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ON PEELING PROCEDURE APPLIED TO A POISSON POINT

PROCESS

YU. DAVYDOV1, A.V. NAGAEV 2 AND A. PHILIPPE3

Main results of this paper were obtained together with Alexander
Nagaev, with whom the first author had collaborated for more than
35 years, until Alexander’s tragic death in 2005. Since then, we
have gathered strength and finalised this paper, strongly feeling
Alexander’s absence - our memories of him will stay with us forever.

Abstract. In the focus of our attention is the asymptotic properties of the
sequence of convex hulls which arise as a result of a peeling procedure applied
to the convex hull generated by a Poisson point process. Processes of the
considered type are tightly connected with empirical point processes and stable
random vectors. Results are given about the limit shape of the convex hulls in
the case of a discrete spectral measure. We give some numerical experiments
to illustrate the peeling procedure for a larger class of Poisson point processes.
Keywords : Control measure ; convex hull ; limiting shape ; peeling ; Poisson
point processes ; stable vectors.

1. Introduction

Consider a Poisson point process (p.p.p.) π = πα,ν with points scattered over
R

d. Identify R
d \ {0} with R

1
+ × Sd−1 where Sd−1 is the unit sphere. Assume that

the intensity measure of this process µ is of the form

(1) µ = θ × ν

where

(1) θ is the absolutely continuous measure on R
1
+ determined by the density

function
dθ

dλ
(r) = αr−α−1, r > 0,

λ is the Lebesgue measure in R
1, α > 0 is a parameter while

(2) ν, called the spectral density, is a bounded measure on the σ−algebra
BSd−1 of the Borel subsets of Sd−1. Without loss of generality we assume
that ν(Sd−1) = 1. We denote by Sν the support of ν.

The representation (1) means that for any Borel A ⊂ R
1 and E ⊂ Sd−1

µ
{

x
∣

∣

∣
|x| ∈ A, ex ∈ E

}

= θ(A)ν(E).

where ex = |x|−1x, for all x ∈ R
d-.

We assume that the Poisson point process πα,ν is non-unilateral. It means that
ν is supported by a set Sν ⊂ Sd−1 such that the cone cone(Sν) generated by Sν

coincides with R
d.

1



2 YU. DAVYDOV1, A.V. NAGAEV 2 AND A. PHILIPPE3

Let B(0, r) denote the ball of a radius r centred at the origin. It is easily seen
that for any δ > 0

µ (B(0, δ)) = ∞, µ
(

R
d \B(0, δ)

)

< ∞.

It implies that with probability 1 in any neighbourhood of the origin there are
infinitely many points of π while π(Rd \B(0, δ)) is finite.

The interest to the point processes controlled by (1) is explained by the following
facts.

Let ξ(1), ξ(1), . . . , ξ(n) be independent copies of a random vector ξ such that
the function P{|ξ| > r} regularly varies as r → ∞ with the exponent −α and the
measures (νr)r defined by

νr(E) = P{eξ ∈ E : |ξ| > r}, E ∈ BSd−1,

weakly converge to ν on Bc(0, τ) for any τ > 0.
Consider the empirical point process βn generated by ξ(1), ξ(1), . . . , ξ(n) or,

more precisely, by the random set

ς
(n)
1 = {b−1

n ξ(1), . . . , b−1
n ξ(n)} = {ξ̂(1), . . . , ξ̂(n)}

where

bn = inf
{

r : nP
(

eξ ∈ E
∣

∣ |ξ| > r
)

≤ 1
}

.

It is easily seen that the point process βn weakly converges to π = πα,ν (see e.g.
[5], Prop. 3.21). Thus, each πα,ν is a weak limit of a sequence of the empirical
processes.

