
HAL Id: hal-00339265
https://hal.science/hal-00339265v1

Submitted on 17 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On the use of performance models for adaptive
algorithm selection on heterogeneous clusters

Sami Achour, Wahid Nasri, Luiz Angelo Steffenel

To cite this version:
Sami Achour, Wahid Nasri, Luiz Angelo Steffenel. On the use of performance models for adaptive
algorithm selection on heterogeneous clusters. 17th Euromicro International Conference on Paral-
lel, Distributed, and Network-Based Processing (PDP 2009), Feb 2009, Weinmar, Germany. �hal-
00339265�

https://hal.science/hal-00339265v1
https://hal.archives-ouvertes.fr

On the use of performance models for adaptive algorithm selection

on heterogeneous clusters

Sami Achour, Wahid Nasri

High School of Sciences and Techniques of Tunis

Department of Computer Science

1008 Tunis, Tunisia

Sami.Achour@fst.rnu.tn

Wahid.Nasri@ensi.rnu.tn

Luiz Angelo Steffenel

University of Reims Champagne-Ardenne

Dep. of Math. and Computer Science

CReSTIC-SysCom

51100 Reims, France

Luiz-Angelo.Steffenel@univ-reims.fr

Abstract

Due to the increasing diversity and the continuous evo-

lution of existing parallel systems, solving efficiently a tar-

get problem by using a single algorithm or writing efficient

and portable programs is becoming a challenging task. In

this paper, we present a generic framework that integrates

performance models with adaptive techniques in order to

design efficient parallel algorithms in heterogeneous com-

puting environments. To illustrate our approach, we study

the matrix multiplication problem, where we compare dif-

ferent parallel algorithms. Experiments demonstrate that

accurate performance predictions obtained from analytical

performance models allow us to select the most appropriate

algorithm to use depending on the problem and the platform

parameters.

1 Introduction

The last years have witnessed a proliferation of powerful

heterogeneous computing systems and an ever-increasing

demand for practice of high performance computing. The

inherent heterogeneity in terms of software and hardware

components represents a challenge to develop efficient par-

allel algorithms in such environments. Indeed, it is very dif-

ficult to solve efficiently a given problem by using a single

algorithm or to write portable programs developing good

performances on any computational support.

The adaptive approach represents an interesting solution

to these challenges. Depending on the problem and plat-

form parameters, the program will adapt to achieve the best

performances. To ensure that these techniques guarantee

good performances, accurate performance models are es-

sential to represent the problem in the target platform.

In this work, we propose a generic framework that al-

lies adaptive approaches and performance models to solve

a given problem. Our objective is to integrate techniques

for accurately predicting execution times of the available al-

gorithms and automatically determine the most appropriate

one in terms of a set of parameters (problem size, number

of available processors, network performances, etc.).

The remainder of the paper is organized as follows. We

begin in section 2 by discussing some related works. In sec-

tion 3, we describe the methodology of our adaptive frame-

work and detail its components. Section 4 is devoted to a

case study where we apply our approach on the matrix mul-

tiplication problem. We present in section 5 practical exper-

iments performed on computing systems made up hetero-

geneous clusters proving the interest of this work. Finally,

section 6 concludes the paper and discusses some perspec-

tives to extend this work.

2 Related works

Over recent years, several research works have addressed

the use of adaptive techniques to minimize the execution

time and to ensure portability for both sequential [19, 5, 15]

and parallel algorithms [9, 3, 10, 4, 11]. However, only few

parallel adaptive algorithms were implemented as frame-

works. In Yu et al. [20], a framework for reduction par-

allelization is presented, consisting on three components:

(i) an offline process to characterize parallel reduction algo-

rithms, (ii) an online algorithm selection module and (iii) a

small library of parallel reduction algorithms. In Thomas

et al. [18], the authors developed a general framework for

adaptive algorithm selection for use in the Standard Tem-

plate Adaptive Parallel Library (STAPL). Their framework

uses machine-learning techniques to analyze data collected

by STAPL installation benchmarks and to select different

algorithms for sorting and matrix multiplication at run-time.

