z(0) = 0, which proves the second inequality.

Lastly, a Taylor expansion of Y when A≪ 1 gives

Y (A) = Y (0) +A
∂ Y

∂ A
(0) +

A2

2

∂2 Y

∂ A2
(0) + O(A3),

=
A2

2
W (0) + O(A3).

Elementary calculations on (4.9) lead to

W (0) = f
′′

(0)Z2(0),

where Z2(0) is given in (6.5), which completes the proof.
In the case of a pure sinusoidal source, a1 = 1 and an>1 = bn = 0: the estimate

(6.6) recovers the estimate (5.2).

7. Conclusion.

7.1. Physical observables. A set of nondimensionalized parameters was used
throughout this study. To recover the physical observables, we recall (3.9) and (6.1).
The results of physical interest are as follows.

• Theorems 5.4 and 6.3: mean dilatation of the crack

[u] > 0,
∂ [u]

∂ v0

β d

> 0,

[u] =
∣
∣
∣F

′′

(0)
∣
∣
∣
v2
0

β2 d

∞∑

n=1

a2
n + b2n

1 + (nΩ / β)2
+ O

(
v3
0

β3 d2

)

,

(7.1)

where an and bn are the Fourier coefficients of the normalized source. The
main aim of the present study was to establish the validity of the inequalities
in (7.1) with any set of parameters. In the case of model 1 (2.7) and a
monochromatic source (3.8), the local estimate obtained here matches the
theoretical expression obtained in our previous study using a perturbation
analysis method [16]. In the local estimate of (7.1), an improvement of one
order of accuracy is reached with a purely monochromatic source: see (5.2).
Lastly, note that the local estimate with model 1 is twice that obtained with
model 2 (2.8).

• Theorem 5.6: maximum aperture of the crack (monochromatic source only)

∂ [u]max

∂ v0

β d

> 0,
∂2 [u]max

∂
(

v0

β d

)2 > 0,

max




2 v0
β

1
√

1 + (Ω/β)
2
,
2 v0
Ω

1 + Ω/β
√

1 + (Ω/β)
2
− 2 π β d

Ω
|Fmax|



 ≤ [u]max ≤ 4 v0
Ω
,

[u]max =
2 v0
β

1
√

1 + (Ω/β)
2

+ O
(
v2
0

β2 d

)

.

(7.2)
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• Theorem 5.7: maximum closure of the crack (monochromatic source only)

−d < d (−F)
−1

(
2 v0
β d

)

≤ [u]min ≤ 0,

[u]min = −2 v0
β

1
√

1 + (Ω/β)
2

+ O
(
v2
0

β2 d

)

,

lim
v0
β d

→+∞

[u]min = −d.

(7.3)

It is worth noting that [u] > 0 and [u]min bounded are purely nonlinear phenomena:
with the classical linear law (2.4), [u] = 0 and [u]min is not bounded independently of
v0.

7.2. Acoustic determination of the contact law. One of the applications of
the present study is the characterization of the crack model, in particular the finite
compressibility of the crack. This data is crucial in geomechanics and geohydrology,
where it is linked to the transport of fluids across fractured rocks [3]. If [u], the source,
and the physical parameters of Ω0 and Ω1 are known, then the second equation in (7.1)
provides a straightforward mean of determining |F ′′

(0)|/d. Note that the stiffness K,
which is involved in β via the proposition 3.1, is classically measured using acoustic
methods [21]. It then suffices to measure [u]. For this purpose, two possible methods
come to mind.

The first method consists in measuring the dilatation of the crack mechanically.
This requires installing two strain gauges around the crack [14]. However, in many
contexts such as those encountered in geosciences, this is not practicable. The second
method consists in performing acoustic measurements of the diffracted elastic waves
far from the crack. The proposition 4.1 can be used here, by writing the Fourier series
of incident, reflected, and transmitted elastic displacements

uI(x, t) =
v0
Ω

{cos(Ω t− k0 x) − 1} ,

uR(x, t) = Ra
0 +

∞∑

n=1

{
Ra

n sinn (Ω t+ k0 x) +Rb
n cosn (Ω t+ k0 x)

}
,

uT (x, t) = T a
0 +

∞∑

n=1

{
T a

n sinn (Ω t− k1 x) + T b
n cosn (Ω t− k1 x)

}
,

(7.4)

where k0 = Ω/c1 and k1 = Ω/c1. Definition of [u] implies

[u] = T a
0 −Ra

0 +
v0
Ω
. (7.5)

On the other hand, the causality of the source and the continuity of the stress (2.3)
mean that

ρ1 c1 T
a
0 + ρ0 c0R

a
0 = −ρ0 c0 v0

Ω
. (7.6)

Solving (7.5) and (7.6) gives

[u] = −ρ0 c0 + ρ1 c1
ρ1 c1

Ra
0 +

ρ1 c1 − ρ0 c0
ρ1 c1

v0
Ω
,

=
ρ0 c0 + ρ1 c1

ρ0 c0
T a

0 + 2
v0
Ω
.

(7.7)
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Purely acoustic measurements of Ra
0 or T a

0 therefore give [u], from which the nonlinear
crack parameter can be easily determined.

7.3. Future lines of investigation. The monotonicity of F in (2.6) - or equiv-
alently f in (3.9) and (6.1) - was the key ingredient used here to prove the properties
of the crack: the strict increasing of F - or the strict decreasing of f - proves the
uniqueness and attractivity of the periodic solution. In addition, the strict concav-
ity of F - or the strict convexity of f - shows that the mean value of the solution
increases with the forcing parameter. Relaxing these hypotheses may lead to more
complex situations, and require more sophisticated tools. One thinks for instance to
the case of hysteretic models of interfaces [11, 7].

This paper was focused on the normal finite compressibility of a crack. Coupling
with shear stress is also an important topic to examine [20].

Lastly, further studies are also needed on networks of nonlinear cracks [23]. These
configurations frequently occur in applications. Direct numerical simulations have
been carried out in [16], but a rigorous mathematical analysis is still required.
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