It can be easily established that πα,ν admits the following representation

(2) πα,ν =
∞
∑

k=1

δ
{Γ

−1/α
k ǫk}

where

• Γk =
k
∑

i=1

γk, the sequence (γk)k∈N is a sequence of i.i.d. random variable

with common exponential distribution with mean equal to one.
• (ǫk)k∈N is a sequence of i.i.d. with common distribution ν
• (γk)k∈N and (ǫk)k∈N are supposed to be independent

(see e.g. [2]). It is worth recalling that the point processes πα,ν naturally arise
within the framework of the theory of stable distributions. For example, if α ∈
(0, 1) then the series ζ =

∑

x(j)∈πα,ν
x(j) converges a.s.. Furthermore, ζ has the

d−dimensional stable distribution ( see e.g. [3], [6], [2]).
In the focus of our interest is the sequence of convex hulls that arise from the

peeling procedure introduced in [1]. In what follows by C(A), A ⊂ R
d, we denote

the convex hull generated by A. Let C be a convex set. By ext C we denote the
set of the extreme points of C. If C is a convex polyhedron then ext C is the finite
set of its vertices.

It convenient to start with the binomial process (ς
(n)
1 ). Let C

(n)
1 = C(ς

(n)
1 ). If

the measure Pξ, the distribution of ξ, has no atoms then a.s. C
(n)
1 is a polyhedron

and, furthermore,

ς
(n)
1 ∩ ∂ C

(n)
1 = ext C

(n)
1 .
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Define

ς
(n)
2 = ς

(n)
1 \ ext C(n)

1 , C
(n)
2 = C(ς

(n)
2 ),

then

ς
(n)
3 = ς

(n)
2 \ ext C(n)

2 , C
(n)
3 = C(ς

(n)
3 )

and so on. Obviously, the sequence of the so-built non empty convex hulls C
(n)
1 , C

(n)
2 , . . . , C

(n)
k , . . .

is finite and its length is random.

Definition 1. We say that the underlying distribution Pξ and corresponding to
it spectral measure ν are non-unilateral if the minimal closed cone containing Sν

coincides with R
d.

If the underlying distribution Pξ is non-unilateral then for any fixed k

0 ∈ int C
(n)
k , inf

{

|x|
∣

∣

∣
x ∈ ∂C

(n)
k

}

> 0 a.s.

for n sufficiently large. In [1], it was shown that if 0 < α < 2 and ν is non-

unilateral then (C
(n)
0 , C

(n)
1 , . . . , C

(n)
k ), as n → ∞, converge in distribution to

(C0, C1, . . . , Ck) for any fixed k. Consequenlty, the sequence #{extC(n)
k } is

bounded in probability as n tends to infinity .

In order to learn how C
(n)
k relates to Ck when k = kn → ∞ we need, first, to learn

how Ck behaves as k → ∞. It should be noted that C
(n)
k can be regarded as the

multi-dimensional analogue of the order statistics. So, the asymptotic properties of

C
(n)
kn

are of great interest from the view-point of mathematical statistics.

We generalize now the construction of the peeling sequence to infinite set.
Let ς = ς1 denote the set of points of π or, in other words, let ς support the random
measure π. We may apply to ς the same peeling procedure as in the case of the

finite set ς
(n)
1 . As a result we obtain the sequence of sets ς1, ς2, . . . , the sequence of

their convex hulls C1, C2, . . . and the sets of extreme points ext Ck, k = 1, 2, . . . .
Furthermore, a.s. ςk+1 = ςk \ ext Ck. If ν is non-unilateral then 0 ∈ Ck a.s. for all
k. Furthermore, Ck is a.s. a polyhedron and

ςk ∩ ∂ Ck = ext Ck.

Intuitively, we expect that the asymptotic behaviour of Cn is rather regular. It
is convenient to state our basic conjecture in the following way:

Denote

(3) Ĉn = ρ−1
n Cn, where ρn = max

x∈Cn

|x|.

If ν is non-unilateral then there exists a non-random set

Ĉ such that

lim
n→∞

dH(Ĉn, Ĉ) = 0 a.s.

Definition 2. Ĉ (if it exists) is called the limit shape of the sequence Ĉn.

It is easy to show that if such Ĉ exists then it is certainly non-random. Indeed,
labelling the points of ς in the descending order of their distances from the origin
we obtain a sequence x(1), x(2), x(3), . . . such that a.s.

|x(1)| > |x(2)| > |x(3)| > · · · .
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It is worth noting that the joint distribution of |x(1)|, |x(2)|, . . . , |x(n)| is absolutely
continuous with the density of the form

(4) pn(r1, r2, . . . , rn) = αn(r1r2 · · · rn)−α−1e−ν(Sd−1)r−α
1 I{r1>r2>···>rn}.