Another methodology is described by Cuenca et al. [7],

1

Platform
Monitoring

Benchmarking

Performance of
the Platform

Target
Platform

Target
Problem

Available
Algorithms

Communication
Models

Modeling Algorithms

Cost Models

Performance Analysis

Performance Matrix

Automatic Algorithm Selection

Execution Scheme

Instance of the Problem

Adaptive Techniques

Platform Discovery Performance Modeling

Adaptive Execution

Figure 1. Architecture of the adaptive frame-

work.

which presents the architecture of an automatically tuned

linear algebra library. During the installation process in a

system, the linear algebra routines will be tuned to the sys-

tem conditions. At run-time, the parameters that define the

system characteristics are adjusted to the actual load of the

platform. The design methodology is analyzed with a block

LU factorization.

The main difference between the above approaches and

the work presented in this paper is that we do not refer to

empirical measures or statistical techniques; rather, we use

analytical models serving as the basis of the automatic pro-

cessing in our framework for making a quick decision while

obtaining relatively accurate results.

3 Description of the adaptive framework

3.1 Methodology

In this section, we describe our framework for integrat-

ing performance models with adaptive approaches in a het-

erogeneous execution environment. An overview of its ar-

chitecture is sketched in Fig. 1. The processing is separated

into three phases: (i) platform discovery, (ii) performance

modeling and (iii) adaptive execution. Note that this pro-

cessing does not generate heavy additional cost compared

to the overall execution time, particularly for large matrix

sizes. Indeed, on a given dedicated platform, the first phase

will be executed only once. The second and third phases

are based on analytical formula that can be evaluated with

a neglected cost. In the sequel, we give more details on the

major components of the framework.

3.2 Platform discovery

During this phase, we aim to discover automatically the

performances of the target execution platform by collecting

available information, such as computing powers of proces-

sors, interconnection network performances, etc. These pa-

rameters are to be used as input for the phase of adaptive

execution.

Network monitoring There exist many tools for network

monitoring, such as NWS. These tools permit to deter-

mine many useful parameters of the target parallel sys-

tem like the current network performance, the speeds

of the processors, the CPU load, the available memory,

etc. Let us note that this step should provide quick and

accurate results, since the third phase of the framework

is based on these results.

Processing performance The processing performance can

be obtained with the execution of benchmarks. In

our work, we have chosen the well-known LAPACK

benchmark [1] to determine the performances of the

processors of the target parallel platform. These per-

formances will be used for two main purposes: (i) to

determine the relative performance of each processor,

and (ii) to estimate the time of processing.

3.3 Performance modeling

In this second phase, we have to model each available

algorithm according to a performance model. The perfor-

mance modeling of an algorithm depends on two main as-

pects: the computational cost and the communication cost.

In most cases, it is possible to describe an algorithm as the

composition of these two aspects, which by instance can

be modeled separately according to specific techniques. An

analytical model based on the number of operations can be

used to determine the computational cost, while communi-

cation models such as LogP [8] or pLogP [13] can be used

to predict the communication costs.

This phase ends by determining a set of analytical formu-

las to be associated with the platform performances given

by the first phase for calculating the performances of the

candidate algorithms during the third phase.

3.4 Adaptive execution

As mentioned in the previous section, this phase is based

on the results determined in the two first phases. Indeed,

assuming that a set A = {A1, A2, . . ., Aq} of q algorithms

is available, determining the best algorithm on a given plat-

form is based on the matrix of performances constructed by

the performance analysis of each candidate algorithm.

Formally, assuming a cost model, we denote by

P (Ai, Cj) the performance of algorithm Ai on cluster Cj .

