On peeling procedure applied to a Poisson point process

Youri Davydov, Alexender Nagaev, Anne Philippe

To cite this version:

Youri Davydov, Alexender Nagaev, Anne Philippe. On peeling procedure applied to a Poisson point process. 2008. hal-00339232v1

HAL Id: hal-00339232
https://hal.science/hal-00339232v1
Preprint submitted on 17 Nov 2008 (v1), last revised 15 Feb 2010 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

On peeling procedure applied to a Poisson point process

Y. Davydov ${ }^{1}$ A.V. Nagaev ${ }^{2}$ A. Philippe ${ }^{3}$
${ }^{1}$ Laboratoire Paul Painlevé Université de Lille 1 Batiment M2, 59655 Villeneuve d'Ascq Cedex, France
${ }^{2}$ Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Chopina, Torun, Poland
${ }^{3}$ Laboratoire de mathématiques Jean Leray, Université de Nantes 2 rue de la Houssinière, 44322 Nantes Cedex 3, France

Main results of this paper were obtained together with Alexander Nagaev, with whom the first author had collaborated for more than 35 years, until Alexander's tragic death in 2005. Since then, we have gathered strength and finalised this paper, strongly feeling Alexander's absence - our memories of him will stay with us forever.

Abstract

In the focus of our attention is the asymptotic properties of the sequence of convex hulls which arise as a result of a peeling procedure applied to the convex hull generated by a Poisson point process. Processes of the considered type are tightly connected with empirical point processes and stable random vectors. Results are given about the limit shape of the convex hulls in the case of a discrete spectral measure. We give some numerical experiments to illustrate the peeling procedure for a more large class of Poisson point processes.

AMS 2000 Mathematics Subject Classification 60D05 60G52 60G55.
Keywords: control measure, convex hull, limiting shape, peeling, Poisson point processes, stable vectors.

1 Introduction

Consider a Poisson point process (p.p.p.) $\pi=\pi_{\alpha, \nu}$ with points scattered over \mathbb{R}^{d}. Identify $\mathbb{R}^{d} \backslash\{\mathbf{0}\}$ with $\mathbb{R}_{+}^{1} \times S^{d-1}$ where S^{d-1} is the unit sphere. Assume
that the intensity measure of this process μ is of the form

$$
\begin{equation*}
\mu=\theta \times \nu \tag{1.1}
\end{equation*}
$$

where

1. θ is the absolutely continuous measure on \mathbb{R}_{+}^{1} determined by the density function

$$
\frac{\mathrm{d} \theta}{\mathrm{~d} \lambda}(r)=\alpha r^{-\alpha-1}, r>0
$$

λ is the Lebesgue measure in $\mathbb{R}^{1}, \alpha>0$ is a parameter while
2. ν, called the spectral density, is a bounded measure on the σ-algebra $\mathcal{B}_{S^{d-1}}$ of the Borel subsets of S^{d-1}. Without loss of generality we assume that $\nu\left(S^{d-1}\right)=1$. We denote by S_{ν} the support of ν.

The representation (1.1) means that for any Borel $A \subset \mathbb{R}^{1}$ and $E \subset S^{d-1}$

$$
\mu\left\{x\left||x| \in A, e_{x} \in E\right\}=\theta(A) \nu(E)\right.
$$

where $e_{x}=|x|^{-1} x$, for all $x \in \mathbb{R}^{d_{-}}$.
We assume that the Poisson point process $\pi_{\alpha, \nu}$ is essentially d-dimensional. It means that ν is supported by a set $S_{\nu} \subset S^{d-1}$ such that the cone $\operatorname{con}\left(S_{\nu}\right)$ generated by S_{ν} coincides with \mathbb{R}^{d}.

Let $B(\mathbf{0}, r)$ denote the ball of a radius r centred at the origin. It is easily seen that for any $\delta>0$

$$
\mu(B(\mathbf{0}, \delta))=\infty, \quad \mu\left(\mathbb{R}^{d} \backslash B(\mathbf{0}, \delta)\right)<\infty
$$

It implies that with probability 1 in any neighbourhood of the origin there are infinitely many points of π while $\pi\left(\mathbb{R}^{d} \backslash B(\mathbf{0}, \delta)\right)$ is finite.

The interest to the point processes controlled by (1.1) is explained by the following facts.

Let $\xi^{(1)}, \xi^{(1)}, \ldots, \xi^{(n)}$ be independent copies of a random vector ξ such that the function $\mathrm{P}\{|\xi|>r\}$ regularly varies as $r \rightarrow \infty$ with the exponent $-\alpha$ and the measures $\left(\nu_{r}\right)_{r}$ defined by

$$
\nu_{r}(E)=\mathrm{P}\left\{e_{\xi} \in E:|\xi|>r\right\}, E \in \mathcal{B}_{S^{d-1}}
$$

weakly converge to ν on $B^{c}(\mathbf{0}, \tau)$ for any $\tau>0$.
Consider the empirical point process β_{n} generated by $\xi^{(1)}, \xi^{(1)}, \ldots, \xi^{(n)}$ or, more precisely, by the random set

$$
\varsigma_{1}^{(n)}=\left\{b_{n}^{-1} \xi^{(1)}, \ldots, b_{n}^{-1} \xi^{(n)}\right\}=\left\{\hat{\xi}^{(1)}, \ldots, \hat{\xi}^{(n)}\right\}
$$

where

$$
b_{n}=\inf \left\{r: n \mathrm{P}\left(e_{\xi} \in E| | \xi \mid>r\right) \leq 1\right\}
$$

It is easily seen that the point process β_{n} weakly converges to $\pi=\pi_{\alpha, \nu}$ (see e.g. Resnick 1987, Prop. 3.21). Thus, each $\pi_{\alpha, \nu}$ is a weak limit of a sequence of the empirical processes.