Let (η, ε), (η1, ε(1)), (η2, ε(2)), . . . be i.i.d. with common distribution

P{η > r, ε ∈ E} = e−rν(E).

According to (2), we have

(5) {x(j)}∞j=1
d
= {ε(j)(η1 + · · ·+ ηj)

1/α}∞j=1,

which implies that the event {limn→∞ Ĉn exists} belongs to the σ-algebra I of
the events invariant with respect to all finite permutations of the random vectors
(η1, ε(1)), (η2, ε(2)), . . . . By the Hewitt-Savage zero-one law I is trivial. Since

the limit set Ĉ = limn→∞ Ĉn is I-measurable we conclude that Ĉ is constant with
probability 1.

Now we give a first example where the existence of the limit shape is proved.

Example 1. Let Sν consist of d+1 unit vectors e(1), . . . , e(d+1) such that cone(e(1), . . . , e(d+1))
coincides with R

d. πα,ν is decomposed on d+1 one-dimensional independent p.p.p.

of the form
(

x
(i)
k = |x(i)

k |e(i)
)

. Since ν is non-unilateral the points x
(i)
k , i = 1, 2, . . . , d+

1, serve as vertices of Ck, k = 1, 2, . . . . Moreover, |x(i)
k | d

= (νi)
1/α(η1+ · · ·+ηk)

1/α

and ρnn
1/α → t+ = max1≤i≤d+1 (νi)

1/α, a.s.. Then the limit shape Ĉ is the convex

polyhedron with vertices v(i) = (ti/t
+)e(i) and ti = (νi)

1/α, i = 1, 2, . . . , d+ 1.

If #(Sν) > d+ 1 then the situation becomes much more complicated. Theorem
1 and 2 proved below deal with a case where a non-unilateral ν is supported by a
finite number of unit vectors.

Intuitively, we expect that, say, in case of ν uniformly distributed over Sd−1

the unit ball arises as the limit shape. However, it is not easy at all to prove this
formally. The authors tried to verify the credibility of this conjecture using the
Monte Carlo simulation. Obviously, the representation (2) provides a basis for such
a simulation. The results of simulation presented below make this conjecture very
credible.

It should be emphasised that the basic goal of the present paper is to draw
attention to new and interesting problems of stochastic geometry. So far, little or
nothing is known about the peels no matter what point process they concern.

The paper is organised as follows. In Section 2, we obtained a partial result
on the limit shape of the convex hulls Ck(πα,ν) when the spectral measure of the
process πα is atomic. Section 4 contains some numerical experiments.

2. Almost sure convergence of the peeling

In this section we assume that the spectral measure ν of the process πα,ν is

atomic, i.e. it is supported by a finite number of the points e(1), . . . , e(l) belonging
to the unit sphere Sd−1.

Furthermore, it is also assumed that cone{e(1), . . . , e(l)} = R
d. Denote by νi =

ν({e(i)}), i = 1, 2, . . . , l, the atoms of ν.
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It implies that the considered point process is a superposition of the one-dimensional
independent Poisson point processes defined on the rays

Li = {x| x = te(i), t > 0}, i = 1, . . . , l.

If a Borel set A ⊂ Li then

(6) µ(A) = νiα

∫

A

r−α−1dr.

Definition 3. Let A = {a(1), . . . , a(m)} be a finite set where a(i) ∈ R
d for i =

1, . . . ,m, and m ≥ d+ 1. The set A is extreme if

ext C(A) = A.

Theorem 1. Let Ck(πα,ν) be the k-th convex hull of the Poisson point process πα,ν .

Denote by C∞ the convex hull generated by A = {ν1/α1 e(1), . . . , ν
1/α
l e(l)}.

If A is extreme then as k → ∞

(7) dH

(

k1/αCk(πα,ν), C∞

)

= O

(

√

llnk

k

)

a.s.

where llnk = ln ln k. The polyhedron C∞ determines the limit shape of the convex
hulls Ck(πα,ν).

Remark 1. If σ is uniformly distributed over its support in the sense that νi = l−1,
then the total number of the vertices of C∞ equals l. Furthermore, they lie on the
sphere of the radius l−1/α. Loosely speaking, the convex hulls Ck(πα,ν) are getting
round as k → ∞.