Let us precise that Ai is qualified to be the best on cluster

Cj when:

P (Ai, Cj) = min{P (Ak, Cj), 1 ≤ k ≤ q} (1)

4 Applying the framework: the parallel ma-

trix multiplication problem

The chosen problem to validate our methodology is the

dense matrix multiplication problem on heterogeneous plat-

forms, which has raised a considerable interest this decade

[2, 12, 16, 14]. The majority of these works rely on effi-

ciently distribute the data among the processors of the het-

erogeneous platform.

In this paper, we have implemented three algorithms for

the resolution of this problem. Two of these implementa-

tions are based on the standard matrix multiplication algo-

rithm and the third one combines both standard and Strassen

[17] algorithms. The architecture of the computation of

these three algorithms is based on the master/slave archi-

tecture. Indeed, the computation of the matrix product is

performed in three steps: (i) the distribution of the input

matrices A and B from the master node to other nodes, (ii)

a local computation on all nodes, and (iii) the gather of the

result matrix C. In the sequel, we describe each algorithm.

Std Col Based This algorithm [14] is based on the stan-

dard method, where all matrices are partitioned identi-

cally into slices as follows: the processors are already

arranged into a set of processor columns, for each pro-

cessor we assign a slice of matrix proportionally to

the speed of this processor with the constraint that the

slices must be arranged in columns (see Fig.2). Once

the blocks of the matrix C are computed, each proces-

sor has to send his slice of result matrix to the master

node. The analytical model determining the theoretical

performance of such an algorithm may be described by

Equation 2.

Texe(pi) = Nb Comm(β + Bloc Size × τ) (2)

+2 × Nb Comp × Bloc Size3 × Perf(pi)

Where

- Texe(pi) is the execution time of processor i,

- Bloc Size is the size of a square bloc,

- Nb Comp is the number of blocs computed by

processor i,

- Nb Comm is the number of blocs sent/received

by processor i,

- Perf(pi) is the performance of processor i,

- β is the network latency and

- τ is the network bandwidth,

Note that β, τ and Perf(pi)are obtained during the

phase of platform discovery, while Nb Comm and

Nb Comp are determined for each target problem.

Std Cart Based This algorithm [14] is similar to the pre-

vious one, however it presents an additional constraint:

0.3 0.1

0.2 0.4

Column Based
Distribution

Cartesian Based
Distribution

A * B = C

Normalized performances
 of a 2*2 processor grid

Figure 2. Distribution of the matrices for the

standard algorithm.

the slices should be arranged in both columns and rows

(see Fig. 2). In this case, the communications are sim-

plified because each processor has only one neighbor

from the right and/or from the left, while the analytical

model is still described by Equation 2.

Str Cannon This algorithm, inspired on Ohtaki’s algo-

rithm [16], combines two algorithms: the higher level

is based on the algorithm of Cannon [6] (also called

BMR algorithm) and the bottom level is based on one

recursion of the Strassen’s algorithm [17]. In this algo-

rithm, the matrices are partitioned in a grid of blocks.

For each processor, we assign a number of blocks to

compute proportionally to its computational speed (see

Fig. 3). After being distributed, the matrix multiplica-

tion uses the principle of Cannon’s algorithm with the

specificity that the multiplication of two blocks of ma-

trices A and B is done applying one recursion of the

Strassen’s algorithm. The analytical model determin-

ing the theoretical performance of such an algorithm

may be described by Equation 3.

Texe(pi) = Nb Comm(β + Bloc Size2 × τ) (3)

+(7/4) × Nb Comp × Bloc Size3 × Perf(pi))

5 Validation

To validate our approach, we used two clusters from the

Grid’5000 platform1 , namely Azur and Sol. Azur is com-

posed by 72 IBM eServer 325 nodes (dual Opteron 246

1Experiments presented in this paper were carried out using the

Grid’5000 experimental testbed, an initiative from the French Ministry of

Research through the ACI GRID incentive action, INRIA, CNRS and RE-

NATER and other contributing partners (see https://www.grid5000.fr).

A * B = C

Matrices distribution over four
processors with relative

performances

Figure 3. Data distribution for the Str Cannon

algorithm.