It can be easily established that $\pi_{\alpha, \nu}$ admits the following representation

$$
\begin{equation*}
\pi_{\alpha, \nu}=\mathcal{L} \sum_{k=1}^{\infty} \delta_{\left\{\Gamma_{k}^{-1 / \alpha} \epsilon_{k}\right\}} \tag{1.2}
\end{equation*}
$$

where

- $\Gamma_{k}=\sum_{i=1}^{k} \gamma_{k}$, the sequence $\left(\gamma_{k}\right)_{k \in \mathbb{N}}$ is a sequence of i.i.d. random variable with common exponential distribution with mean equal to one.
- $\left(\epsilon_{k}\right)_{k \in \mathbb{N}}$ is a sequence of i.i.d. with common distribution ν
- $\left(\gamma_{k}\right)_{k \in \mathbb{N}}$ and $\left(\epsilon_{k}\right)_{k \in \mathbb{N}}$ are supposed to be independent
(see e.g. Davydov et. al. (2008)). It is worth recalling that the point processes $\pi_{\alpha, \nu}$ naturally arise within the framework of the theory of stable distributions. For example, if $\alpha \in(0,1)$ then the series $\zeta=\sum_{x^{(j)} \in \pi_{\alpha, \nu}} x^{(j)}$ converges a.s.. Furthermore, ζ has the d-dimensional stable distribution determined by the characteristic function $\varphi(t)$ such that

$$
\ln \varphi(t)=-c_{\alpha} \int_{S^{d-1}}|\langle t, e\rangle|^{\alpha}(1+\imath \operatorname{sign}\langle t, e\rangle) \nu(\mathrm{d} e)
$$

where

$$
c_{\alpha}=\int_{0}^{\infty} \frac{1-\cos u}{u^{\alpha+1}} \mathrm{~d} u
$$

and $\langle\cdot, \cdot\rangle$ is the inner product in \mathbb{R}^{d} (see e.g. Le Page et. al. (1981), Samorodnitski and Taqqu(1994), Davydov et. al. (2008)).

In the focus of our interest is the sequence of convex hulls that arise from the peeling procedure introduced in Davydov and Nagaev (2004). It convenient to start with the binomial process. In what follows by $C(A), A \subset \mathbb{R}^{d}$, we denote the convex hull generated by A. Let C be a convex set. By ext C we denote the set of the extreme points of C. If C is a convex polyhedron then ext C is the finite set of its vertices.

Let $C_{1}^{(n)}=C\left(\varsigma_{1}^{(n)}\right)$. If the measure P_{ξ}, the distribution of ξ, has no atoms then a.s. $C_{1}^{(n)}$ is a polyhedron and, furthermore,

$$
\varsigma_{1}^{(n)} \cap \partial C_{1}^{(n)}=\operatorname{ext} C_{1}^{(n)}
$$

Define

$$
\varsigma_{2}^{(n)}=\varsigma_{1}^{(n)} \backslash \operatorname{ext} C_{1}^{(n)}, C_{2}^{(n)}=C\left(\varsigma_{2}^{(n)}\right)
$$

then

$$
\varsigma_{3}^{(n)}=\varsigma_{2}^{(n)} \backslash \operatorname{ext} C_{2}^{(n)}, C_{3}^{(n)}=C\left(\varsigma_{3}^{(n)}\right)
$$

and so on. Obviously, the sequence of the so-built non empty convex hulls $C_{1}^{(n)}, C_{2}^{(n)}, \ldots, C_{k}^{(n)}, \ldots$ is finite and its length is random.

Definition 1. We say that the underlying distribution P_{ξ} and corresponding to it spectral measure ν are non-unilateral if the minimal closed cone containing S_{ν} coincides with \mathbb{R}^{d}.

If the underlying distribution P_{ξ} is non-unilateral then for any fixed k and all sufficiently large n

$$
\mathbf{0} \in \operatorname{int} C_{k}^{(n)}, \quad \inf \left\{|x| \mid x \in \partial C_{k}^{(n)}\right\}>0 \quad \text { a.s. }
$$

and as $n \rightarrow \infty$

$$
\#\left(\operatorname{ext} C_{i}^{(n)}\right)=O_{p}(1), i=0,1, \ldots, k
$$

Let $\varsigma=\varsigma_{1}$ denote the set of points of π or, in other words, let ς support the random measure π. We may apply to ς the same peeling procedure as in the case of the finite set $\varsigma_{1}^{(n)}$. As a result we obtain the sequence of sets $\varsigma_{1}, \varsigma_{2}, \ldots$, the sequence of their convex hulls C_{1}, C_{2}, \ldots and the sets of extreme points $\operatorname{ext} C_{k}, k=1,2, \ldots$. Furthermore, a.s. $\varsigma_{k+1}=\varsigma_{k} \backslash \operatorname{ext} C_{k}$. If ν is non-unilateral then $\mathbf{0} \in C_{k}$ a.s. for all k. Furthermore, C_{k} is a.s. a polyhedron and, in view of (1.1),

$$
\varsigma_{k} \cap \partial C_{k}=\operatorname{ext} C_{k}
$$

In Davydov and Nagaev (2004) it was shown that if $0<\alpha<2$ and ν is non-unilateral then $\left(C_{0}^{(n)}, C_{1}^{(n)}, \ldots, C_{k}^{(n)}\right)$, as $n \rightarrow \infty$, converge in distribution to $\left(C_{0}, C_{1}, \ldots, C_{k}\right)$ for any fixed k. In order to learn how $C_{k}^{(n)}$ relates to C_{k} when $k=k_{n} \rightarrow \infty$ we need, first, to learn how C_{k} behaves as $k \rightarrow \infty$. It should be noted that $C_{k}^{(n)}$ can be regarded as the multi-dimensional analogue of the order statistics. So, the asymptotic properties of $C_{k_{n}}^{(n)}$ are of great interest from the view-point of mathematical statistics.

Intuitively, we expect that the asymptotic behaviour of C_{n} is rather regular. Denote

$$
\rho_{n}=\max _{x \in C_{n}}|x|
$$

and

$$
\begin{equation*}
\hat{C}_{n}=\rho_{n}^{-1} C_{n} . \tag{1.3}
\end{equation*}
$$

We expect that there exists a set \hat{C} such that the Hausdorff metric $d_{H}\left(\hat{C}_{n}, \hat{C}\right)$ tend to zero almost surely or, at least, in probability.