If the condition A is extreme is omitted, we can state the following result :

Theorem 2. Let Ck(πα,ν) be the k-th convex hull of πα,ν . Denote by C∞ the

convex hull generated by A = {ν1/α1 e(1), . . . , ν
1/α
l e(l)}. Then as k → ∞

(8) dH

(

k1/αCk(πα,ν), C∞

)

→ 0 a.s.

Remark 2. Let f be a continuous homogeneous functional of a degree γ defined
on convex sets. From Theorem 2, we get

k
γ
α f(Ck(πα,ν)) → f(C∞) a.s.

In particular, if f(A) is the surface Lebesgue measure, i.e. f(A) = λd−1(∂A),
then

(9) f(Ck(πα,ν)) ∼
f(C∞)

k
d−1
α

.

But if f(A) = λd(A), then

(10) f(Ck(πα,ν)) ∼
f(C∞)

k
d
α

.
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3. Proof

3.1. Auxiliary lemmas. Let η1, η2, . . . be i.i.d. random variables with the stan-
dard exponential distribution, so that a = Eη1 = Varη1 = 1. Define the sums

(11) Γn = η1 + · · ·+ ηn.

By the law of the iterated logarithm there exists an a.s. finite random variable κ
with values in N such that for n ≥ κ

(12) |n−1Γn − 1| < 2

√

llnn

n
a.s..

Consider a function h(z) = z−1/α. If |z − 1| ≤ 1/2 then

|h(z)− h(1)| ≤ Lα|z − 1|, Lα < ∞.

Let n′ = min

{

n| 2
√

llnn
n < 1/2

}

. If n ≥ max(n′, κ) then

|h(n−1Γn)− h(1)| ≤ 2Lα

√

llnn

n

and, therefore, for n ≥ κ = κ(ω)

(13)
∣

∣

∣
Γ−1/α
n − n−1/α

∣

∣

∣
≤ 2Lα

√
llnn

n1/α+1/2
a.s..

We call the configuration any countable set of points from R
d such that for any

δ > 0 there are a finite number of points belonging to the set that lie outside
the ball {x | |x| ≤ δ}. So the point 0 is the limit point of any configuration.
We call a configuration ς non-unilateral if all the convex hulls, Ck = Ck(ς), k =
1, 2, . . . , generated by ς contain 0 as an interior point. It is evident that under the
conditions of Theorem 1 the random measure πα,ν is almost surely supported by a
non-unilateral configuration ς.

Denote by int(ς) the set of the interior points of ς , i.e.

int(ς) = {x | x ∈ ς, x /∈ ∂C1(ς)}.
Lemma 1. Let ς1, ς2 ∈ K be such that ς1 ⊂ ς2, then for all k ∈ N,

(14) Ck(ς1) ⊂ Ck(ς2).

Proof. It is trivial that C1(ς1) ⊂ C1(ς2).
Note that if x is an interior point of C1(ς1), i.e. x ∈ int(C1(ς1)), then x is also

an interior point of C1(ς2), therefore

int(C1(ς1)) ⊂ int(C1(ς2))

and this implies that

C2(ς1) = C1(int(C1(ς1))) ⊂ C1(int(C1(ς2))) = C2(ς2)

By induction, the lemma is proved . �

Lemma 2. Let K be the set of non-unilateral configurations such that no d+1 points
lie on the same hyperplane. Let ς, ς ′ ∈ K be such that ς ′ ⊂ ς and #(ς ′\ς) = m < ∞.
Then we have, for all k ∈ N,

(15) Ck+m(ς) ⊂ Ck(ς
′) ⊂ Ck(ς)
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Proof. Since ς, ς ′ ∈ K and 0 is the only limit point of both configurations all
Ck(ς), k = 1, 2, . . . , are polyhedrons. Note that for all k, l ≥ 1

(16) Ck+1(ς) = C1(int(Ck(ς) ∩ ς))

and

(17) Ck+l(ς) = Ck(int(Cl(ς) ∩ ς)).

First, let m = 1. Note that the inclusion C1(ς
′) ⊂ C1(ς) follows directly from

the relation ς ′ ⊂ ς. Denote {a} = ς \ ς ′. Consider two possible cases a /∈ C1(ς
′) and

a ∈ C1(ς
′) one after another.