2.0GHz, 2GB) while Sol is composed by 50 Sun Fire X2200

M2 nodes (dual Opteron 2218 dual-core 2.6GHz, 4GB).

Both clusters run over Gigabit-Ethernet networks, the same

technology used in the backbone that interconnects them.

Machines from both clusters run Linux with kernel ver-

sion 2.6.13, and the algorithms were implemented using

MPICH2 1.0.7 on square matrices of data with double pre-

cision. Disk swapping is disabled to prevent out-of-core

computations.

5.1 Performance analysis

As stated in the previous sections, our policy of perfor-

mance evaluation consists on the analysis of the different

available algorithms and elements of the platform. With the

help of a performance model that represents the target prob-

lem and the platform to be used, and the network connec-

tivity data, we are able to predict the performance of the

different algorithms and to select the algorithm that should

perform faster for a particular context.

In order to validate the accuracy of our models, we

have initially compared the measured execution times from

the algorithms with the predictions obtained using our ap-

proach. For instance, we depict in Fig. 4 a compari-

son for the case of P=9 processors for both Std Col Based

and Str Cannon algorithms (Std Cart Based model be-

ing similar to Std Col Based). Diagrams show that our

methodology provides accurate results with a reduced over-

head, as the prediction error is about 3% (resp. 5%) for

Std Col Based (resp. Str Cannon) algorithm for large sizes.

We also depict in Fig. 5 the completion times of

Std Col Based, Std Cart Based and Str Cannon algorithms

distributed on two clusters from the Grid’5000 platform for

different numbers of processors and matrix sizes. We par-

ticularly observe that algorithms have different behaviors

according to the context (number of processors and matrix

size). Let us take for example Str Cannon algorithm which

provides the best performance for the case of P=7 proces-

sors and the worst one for the other cases. On the other

Figure 4. Measured and modeled completion

times (sec) of the matrix multiplication on two

clusters (P=9) from Grid’5000 platform.

hand, in terms of matrix sizes, Fig. 5 (P=12) shows that

Std Cart Based (resp. Std Col Based) is the fastest algo-

rithm for small (resp. large) matrix sizes.

6 Conclusions and future works

We have presented in this paper an adaptive framework

for dealing with the design of efficient parallel algorithms

in heterogeneous computing environments. The methodol-

ogy we propose integrates performance models with adap-

tive approaches, proceeding in a self-adapting fashion to de-

termine an execution scheme, minimizing the overall exe-

cution time of a given problem on a target heterogeneous

platform. To illustrate the interest of this approach, we

demonstrate how an important numerical problem, the ma-

trix multiplication, can be adapted over different computa-

tional supports. Although simple, the case of the matrix

multiplication demonstrates the advantages of associating

the accuracy of performance models and the power of adap-

tive techniques.

As future prospects, we intend to perform experiments

on other numerical problems whose performances depend

on both the distributions of the processes and their related

communications. We also plan to integrate other existing

adaptive approaches and performance modeling techniques

to our framework and to implement more candidate algo-

rithms. One way to address this later issue is to express it as

a combinatorial optimization problem. Finally, extending

our methodology to dynamic systems seems worthwhile.

Figure 5. Completion times (sec) of the matrix multiplication on two clusters from Grid’5000 platform.

References

[1] E. C. Anderson and J. Dongarra. Performance of lapack: A

portable library of numerical linear algebra routines. Pro-

ceedings of the IEEE, 81(8), 1993.

[2] O. Beaumont, V. Boudet, F. Rastello, and Y. Robert. Ma-

trix multiplication on heterogeneous platforms. IEEE Trans.

Parallel Distributed Systems, 12(10):1033–1051, 2001.