It is easy to show that if such \hat{C} exists then it is certainly non-random. Labelling the points of ς in the descending order of their distances from the origin we obtain a sequence $x^{(1)}, x^{(2)}, x^{(3)}, \ldots$ such that a.s.

$$
\left|x^{(1)}\right|>\left|x^{(2)}\right|>\left|x^{(3)}\right|>\cdots .
$$

It is worth noting that the joint distribution of $\left|x^{(1)}\right|,\left|x^{(2)}\right|, \ldots,\left|x^{(n)}\right|$ is absolutely continuous with the density of the form

$$
\begin{equation*}
p_{n}\left(r_{1}, r_{2}, \ldots, r_{n}\right)=\alpha^{n}\left(r_{1} r_{2} \cdots r_{n}\right)^{-\alpha-1} e^{-\nu\left(S^{d-1}\right) r_{1}^{-\alpha}} \mathbb{I}_{\left\{r_{1}>r_{2}>\cdots>r_{n}\right\}} \tag{1.4}
\end{equation*}
$$

Let $(\eta, \varepsilon),\left(\eta_{1}, \varepsilon^{(1)}\right),\left(\eta_{2}, \varepsilon^{(2)}\right), \ldots$ be i.i.d. with common distribution

$$
\mathrm{P}\{\eta>r, \varepsilon \in E\}=e^{-r} \nu(E)
$$

According to (1.2), we have

$$
\left\{x^{(j)}\right\}_{j=1}^{\infty} \stackrel{d}{=}\left\{\varepsilon^{(j)}\left(\eta_{1}+\cdots+\eta_{j}\right)^{1 / \alpha}\right\}_{j=1}^{\infty}
$$

which implies that the event $\left\{\lim _{n \rightarrow \infty} \hat{C}_{n}\right.$ exists $\}$ belongs to the σ-algebra \mathcal{I} of the events invariant with respect to all finite permutations of the random vectors $\left(\eta_{1}, \varepsilon^{(1)}\right),\left(\eta_{2}, \varepsilon^{(2)}\right), \ldots$. By the Hewitt-Savage zero-one law \mathcal{I} is trivial. Since the limit set $\hat{C}=\lim _{n \rightarrow \infty} \hat{C}_{n}$ is \mathcal{I}-measurable we conclude that \hat{C} is constant with probability 1 .

It is convenient to state our basic conjecture in the following way:

$$
\begin{aligned}
& \text { If } \nu \text { is non-unilateral then there exists a non-random set } \hat{C} \\
& \text { such that } \\
& \qquad \lim _{n \rightarrow \infty} d_{H}\left(\hat{C}_{n}, \hat{C}\right)=0 \quad \text { a.s. }
\end{aligned}
$$

Definition 2. \hat{C} (when it exists) we call it the limit shape of the sequence \hat{C}_{n}.
Consider the following example.
Example 1. Let S_{ν} consist of $d+1$ unit vectors $e^{(1)}, \ldots, e^{(d+1)}$.
Assume that $\operatorname{con}\left(e^{(1)}, \ldots, e^{(d+1)}\right)$ coincides with \mathbb{R}^{d}. Denote

$$
\nu_{i}=\nu\left(\left\{e^{(i)}\right\}\right), i=1, \ldots, d+1
$$

Here π is decomposed on one-dimensional independent p.p.p. $\pi_{i}, i=1, \ldots, d+1$, scattered over the rays $\mathcal{L}_{i}=\left(x \mid x=t e^{(i)}, t>0\right)$. Labelling the points of π_{i} in the descending order of their distances from the origin we obtain points

$$
x_{k}^{(i)}=\left|x_{k}^{(i)}\right| e^{(i)}, i=1,2, \ldots, d+1, k=1,2, \ldots
$$

Since ν is non-unilateral the points $x_{k}^{(i)}, i=1,2, \ldots, d+1$, serve as vertices of $C_{k}, k=1,2, \ldots$. Furthermore,

$$
\begin{equation*}
x_{k}^{(i)} \stackrel{d}{=}\left(\nu_{i}\right)^{1 / \alpha}\left(\eta_{1}+\cdots+\eta_{k}\right)^{1 / \alpha}, k=1,2, \ldots \tag{1.5}
\end{equation*}
$$

Further,

$$
\rho_{n}=\max _{1 \leq i \leq d+1}\left|x_{k}^{(i)}\right|
$$

and, furthermore,

$$
\rho_{n} n^{1 / \alpha} \rightarrow t^{+}=\max _{1 \leq i \leq d+1}\left(\nu_{i}\right)^{1 / \alpha}, \text { a.s. }
$$

Then

$$
d_{H}\left(\hat{C}_{n}, \hat{C}\right) \rightarrow 0 \text { a.s. }
$$

where d_{H} is the Hausdorff metric and where \hat{C} is the convex polyhedron with vertices $v^{(i)}=\left(t_{i} / t^{+}\right) e^{(i)}$ and $t_{i}=\left(\nu_{i}\right)^{1 / \alpha}, i=1,2, \ldots, d+1$.

If $\#\left(S_{\nu}\right)>d+1$ then the situation becomes much more complicated. Theorem 1 and 2 proved below deal with a case where a non-unilateral ν is supported by a finite number of unit vectors.

Intuitively, we expect that, say, in case of ν uniformly distributed over S^{d-1} the unit ball arises as the limit shape. However, it is not easy at all to prove this formally. The authors tried to verify the credibility of this conjecture using the Monte Carlo simulation. Obviously, the representation (1.2) provides a basis for such a simulation. The results of simulation presented below make this conjecture very credible.

It should be emphasised that the basic goal of the present paper is to draw attention to new and interesting problems of stochastic geometry. So far, little or nothing is known about the peels no matter what point process they concern.

The paper is organised as follows. In Section 2, we obtained a partial result on the limit shape of the convex hulls $C_{k}\left(\pi_{\alpha, \nu}\right)$ when the spectral measure of the process π_{α} is atomic. Section 3 contains some numerical experiments.

2 Theoretical results

2.1 Assumptions and definition

In this section we assume that the spectral measure ν of the process $\pi_{\alpha, \nu}$ is atomic, i.e. it is supported by a finite number of the points $e^{(1)}, \ldots, e^{(l)}$ belonging to the unit sphere S^{d-1}.

Furthermore, it is also assumed that $\operatorname{con}\left\{e^{(1)}, \ldots, e^{(l)}\right\}=\mathbb{R}^{d}$. Denote by $\nu_{i}=\nu\left(\left\{e^{(i)}\right\}\right), i=1,2, \ldots, l$, the atoms of ν.

It implies that the considered point process is a superposition of the onedimensional independent Poisson point processes defined on the rays

$$
\mathcal{L}_{i}=\left\{x \mid x=t e^{(i)}, t>0\right\}, i=1, \ldots, l .
$$

If a Borel set $A \subset \mathcal{L}_{i}$ then

$$
\begin{equation*}
\mu(A)=p_{i} \alpha \int_{A} r^{-\alpha-1} \mathrm{~d} r . \tag{2.6}
\end{equation*}
$$

Definition 3. Let $A=\left\{a^{(1)}, \ldots, a^{(m)}\right\}$ be a finite set where $a^{(i)} \in \mathbb{R}^{d}$ for $i=1, \ldots, m$, and $m \geq d+1$. The set A is extreme if

$$
\operatorname{ext} C(A)=A
$$

2.2 Main statements

Theorem 1. Let $C_{k}\left(\pi_{\alpha, \nu}\right)$ be the k-th convex hull of the Poisson point process $\pi_{\alpha, \nu}$. Denote by C_{∞} the convex hull generated by $A=\left\{\nu_{1}^{1 / \alpha} e^{(1)}, \ldots, \nu_{l}^{1 / \alpha} e^{(l)}\right\}$.