Let a /∈ C1(ς
′). In this case a ∈ ∂C1(ς) i.e. C1(ς

′) 6= C1(ς). It implies that
int(ς) ⊂ ς ′. Utilising (16) under k = 1 yields C2(ς

′) ⊂ C1(ς). Since the inclusion
C1(ς

′) ⊂ C1(ς) is obvious we conclude that (15) holds for k = m = 1.
Further, let us make use of the induction by k. Assume that (15) holds for m = 1

and all k ≤ n and show that then it holds for m = 1 and k = n+1. By the induction
assumption we have

(18) Cn+1(ς) ⊂ Cn(ς
′) ⊂ Cn(ς).

Since

int(Cn(ς
′) ∩ ς ′) = int(Cn(ς

′) ∩ ς)

we obtain, taking into account (16),

Cn+l(ς
′) = C1(int(Cn(ς

′) ∩ ς)).

From the right hand side inclusion of (18), it follows that Cn+1(ς
′) ⊂ Cn+1(ς).

Further, from the left hand side inclusion of (18) we conclude that

int(Cn+1(ς) ∩ ς) = int(Cn(ς
′) ∩ ς ′).

Applying (17) yields Cn+2(ς) ⊂ Cn+1(ς
′). Thus, (15) holds for k = n+1 and m = 1,

i.e. the case a /∈ C1(ς
′) is exhausted.

If a ∈ C1(ς
′), then there exists an integer n0 such that

Cn(ς
′) = Cn(ς

′), n = 1, 2, . . . , n0

Cn0+1(ς
′) 6= Cn0+1(ς

′).

Furthermore, a /∈ Cn0+1(ς
′). Obviously, the relations (15) are trivial for m = 1 and

n = 1, 2, . . . , n0. Hence, it remains to apply the above argument to the configu-
rations Cn0+1(ς) ∩ ς and Cn0+1(ς

′) ∩ ς ′. Thus, the lemma is proved for all k and
m = 1.

Now, let m > 1, i.e. ς \ ς ′ = {a1, . . . , am}.
Consider the configurations

ς0 = ς, ς1 = ς \ {a1},
ς2 = ς \ {a1, a2}, . . . ,
ςm = ς \ {a1, . . . , am} = ς ′.

Note that the neighbouring configurations differ by a single point. So, one may
apply (18). Applying it yields

Ck+m(ς) ⊂ Ck+m−1(ς1) ⊂ Ck+m−2(ς2) ⊂ . . . ⊂ Ck(ςm) = Ck(ς
′) ⊂ Ck(ς).

The lemma is proved. �
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3.2. Proof of Theorem 1.

Lemma 3. Let e(i) for i = 1, . . . , l with l ≥ d+ 1, be unit vectors such that

cone {e(1), . . . , e(l)} = R
d.

If A = {ν1/α1 e(1), . . . , ν
1/α
l e(l)} is extreme then there exists r > 0 and ε depending

only on A and on the dimension d such that the set {r1ν1/α1 e(1), . . . , rlν
1/α
l e(l)} is

extreme for all (r1, . . . , rn) such that |ri/r − 1| < ε, i = 1, . . . , l.

Proof. The proof of this lemma is evident. �

Proof of Theorem 1. Let us label the points lying on the ray Li in the descend-

ing order of their norms. So, we have the sequence x
(i)
1 , x

(i)
2 , . . . such that a.s.

|x(i)
1 | > |x(i)

2 | > · · · . Obviously, the sequences {x(i)
n , n ∈ N}, 1 ≤ i ≤ l, are jointly

independent. Furthermore, from (6)

{|x(i)
n |} d

= {ν1/αi Γ−1/α
n }

where Γn is defined as in (11).
Let ǫ > 0. According to (13), there exists n0 = n0(ω) such that for all i = 1, . . . , l

and all n ≥ n0

(19)
∣

∣

∣
x(i)
n − ν

1/α
i n−1/α

∣

∣

∣
≤ 2Lαn

−1/α−1/2
√
llnn.

and

2Lαn
−1/2

√
llnn < ε.

Let the configuration ς ′ is formed by the points x
(i)
n , n ≥ n0, i = 1, . . . , l i.e.