[3] F. Berman, R. Wolski, H. Casanova, W. Cirne, H. Dail,

M. Faerman, S. Figueira, J. Hayes, G. Obertelli, J. Schopf,

G. Shao, S. Smallen, N. Spring, A. Su, and D. Zagorodnov.

Adaptive computing on the grid using AppLeS. IEEE Trans-

actions on Parallel and Distributed Systems, 14(4), 2003.

[4] P. Bhat, V. Prasanna, and C. Raghavendra. Adaptive commu-

nication algorithms for distributed heterogeneous systems.

In Proceedings of the IEEE Intl. Symposium on High Per-

formance Distributed Computing (HPDC 1998), 1998.

[5] J. Bilmes, K. Asanović, C. Chin, and J. Demmel. Opti-

mizing matrix multiply using PHiPAC: a Portable, High-

Performance, ANSI C coding methodology. In Proc. of Intl.

Conference on Supercomputing, July 1997.

[6] L. E. Cannon. A cellular computer to implement the Kalman

filter algorithm. PhD thesis, Montana State University,

1969.

[7] J. Cuenca, D. Giménez, J. González, J. Dongarra, and

K. Roche. Automatic optimisation of parallel linear alge-

bra routines in systems with variable load. In 11th Euromi-

cro Workshop on Parallel, Distributed and Network-Based

Processing (PDP 2003), pages 409–416, Feb. 2003.

[8] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser,

E. Santos, R. Subramonian, and T. von Eicken. LogP - a

practical model of parallel computing. Communication of

the ACM, 39(11):78–85, 1996.

[9] M. Frigo and S. G. Johnson. The design and implementation

of fftw3. Proceedings of the IEEE, Invited paper, Special

Issue on Program Generation, Optimization, and Platform

Adaptation, 93(2):216–231, 2005.

[10] O. Hartmann, M. Kuhnemann, T. Rauber, and G. Runger.

Adaptive selection of communication methods to optimize

collective mpi operations. In Proceedings of the 12th Work-

shop on Compilers for Parallel Computers (CPC’06), 2006.

[11] B. Hong and V. K. Prasanna. Adaptive matrix multiplication

in heterogeneous environments. In ICPADS, 2002.

[12] A. Kalinov and A. Lastovetsky. Heterogeneous distribu-

tion of computations solving linear algebra problems on net-

works of heterogeneous computers. Journal of Parallel and

Distributed Computing, 61(4):520–535, 2001.

[13] T. Kielmann, H. Bal, S. Gorlatch, K. Verstoep, and R. Hof-

man. Network performance-aware collective communica-

tion for clustered wide area systems. Parallel Computing,

27(11):1431–1456, 2001.

[14] A. L. Lastovetsky. On grid-based matrix partitioning for

heterogeneous processors. In Proceedings of the 6th Inter-

national Symposium on Parallel and Distributed Computing

(ISPDC 2007), pages 383–390, July 2007.

[15] M. O. McCracken, A. Snavely, and A. Malony. Perfor-

mance modeling for dynamic algorithm selection. In In-

ternational Conference on Computational Science, volume

2660 of LNCS, pages 749–758. Springer, June 2003.

[16] Y. Ohtaki, D. Takahashi, T. Boku, and M. Sato. Parallel im-

plementation of strassen’s matrix multiplication algorithm

for heterogeneous clusters. In IPDPS, 2004.

[17] V. Strassen. Gaussian elimination is not optimal. Nu-

merische Mathematic, 13:354–356, 1969.

[18] N. Thomas, G. Tanase, O. Tkachyshyn, J. Perdue, N. M.

Amato, and L. Rauchwerger. A framework for adaptive al-

gorithm selection in STAPL. In Proc. ACM SIGPLAN Symp.

Prin. Prac. Par. Prog. (PPOPP), pages 277–288, June 2005.

[19] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated

empirical optimization of software and the ATLAS project.

Parallel Computing, 27(1–2):3–35, 2001.

[20] H. Yu and L. Rauchwerger. An adaptive algorithm selection

framework for reduction parallelization. IEEE Transactions

on Parallel and Distributed Systems, 2006.