If A is extreme then as $k \rightarrow \infty$

$$
\begin{equation*}
d_{H}\left(k^{1 / \alpha} C_{k}\left(\pi_{\alpha, \nu}\right), C_{\infty}\right)=O\left(\sqrt{\frac{\log _{2} k}{k}}\right) \text { a.s. } \tag{2.7}
\end{equation*}
$$

where $\log _{2} k=\log \log k$. The polyhedron C_{∞} determines the limit shape of the convex hulls $C_{k}\left(\pi_{\alpha, \nu}\right)$.

If the condition A is extreme is omitted, we can state the following result :
Theorem 2. Let $C_{k}\left(\pi_{\alpha, \nu}\right)$ be the k-th convex hull of $\pi_{\alpha, \nu}$. Denote by C_{∞} the convex hull generated by $A=\left\{\nu_{1}^{1 / \alpha} e^{(1)}, \ldots, \nu_{l}^{1 / \alpha} e^{(l)}\right\}$. Then as $k \rightarrow \infty$

$$
\begin{equation*}
d_{H}\left(k^{1 / \alpha} C_{k}\left(\pi_{\alpha, \nu}\right), C_{\infty}\right) \rightarrow 0 \text { a.s. } \tag{2.8}
\end{equation*}
$$

Remark 1. If σ is uniformly distributed over its support in the sense that $\nu_{i}=l^{-1}$, then the total number of the vertices of C_{∞} equals l. Furthermore, they lie on the sphere of the radius $l^{-1 / \alpha}$. Loosely speaking, the convex hulls $C_{k}\left(\pi_{\alpha, \nu}\right)$ are made round as $k \rightarrow \infty$.

Remark 2. Let f be a continuous homogeneous functional of a degree γ defined on convex sets. From Th. Z^{2}

$$
k^{\frac{\gamma}{\alpha}} f\left(C_{k}\left(\pi_{\alpha, \nu}\right)\right) \rightarrow f\left(C_{\infty}\right) \quad \text { a.s. }
$$

In particular, if $f(A)$ is the surface Lebesgue measure, i.e. $f(A)=\lambda^{d-1}(\partial A)$, then

$$
\begin{equation*}
f\left(C_{k}\left(\pi_{\alpha, \nu}\right)\right) \sim \frac{f\left(C_{\infty}\right)}{k^{\frac{d-1}{\alpha}}} . \tag{2.9}
\end{equation*}
$$

But if $f(A)=\lambda^{d}(A)$, then

$$
\begin{equation*}
f\left(C_{k}\left(\pi_{\alpha, \nu}\right)\right) \sim \frac{f\left(C_{\infty}\right)}{k^{\frac{d}{\alpha}}} \tag{2.10}
\end{equation*}
$$

2.3 Auxiliary facts concerning the standard exponential distribution

Let $\eta_{1}, \eta_{2}, \ldots$ be i.i.d. variables defined on a probability space $(\Omega, \mathcal{F}, \mathrm{P})$. Assume that η_{1} has the standard exponential distribution. Then $a=\mathrm{E} \eta_{1}=\operatorname{Var} \eta_{1}=1$. Define the sums

$$
\begin{equation*}
\Gamma_{n}=\eta_{1}+\cdots+\eta_{n} . \tag{2.11}
\end{equation*}
$$

By the law of iterated logarithm there exists a random variable κ such that
a) κ is defined on $(\Omega, \mathcal{F}, \mathrm{P})$;
b) κ is finite, i.e. $\mathrm{P}(\kappa=\infty)=0$;
c) κ takes values from \mathbb{N};
d) for $n \geq \kappa=\kappa(\omega)$

$$
\begin{equation*}
\left|n^{-1} \Gamma_{n}-1\right|<2 \sqrt{\frac{\log _{2} n}{n}} \tag{2.12}
\end{equation*}
$$

for almost all ω. Here, we remind $\log _{2} n=\log \log n$.
Consider a function $h(z)=z^{-1 / \alpha}$. If $|z-1| \leq 1 / 2$ then

$$
|h(z)-h(1)| \leq L_{\alpha}|z-1|, L_{\alpha}<\infty
$$

Let $n^{\prime}=\min \left\{n \left\lvert\, 2 \sqrt{\frac{\log _{2} n}{n}}<1 / 2\right.\right\}$. If $n \geq \max \left(n^{\prime}, \kappa\right)$ then

$$
\left|h\left(n^{-1} \Gamma_{n}\right)-h(1)\right| \leq 2 L_{\alpha} \sqrt{\frac{\log _{2} n}{n}}
$$

and, therefore, for $n \geq \kappa=\kappa(\omega)$

$$
\begin{equation*}
\left|\Gamma_{n}^{-1 / \alpha}-n^{-1 / \alpha}\right| \leq 2 L_{\alpha} \frac{\sqrt{\log _{2} n}}{n^{1 / \alpha+1 / 2}} \quad \text { a.s.. } \tag{2.13}
\end{equation*}
$$

2.4 The basic lemmas

We call the configuration any countable set of points from \mathbb{R}^{d} such that for any $\delta>0$ there are a finite number of points belonging to the set that lie outside the ball $\{x||x| \leq \delta\}$. So the point $\mathbf{0}$ is the limit point of any configuration. We call a configuration ς non-unilateral if all the convex hulls, $C_{k}=C_{k}(\varsigma), k=$ $1,2, \ldots$, generated by ς contain $\mathbf{0}$ as an interior point. It is evident that under the conditions of Theorem 1 the random measure $\pi_{\alpha, \nu}$ is supported by a nonunilateral configuration ς.