ς ′ =
l
⋃

i=1

{x(i)
n0
, x

(i)
n0+1, . . .}.

Consider for all k ≤ 1

A+
k = {(n0 + k − 1)−1/α(1 + εk)ν

1/α
1 e(1), . . . , (n0 + k − 1)−1/α(1 + εk)ν

1/α
l e(l)}

and

A−
k = {(n0 + k − 1)−1/α(1− εk)ν

1/α
1 e(1), . . . , (n0 + k − 1)−1/α(1− εk)ν

1/α
l e(l)}

where

εk = 2Lα

√

lln(k + n0 − 1)

k + n0 − 1
.

By virtue of (19) the points x
(1)
n0 , . . . , x

(l)
n0 hit the layer C(A+

1 ) \ C(A−
1 ). Then by

Lemma 3 the convex hull C1(ς
′) is the polyhedron and

ext C1(ς
′) = {x(1)

n0
, . . . , x(l)

n0
}.

Similarly, the set

{x(1)
n0+1, . . . , x

(l)
n0+1} ⊂ C(A+

2 ) \ C(A−
2 )

and, therefore, it is extreme, i.e.

ext C({x(1)
n0+1, . . . , x

(l)
n0+1}) = {x(1)

n0+1, . . . , x
(l)
n0+1}.

It is evident that

ext C2(ς
′) = {x(1)

n0+1, . . . , x
(l)
n0+1}.
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Continuing in this way we obtain at the k-th convex hull Ck(ς
′) such that

ext Ck(ς
′) = {x(1)

n0+k−1, . . . , x
(l)
n0+k−1} ⊂ C(A+

k ) \ C(A−
k ).

The last inclusion implies that

dH

(

(k + n0 − 1)1/αCk(ς
′), C∞

)

≤ εk,

where, we remind, C∞ is the convex hull generated by A = {ν1/α1 e(1), . . . , ν
1/α
l e(l)}.

From (15) it follows that

Ck+m(ς ′) ⊂ Ck+m(πα,ν) ⊂ Ck(ς
′), with m = (n0 − 1)l.

Therefore,

ext Ck+m(πα,ν) ⊂ C(A+
k ) \ C(A−

k+m′ ), with m′ = (n0 − 1)(l − 1).

So, for all sufficiently large k

dH

(

(k +m)1/αCk+m(πα,ν), C∞

)

≤ 2εk.

Since m is fixed the theorem follows. �

3.3. Proof of Theorem 2. Let ǫ be an arbitrary positive real. Hereafter, we
denote A(ǫ) the ǫ-neighbourhood of a set A,

A(ǫ) = {x : d(x,A) < ǫ}.

Let A1 = A ∩ ∂C(A)
def
= {ν1/αj e(j), j ∈ J}, the set A1 is extreme. From the

process πα,ν , we construct a new p.p.p. π1 obtained by deleting all the points on

the rays Lj = {x| x = te(i), t > 0}, j ∈ J . By Lemma 1, we have for all n ∈ N

(20) Cn(π1) ⊂ Cn(πα,ν)

Moreover, A1 is extreme and C∞ = C(A) = C(A1), thus Theorem 1 ensures the
convergence

(21) dH(n1/αCn(π1), C∞) → 0 a.s.

From (20) and (21), it exists n1 ∈ N such that for all n > n1

(22) C∞ ⊂ n1/αCn(π1)
(ǫ) ⊂ n1/αCn(πα,ν)

(ǫ).

It is easy to see that there exists ν̃i, i ∈ I such that the set.

A2 = {ν1/αj e(j), j ∈ J ; ; ν̃
1/α
i e(i), i ∈ {1, . . . , l} \ J}

is extreme and satisfies the following relation

(23) C∞ ⊂ C(A2) ⊂ C(ǫ)
∞ .

From πα,ν we construct a second p.p.p. π2 by adding the independent point
processes (π̃i)i∈J verifying the following conditions

• the (π̃i)i∈J are independent of πα,ν ;
• for each i ∈ J the spectral measure of π̃i is supported by Li and the intensity
measure is µ̃i(A) = (ν̃i − νi)α

∫

A r−α−1d r.
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According to Theorem 1 we have

(24) dH(n1/αCn(π2), C(A2) → 0 a.s.

and using Lemma 1, we get, for all n ∈ N,

(25) Cn(πα,ν) ⊂ Cn(π2).