Denote by int (ς) the set of the interior points of ς, i.e.

$$
\operatorname{int}(\varsigma)=\left\{x \mid x \in \varsigma, x \notin \partial C_{1}(\varsigma)\right\}
$$

Lemma 1. Let $\varsigma_{1}, \varsigma_{2} \in \mathcal{K}$ be such that $\varsigma_{1} \subset \varsigma_{2}$, then $\forall k \in \mathbb{N}$

$$
\begin{equation*}
C_{k}\left(\varsigma_{1}\right) \subset C_{k}\left(\varsigma_{2}\right) \tag{2.14}
\end{equation*}
$$

Proof. It is trivial that $C_{1}\left(\varsigma_{1}\right) \subset C_{1}\left(\varsigma_{2}\right)$.
Note that if x is an interior point of $C_{1}\left(\varsigma_{1}\right)$, i.e. $x \in \operatorname{int}\left(C_{1}\left(\varsigma_{1}\right)\right)$, then x is also an interior point of $C_{1}\left(\varsigma_{2}\right)$, therefore

$$
\operatorname{int}\left(C_{1}\left(\varsigma_{1}\right)\right) \subset \operatorname{int}\left(C_{1}\left(\varsigma_{2}\right)\right)
$$

and this implies that

$$
C_{2}\left(\varsigma_{1}\right)=C_{1}\left(\operatorname{int}\left(C_{1}\left(\varsigma_{1}\right)\right)\right) \subset C_{1}\left(\operatorname{int}\left(C_{1}\left(\varsigma_{2}\right)\right)\right)=C_{2}\left(\varsigma_{2}\right)
$$

By induction, the lemma is proved.

Lemma 2. Let \mathcal{K}, be the set of non-unilateral configurations such that no $d+1$ points lie on the same hyperplane. Let $\varsigma, \varsigma^{\prime} \in \mathcal{K}$ be such that $\varsigma^{\prime} \subset \varsigma$ and $\#\left(\varsigma^{\prime} \backslash \varsigma\right)=m<\infty$. Then we have

$$
\begin{equation*}
C_{k+m}(\varsigma) \subset C_{k}\left(\varsigma^{\prime}\right) \subset C_{k}(\varsigma) \quad \forall k \in \mathbb{N} \tag{2.15}
\end{equation*}
$$

Proof. Since $\varsigma, \varsigma^{\prime} \in \mathcal{K}$ and $\mathbf{0}$ is the only limit point of both configurations all $C_{k}(\varsigma), k=1,2, \ldots$, are polyhedrons. Note that for all $k, l \geq 1$

$$
\begin{equation*}
C_{k+1}(\varsigma)=C_{1}\left(\operatorname{int}\left(C_{k}(\varsigma) \cap \varsigma\right)\right) \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{k+l}(\varsigma)=C_{k}\left(\operatorname{int}\left(C_{l}(\varsigma) \cap \varsigma\right)\right) . \tag{2.17}
\end{equation*}
$$

First, let $m=1$. Note that the inclusion $C_{1}\left(\varsigma^{\prime}\right) \subset C_{1}(\varsigma)$ follows directly from the relation $\varsigma^{\prime} \subset \varsigma$. Denote $\{a\}=\varsigma \backslash \varsigma^{\prime}$. Consider two possible cases $a \notin C_{1}\left(\varsigma^{\prime}\right)$ and $a \in C_{1}\left(\varsigma^{\prime}\right)$ one after another.

Let $a \notin C_{1}\left(\varsigma^{\prime}\right)$. In this case $a \in \partial C_{1}(\varsigma)$ i.e. $C_{1}\left(\varsigma^{\prime}\right) \neq C_{1}(\varsigma)$. It implies that $\operatorname{int}(\varsigma) \subset \varsigma^{\prime}$. Utilising (2.16) under $k=1$ yields $C_{2}\left(\varsigma^{\prime}\right) \subset C_{1}(\varsigma)$. Since the inclusion $C_{1}\left(\varsigma^{\prime}\right) \subset C_{1}(\varsigma)$ is obvious we conclude that (2.15) holds for $k=m=1$.

Further, let us make use of the induction by k. Assume that (2.15) holds for $m=1$ and all $k \leq n$ and show that then it holds for $m=1$ and $k=n+1$. By the induction assumption we have

$$
\begin{equation*}
C_{n+1}(\varsigma) \subset C_{n}\left(\varsigma^{\prime}\right) \subset C_{n}(\varsigma) \tag{2.18}
\end{equation*}
$$

Since

$$
\operatorname{int}\left(C_{n}\left(\varsigma^{\prime}\right) \cap \varsigma^{\prime}\right)=\operatorname{int}\left(C_{n}\left(\varsigma^{\prime}\right) \cap \varsigma\right)
$$

we obtain, taking into account (2.16),

$$
C_{n+l}\left(\varsigma^{\prime}\right)=C_{1}\left(\operatorname{int}\left(C_{n}\left(\varsigma^{\prime}\right) \cap \varsigma\right)\right)
$$

From the right hand side inclusion of (2.18), it follows that $C_{n+1}\left(\varsigma^{\prime}\right) \subset C_{n+1}(\varsigma)$. Further, from the left hand side inclusion of (2.18) we conclude that

$$
\operatorname{int}\left(C_{n+1}(\varsigma) \cap \varsigma\right)=\operatorname{int}\left(C_{n}\left(\varsigma^{\prime}\right) \cap \varsigma^{\prime}\right)
$$

Applying (2.17) yields $C_{n+2}(\varsigma) \subset C_{n+1}\left(\varsigma^{\prime}\right)$. Thus, (2.15) holds for $k=n+1$ and $m=1$, i.e. the case $a \notin C_{1}\left(\varsigma^{\prime}\right)$ is exhausted.

If $a \in C_{1}\left(\varsigma^{\prime}\right)$, then there exists an integer n_{0} such that

$$
\begin{aligned}
C_{n}\left(\varsigma^{\prime}\right) & =C_{n}\left(\varsigma^{\prime}\right), \quad n=1,2, \ldots, n_{0} \\
C_{n_{0}+1}\left(\varsigma^{\prime}\right) & \neq C_{n_{0}+1}\left(\varsigma^{\prime}\right) .
\end{aligned}
$$

Furthermore, $a \notin C_{n_{0}+1}\left(\varsigma^{\prime}\right)$. Obviously, the relations (2.15) are trivial for $m=1$ and $n=1,2, \ldots, n_{0}$. Hence, it remains to apply the above argument to the configurations $C_{n_{0}+1}(\varsigma) \cap \varsigma$ and $C_{n_{0}+1}\left(\varsigma^{\prime}\right) \cap \varsigma^{\prime}$. Thus, the lemma is proved for all k and $m=1$.

Now, let $m>1$, i.e. $\varsigma \backslash \varsigma^{\prime}=\left\{a_{1}, \ldots, a_{m}\right\}$.
Consider the configurations

$$
\begin{aligned}
& \varsigma_{0}=\varsigma, \quad \varsigma_{1}=\varsigma \backslash\left\{a_{1}\right\} \\
& \varsigma_{2}=\varsigma \backslash\left\{a_{1}, a_{2}\right\}, \ldots, \\
& \varsigma_{m}=\varsigma \backslash\left\{a_{1}, \ldots, a_{m}\right\}=\varsigma^{\prime} .
\end{aligned}
$$

Note that the neighbouring configurations differ by a single point. So, one may apply (2.18). Applying it yields

$$
C_{k+m}(\varsigma) \subset C_{k+m-1}\left(\varsigma_{1}\right) \subset C_{k+m-2}\left(\varsigma_{2}\right) \subset \ldots \subset C_{k}\left(\varsigma_{m}\right)=C_{k}\left(\varsigma^{\prime}\right) \subset C_{k}(\varsigma)
$$

The lemma is proved.

2.5 Proof of Theorem 1

Lemma 3. Let $e^{(i)}$ for $i=1, \ldots, l$ with $l \geq d+1$, be unit vectors such that

$$
\operatorname{con}\left\{e^{(1)}, \ldots, e^{(l)}\right\}=\mathbb{R}^{d}
$$

If $A=\left\{\nu_{1}^{1 / \alpha} e^{(1)}, \ldots, \nu_{l}^{1 / \alpha} e^{(l)}\right\}$ is extreme then there exists $r>0$ and ε depending only on A and on the dimension d such that the set $\left\{r_{1} \nu_{1}^{1 / \alpha} e^{(1)}, \ldots, r_{l} \nu_{l}^{1 / \alpha} e^{(l)}\right\}$ is extreme for all $\left(r_{1}, \ldots, r_{n}\right)$ such that $\left|r_{i} / r-1\right|<\varepsilon, i=1, \ldots, l$.
Proof. The proof of this lemma is evident.
Proof of theorem. Let us label the points lying on the ray \mathcal{L}_{i} in the descending order of their norms. So, we have the sequence $x_{1}^{(i)}, x_{2}^{(i)}, \ldots$ such that a.s. $\left|x_{1}^{(i)}\right|>\left|x_{2}^{(i)}\right|>\cdots$. Obviously, the sequences $\left\{x_{n}^{(i)}, n \in \mathbb{N}\right\}, 1 \leq i \leq l$, are jointly independent. Furthermore, from (2.6)

$$
\left\{\left|x_{n}^{(i)}\right|\right\} \stackrel{d}{=}\left\{\nu_{i}^{1 / \alpha} \Gamma_{n}^{-1 / \alpha}\right\}
$$

where Γ_{n} is defined as in (2.11).
Let $\epsilon>0$. According to (2.13), there exists $n_{0}=n_{0}(\omega)$ such that for all $i=1, \ldots, l$ and all $n \geq n_{0}$

$$
\begin{equation*}
\left|x_{n}^{(i)}-\nu_{i}^{1 / \alpha} n^{-1 / \alpha}\right| \leq 2 L_{\alpha} n^{-1 / \alpha-1 / 2} \sqrt{\log _{2} n} \tag{2.19}
\end{equation*}
$$

and

$$
2 L_{\alpha} n^{-1 / 2} \sqrt{\log _{2} n}<\varepsilon
$$

Let the configuration ς^{\prime} is formed by the points $x_{n}^{(i)}, n \geq n_{0}, i=1, \ldots, l$ i.e.

$$
\varsigma^{\prime}=\bigcup_{i=1}^{l}\left\{x_{n_{0}}^{(i)}, x_{n_{0}+1}^{(i)}, \ldots\right\}
$$

Consider for all $k \leq 1$
$A_{k}^{+}=\left\{\left(n_{0}+k-1\right)^{-1 / \alpha}\left(1+\varepsilon_{k}\right) \nu_{1}^{1 / \alpha} e^{(1)}, \ldots,\left(n_{0}+k-1\right)^{-1 / \alpha}\left(1+\varepsilon_{k}\right) \nu_{l}^{1 / \alpha} e^{(l)}\right\}$
and

$$
A_{k}^{-}=\left\{\left(n_{0}+k-1\right)^{-1 / \alpha}\left(1-\varepsilon_{k}\right) \nu_{1}^{1 / \alpha} e^{(1)}, \ldots,\left(n_{0}+k-1\right)^{-1 / \alpha}\left(1-\varepsilon_{k}\right) \nu_{l}^{1 / \alpha} e^{(l)}\right\}
$$

where

$$
\varepsilon_{k}=2 L_{\alpha} \sqrt{\frac{\log _{2}\left(k+n_{0}-1\right)}{k+n_{0}-1}}
$$

By virtue of (2.19) the points $x_{n_{0}}^{(1)}, \ldots, x_{n_{0}}^{(l)}$ hit the layer $C\left(A_{1}^{+}\right) \backslash C\left(A_{1}^{-}\right)$. Then by Lemma 3 the convex hull $C_{1}\left(\varsigma^{\prime}\right)$ is the polyhedron and

$$
\operatorname{ext} C_{1}\left(\varsigma^{\prime}\right)=\left\{x_{n_{0}}^{(1)}, \ldots, x_{n_{0}}^{(l)}\right\}
$$

Similarly, the set

$$
\left\{x_{n_{0}+1}^{(1)}, \ldots, x_{n_{0}+1}^{(l)}\right\} \subset C\left(A_{2}^{+}\right) \backslash C\left(A_{2}^{-}\right)
$$

and, therefore, it is extreme, i.e.

$$
\operatorname{ext} C\left(\left\{x_{n_{0}+1}^{(1)}, \ldots, x_{n_{0}+1}^{(l)}\right\}\right)=\left\{x_{n_{0}+1}^{(1)}, \ldots, x_{n_{0}+1}^{(l)}\right\}
$$

It is evident that

$$
\operatorname{ext} C_{2}\left(\varsigma^{\prime}\right)=\left\{x_{n_{0}+1}^{(1)}, \ldots, x_{n_{0}+1}^{(l)}\right\}
$$

Continuing in this way we obtain at the k-th convex hull $C_{k}\left(\varsigma^{\prime}\right)$ such that

$$
\operatorname{ext} C_{k}\left(\varsigma^{\prime}\right)=\left\{x_{n_{0}+k-1}^{(1)}, \ldots, x_{n_{0}+k-1}^{(l)}\right\} \subset C\left(A_{k}^{+}\right) \backslash C\left(A_{k}^{-}\right)
$$

The last inclusion implies that

$$
d_{H}\left(\left(k+n_{0}-1\right)^{1 / \alpha} C_{k}\left(\varsigma^{\prime}\right), C_{\infty}\right) \leq \varepsilon_{k}
$$

where, we remind, C_{∞} is the convex hull generated by $A=\left\{\nu_{1}^{1 / \alpha} e^{(1)}, \ldots, \nu_{l}^{1 / \alpha} e^{(l)}\right\}$. From (2.15) it follows that

$$
C_{k+m}\left(\varsigma^{\prime}\right) \subset C_{k+m}\left(\pi_{\alpha, \nu}\right) \subset C_{k}\left(\varsigma^{\prime}\right), \quad \text { with } m=\left(n_{0}-1\right) l .
$$

Therefore,

$$
\operatorname{ext} C_{k+m}\left(\pi_{\alpha, \nu}\right) \subset C\left(A_{k}^{+}\right) \backslash C\left(A_{k+m^{\prime}}^{-}\right), \quad \text { with } m^{\prime}=\left(n_{0}-1\right)(l-1)
$$

So, for all sufficiently large k

$$
d_{H}\left((k+m)^{1 / \alpha} C_{k+m}\left(\pi_{\alpha, \nu}\right), C_{\infty}\right) \leq 2 \varepsilon_{k} .
$$

Since m is fixed the theorem follows.