From (23),(24) and (25), it exists n2 ∈ N such that for all n > n2

(26) n1/αCn(πα,ν) ⊂ n1/αCn(π2) ⊂ C(A2)
(ǫ) ⊂ C(2ǫ)

∞ .

According to (22) and (26), for all n ≥ max(n1, n2), we have

n1/αCn(πα,ν) ⊂ C(2ǫ)
∞ and C∞ ⊂ n1/αCn(πα,ν)

(2ǫ).

By definition of dH , this means

dH(n1/αCn(πα,ν), C∞) ≤ 2ǫ,

and we get (8).

4. Simulation and conjectures

We investigate using some simulations the limit shape and the asymptotic be-
haviour of basic functionals in the case of continuous spectral measure. Hereafter
we consider the example of the uniform distribution as spectral measure.

The point processes {x(j) , j ∈ N} are simulated using the representation (5).
Let C1,n be the convex hull generated by the first n points x(1), x(2), . . . , x(n) and
κn,1 = min

x∈∂C1,n

|x|. Since the points of the simulated p.p.p. are ordered by their

distances from the origin, it is evident that

C1,n′ = C1 with n′ = min{n : κn,1 > |x(n+1)|}.
This fact is used to construct the successive convex hulls (Ck)k∈N.

Figures 1 gives an impression about the behaviour of the peels. The observed
closeness of the peels to the unit circle also support our conjecture about the exis-
tence of the limit shape that is expected to be a circle.

It is of great interest to get impression about a possible behaviour of such basic
functionals of the convex polygons Ck, k = 1, 2, . . . , as the perimeter L, the area A
and the total number of vertices N . It seems evident that L(Ck) and A(Ck) tend
to zero as k → ∞. Intuitively, we expect that N (Ck) → ∞ as k → ∞. Figure
2[top] represents the logarithm of those functionals as function of log(k), calculated
on simulated p.p.p. for different values of α. The observed closeness of the points
to straight lines makes it reasonable to expect that in a sense

(27) L(Ck) ≍ k−γl , A(Ck) ≍ k−γa , N (Ck) ≍ kγn

with γl and γa depending on α whereas it seems that γn does not dependent on α.
The next step consists in estimating the exponents and possibly the dependence

on α. Using independent replications of p.p.p., we estimate the three exponents
defined in (27) for different values of α. Figure 2 [bottom] represents the logarithm
of the estimated exponents versus log(α). For the three cases, the linear approx-
imation seems reasonable. According to the estimated coefficients of the straight
lines (see the equations in the caption of Figure 2), it looks very credible that the
true values are

(28) γl =
3

2α
, γa =

3

α
and γn =

1

2
.
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After the k-th iterative step of the peeling procedure, the number of deleted

points should be the order of
∑k

j=1 N (Cj) ≍ k
3
2 and

ρk = max
x∈Ck

|x| ≍
(

k
3
2

)−1/α

Moreover we can expect that dH
(

ρ−1
k Ck(πα,ν), C∞

)

converges to zero.
Using the arguments of Remark 2, this convergence would lead to L(Ck) ≍ ρk ≍

k−3/(2α) and A(Ck) ≍ ρ2k ≍ k−3/α. These convergence rates are in agreement with
the estimated values of αl a,d αa obtained in (28).

Figure 1. [dotted line] the normalized simulated shapes of Ĉ25,

Ĉ50, Ĉ100 and Ĉ150 in the case α = 3/2 and the spectral measure
is uniform. [solid line] the unit circle.
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Figure 2. [TOP] Log-log representation of the values of
L(Ck), A(Ck) andN (Ck) as function of k. The functionals are cal-
culated on simulated p.p.p. for different values of α = 0.5; 1.0; 1.5
and the uniform distribution as spectral measure. [BOTTOM] The
estimated values of the logarithm of exponents defined in (27) ver-
sus ln(α) and the best linear fittings ln γ̂a = −0.97 lnα + ln 2.95,
ln γ̂l = −0.97 lnα + ln 1.48 and ln γ̂n = 0.06 lnα + ln 0.48. Three
exponents are estimated for each α on 1000 independent replica-
tions.
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