2.6 Proof of Theorem 2

. Let ϵ be an arbitrary positive real. Hereafter, we denote $A^{(\epsilon)}$ the ϵ-neighbourhood of a set A,

$$
A^{(\epsilon)}=\{x: d(x, A)<\epsilon\} .
$$

Let $A_{1}=A \cap \partial C(A) \stackrel{\text { def }}{=}\left\{\nu_{j}^{1 / \alpha} e^{(j)}, j \in J\right\}$, the set A_{1} is extreme. From the process $\pi_{\alpha, \nu}$, we construct a new p.p.p. π_{1} obtained by deleting all the points on the rays $\mathcal{L}_{j}=\left\{x \mid x=t e^{(i)}, t>0\right\}, j \in J$. We denote $I \stackrel{\text { def }}{=}\{1, \ldots, l\} \backslash J$. By Lemma 1 , we have for all $n \in \mathbb{N}$

$$
\begin{equation*}
C_{n}\left(\pi_{1}\right) \subset C_{n}\left(\pi_{\alpha, \nu}\right) \tag{2.20}
\end{equation*}
$$

Moreover, A_{1} is extreme and $C_{\infty}=C(A)=C\left(A_{1}\right)$, thus Theorem 11 ensures the convergence

$$
\begin{equation*}
d_{H}\left(n^{1 / \alpha} C_{n}\left(\pi_{1}\right), C_{\infty}\right) \rightarrow 0 \text { a.s. } \tag{2.21}
\end{equation*}
$$

From (2.20) and (2.21), it exists $n_{1} \in \mathbb{N}$ such that for all $n>n_{1}$

$$
\begin{equation*}
C_{\infty} \subset n^{1 / \alpha} C_{n}\left(\pi_{1}\right)^{(\epsilon)} \subset n^{1 / \alpha} C_{n}\left(\pi_{\alpha, \nu}\right)^{(\epsilon)} . \tag{2.22}
\end{equation*}
$$

It is easy to see that there exists $\tilde{\nu}_{i}, i \in I$ such that the set

$$
A_{2}=\left\{\tilde{\nu}_{i}^{1 / \alpha} e^{(i)}, i \in I \nu_{j}^{1 / \alpha} e^{(j)}, j \in J\right\}
$$

is extreme and satisfies the following relation

$$
\begin{equation*}
C_{\infty} \subset C\left(A_{2}\right) \subset C_{\infty}^{(\epsilon)} . \tag{2.23}
\end{equation*}
$$

From $\pi_{\alpha, \nu}$ we construct a second p.p.p. π_{2} by adding the independent point processes $\left(\tilde{\pi}_{i}\right)_{i \in J}$ verifying the following conditions

- the $\left(\tilde{\pi}_{i}\right)_{i \in J}$ are independent of $\pi_{\alpha, \nu}$.
- for each $i \in J$ the spectral measure of $\tilde{\pi}_{i}$ is supported by \mathcal{L}_{i} and the intensity measure is $\tilde{\mu}_{i}(A)=\left(\tilde{\nu}_{i}-\nu_{i}\right) \alpha \int_{A} r^{-\alpha-1} \mathrm{~d} r$.
According to Theorem 1 we have

$$
\begin{equation*}
d_{H}\left(n^{1 / \alpha} C_{n}\left(\pi_{2}\right), C\left(A_{2}\right) \rightarrow 0\right. \text { a.s. } \tag{2.24}
\end{equation*}
$$

and using Lemma 1.

$$
\begin{equation*}
C_{n}\left(\pi_{\alpha, \nu}\right) \subset C_{n}\left(\pi_{2}\right) \quad \forall n \in \mathbb{N} . \tag{2.25}
\end{equation*}
$$

From $(2.23),(2.24)$ and (2.25), it exists $n_{2} \in \mathbb{N}$ such that for all $n>n_{2}$

$$
\begin{equation*}
n^{1 / \alpha} C_{n}\left(\pi_{\alpha, \nu}\right) \subset n^{1 / \alpha} C_{n}\left(\pi_{2}\right) \subset C\left(A_{2}\right)^{(\epsilon)} \subset C_{\infty}^{(2 \epsilon)} \tag{2.26}
\end{equation*}
$$

According to (2.22) and (2.26), for all $n \geq \max \left(n_{1}, n_{2}\right)$, we have

$$
n^{1 / \alpha} C_{n}\left(\pi_{\alpha, \nu}\right) \subset C_{\infty}^{(2 \epsilon)} \quad \text { and } \quad C_{\infty} \subset n^{1 / \alpha} C_{n}\left(\pi_{\alpha, \nu}\right)^{(2 \epsilon)}
$$

By definition of d_{H}, this means

$$
d_{H}\left(n^{1 / \alpha} C_{n}\left(\pi_{\alpha, \nu}\right), C_{\infty}\right) \leq 2 \epsilon,
$$

and we get (2.8).

3 Some numerical results

In this section we present numerical results based on the Monte Carlo simulation. The only peculiarity of the considered schemes is that the successive convex hulls are generated by infinite sets of points $\left\{x^{(j)}, j \in \mathbb{N}\right\}$.
We proceeds in the following way.
Let $C_{1, n}$ be the convex hull generated by the first n points $x^{(1)}, x^{(2)}, \ldots, x^{(n)}$ and

$$
\kappa_{n, 1}=\min _{x \in \partial C_{1, n}}|x|
$$

Since the points of the considered p.p.p. are ordered by their distances from the origin, it is evident that

$$
C_{1, n^{\prime}}=C_{1} .
$$

where

$$
n^{\prime}=\min \left\{n: \kappa_{n, 1}>\left|x^{(n+1)}\right|\right\} .
$$

Let $j_{1}<j_{2}<\cdots<j_{r}<n^{\prime}$ be the labels of points, which are not the vertices of the already built C_{1}.
Denote by $C_{2, n}$ the convex hull generated by the first n points of the infinite set $\left\{x^{\left(j_{1}\right)}, \ldots, x^{\left(j_{r}\right)},\left(x^{\left(n^{\prime}+k\right)}\right)_{k \in \mathbb{N}}\right\}$ and

$$
\kappa_{n, 2}=\min _{x \in \partial C_{2, n}}|x|
$$

The moment $n^{\prime \prime}$ when the construction of C_{2} is completed is defined as

$$
n^{\prime \prime}=\min \left\{n: \kappa_{n, 2}>\left|x^{(n+1)}\right|\right\}
$$

In this way, we build the sequence of the convex hulls C_{k}.
We investigate the limit shape and the asymptotic behaviour of basic functionals in the case of a continuous spectral measure.

Figures 1 and 2 give an impression about the typical behaviour of the peels when the spectral measure is uniform (i.e. spherically invariant and normalised). They also confirm our conjecture about the existence of the limit shape that is expected to be a circle.

It is of great interest to get impression about a possible behaviour of such basic functionals of the convex polygons $C_{k}, k=1,2, \ldots$, as the perimeter \mathcal{L}, the area \mathcal{A} and the total number of vertices \mathcal{N}. Obviously, for any $\lambda>0$ and any convex polygon C we have

$$
\mathcal{L}(\lambda C)=\lambda \mathcal{L}(C), \quad \mathcal{A}(\lambda C)=\lambda^{2} \mathcal{A}(C)
$$

As to $\mathcal{N}(C)$ it is invariant versus the affine transformations. It is evident that as $k \rightarrow \infty$ we have

$$
\mathcal{L}\left(C_{k}\right) \rightarrow 0, \mathcal{A}\left(C_{k}\right) \rightarrow 0
$$

Intuitively, we expect that as $k \rightarrow \infty$

$$
\mathcal{N}\left(C_{k}\right) \rightarrow \infty .
$$

Figure 1: The simulated shapes of $\hat{C}_{25}, \hat{C}_{50}, \hat{C}_{100}$ and \hat{C}_{150} in the case where $\alpha=1 / 2$ and the spectral measure is uniform.

Denote by

$$
l_{k}=\mathcal{L}\left(C_{k}\right), a_{k}=\mathcal{A}\left(C_{k}\right), n_{k}=\mathcal{N}\left(C_{k}\right), k=1,2, \ldots, K
$$

the observed (simulated) values of those functionals. On Figure 3 the successive points $\left(\log k, \log l_{k}\right),\left(\log k, \log a_{k}\right)$ and $\left(\log k, \log n_{k}\right)$ are exposed for different values of $\alpha, \alpha=1 / 2 ; 1 ; 3 / 2$.

The observed closeness of the points to straight lines makes it reasonable to expect that in a sense

$$
l_{k} \asymp k^{-\gamma_{l}}, a_{k} \asymp k^{-\gamma_{a}}, n_{k} \asymp k^{\gamma_{n}}
$$

where the exponents can be estimated, say, by means of the classic least squares method. The simulation shows that γ_{l} and γ_{a}, definitely, depend on α while γ_{n} seems to be independent on it.

The next step is to estimate somehow the dependence of the exponents on α. The experiment was organised in the following way.

For each of the values $\alpha=\left(\alpha_{i}\right)_{i}=(0.1, \ldots, 1.9)$, the three exponents are estimated on 1000 independent replications by the least squares method. For each α_{i}, we denote $\bar{\gamma}_{l}(i), \bar{\gamma}_{a}(i), \bar{\gamma}_{n}(i)$ the mean value of the estimates.

The points $\left(\log \alpha_{i}, \log \bar{\gamma}_{l}(i)\right),\left(\log \alpha_{i}, \log \bar{\gamma}_{a}(i)\right)$ and $\left(\log \alpha_{i}, \log \bar{\gamma}_{n}(i)\right)$ are ex-

Figure 2: The simulated shapes of $\hat{C}_{25}, \hat{C}_{50}, \hat{C}_{100}$ and \hat{C}_{150} in the case where $\alpha=3 / 2$ and the spectral measure is uniform.
posed on Figure with the approximating straight lines given by the formulae

$$
\begin{aligned}
\log \bar{g}_{a} & =-0.97 \log \alpha+\log 2.95 \\
\log \bar{g}_{l} & =-0.97 \log \alpha+\log 1.48 \\
\log \bar{g}_{n} & =0.06 \log \alpha+\log 0.48
\end{aligned}
$$

So, it looks very credible that the true values of the studied exponents are:

$$
\gamma_{l}=\frac{3}{\alpha}, \gamma_{a}=\frac{3}{2 \alpha}, \gamma_{n}=\frac{1}{2} .
$$

Figure 3: The samples of the functionals \mathcal{L}, \mathcal{A} and \mathcal{N} transformed to the set of points $\left.\left.\left\{\log k, \log l_{k}\right)\right\},\left\{\log k, \log a_{k}\right)\right\}$, and $\left.\left\{\log k, \log n_{k}\right)\right\}$ for $1 \leq k \leq 150$. and $\alpha=0.5 ; 1.0 ; 1.5$.

Figure 4: The estimated values of the exponents transformed to the set of points $\left(\log \alpha_{i}, \log \bar{g}_{l}(i)\right),\left[\right.$ plain], $\left(\log \alpha_{i}, \log \bar{g}_{a}(i)\right)$, ddashes] and $\left(\log \alpha_{i}, \log \bar{g}_{n}(i)\right)$ [dots]

References

Davydov, Yu. and Nagaev, A. (2004) On the role played by extreme summands when a sum of independent and identically distributed random vectors is asymptotically α-stable. J.Appl.Prob. 41, 437-454.

Davydov Yu., Molchanov I., Zuev S. (2008), Strictly stable laws on convex cones. Electronic Journal of Probability, 13, 259-321.

LePage, R., Woodroofe, M. and Zinn, J. (1981) Convergence to a stable distribution via order statistics, Ann. Probability, 9, 4, 624-632.

Petrov, V.V. (1975) Sums of independent variables. Springer, Berlin.
Resnick, S.I. (1987) Extreme Values, Regular Variation, and Point Processes. Springer-Verlag, New York.

Samorodnitsky, G. and TaqQu, M.S. (1994) Stable Non-Gaussian Random Processes, Chapman and Hall, N. Y., London.

