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Abstract

The purpose of this paper is to make a wavelet analysis of self-similar stochastic processes by using

the techniques of the Malliavin calculus and the chaos expansion into multiple stochastic integrals. Our

examples are the fractional Brownian motion and the Rosenblatt process. We study the asymptotic

behavior of the statistics based on the wavelet coefficients of these processes. We find that, in the

case when driven process is the Rosenblatt process, this statistics satisfy a non-central limit theorem

although a part of it converges to a Gaussian limit. We also construct estimators for the self-similarity

index and we illustrate our results by numerical simulations.
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1 Introduction

The self-similarity property for a stochastic process means that scaling of time is equivalent to an appro-
priate scaling of space. That is, a process (Yt)t≥0 is selfsimilar of order H > 0 if for all c > 0 the processes
(Yct)t≥0 and (cHYt)t≥0 have the same finite dimensional distributions. This property is crucial in applica-
tions such as network traffic analysis, mathematical finance, astrophysics, hydrology or image processing.
We refer to the monographs [8], [14] or [27] for complete expositions on theoretical and practical aspects
of self-similar stochastic processes.

The most popular self-similar process is the fractional Brownian motion (fBm). Its practical
applications are notorious. This process is defined as a centered Gaussian process (BHt )t≥0 with covariance
function

RH(t, s) := IE (BHt B
H
s ) =

1

2

(
t2H + s2H − |t− s|2H

)
, t, s ≥ 0.

It can be also defined as the only Gaussian self-similar process with stationary increments. Recently,
this stochastic process has been widely studied from the stochastic calculus point of view as well as from
the statistical analysis point of view. Various types of stochastic integrals with respect to it have been
introduced and several types of stochastic differential equations driven by fBm have been considered.
Another stochastic processes which are self-similar with stationary increments are the Hermite processes
(see [9], [12], [28]); an Hermite process of order q is actually an iterated integral of a deterministic function
with q variables with respect to the standard Brownian motion. These processes appears as limits in the
so-called Non-Central Limit Theorem and they have the same covariance as the fBm. The fBm is obtained
for q = 1 and it is the only Gaussian Hermite process. For q = 2 the corresponding process is known
as the Rosenblatt process. Although it received a less important attention than the fractional Brownian
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motion, this process is still of interest in practical applications because of its self-similarity, stationarity
and long-range dependence of increments. Actually the numerous uses of the fractional Brownian motion
in practice (hydrology, telecommunications) are due to these properties; one prefers in general fBm before
other processes because it is a Gaussian process and the calculus for it is easier; but in concrete situations
when the Gaussian hypothesis is not plausible for the model, Rosenblatt process may be an interesting
alternative model.

When studying self-similar processes, a question of major interest is to estimate their self-similarity
order. This is important because the self-similarity order characterizes in some sense the process: for
example in the fBm case as well as for Hermite processes this order gives the long-range dependence
property of its increments and it characterizes the regularity of the trajectories. Several statistics, applied
directly to the process or to its increments, have been introduced to this end. Naturally, parametric
statistics (exact or Whittle approached maximum likelihood) estimators were studied. But to enlarge the
method to a more general class of models (that can be for instance locally or asymptotically self-similar), it
can be interesting to apply semi-parametric methods as wavelets based, log-variogram or log-periodogram
estimators. Informations and details on these various approaches can be found in the books of Beran [8]
and Doukhan et al. [13].

Our purpose is to develop a wavelet-based analysis of the fBm and Rosenblatt process using
multiple Wiener-Itô integrals and to apply asymptotic results for estimating the self-similar parameter.
More precisely, let ψ : R → R be a continuous function with support included in the interval [0, 1] (called
”mother wavelet”). Assume that there exists an integer Q ≥ 1 such that

∫

R

tpψ(t)dt = 0 for p = 0, 1, . . . , Q− 1 (1)

and ∫

R

tQψ(t)dt 6= 0.

We will call the integer Q ≥ 1 the number of vanishing moments. For a stochastic process (Xt)t∈[0,N ] and
for a ”scale” a ∈ N

∗ we define its wavelet coefficient by

d(a, i) =
1√
a

∫ ∞

−∞
ψ

(
t

a
− i

)
Xtdt =

√
a

∫ 1

0

ψ(x)Xa(x+i)dx (2)

for i = 1, 2, . . . , Na with Na := [N/a] − 1. Let us set

d̃(a, i) =
d(a, i)

(IE d2(a, i))
1
2

and

VN (a) =
1

Na

Na∑

i=1

(
d̃2(a, i) − 1

)
. (3)

The wavelet analysis consists in studying the behavior of the sequence VN (a) when N → ∞. But if X
is respectively a stationary long-memory or a self-similar second-order process, IE d2(a, i) is a power-law
function of a with, respectively, an exponent 2H − 1 (when a → ∞) or 2H + 1. Therefore, if VN (a) is

proved to converge to 0, a log-log-regression of 1
Na

∑Na

i=1 d
2(aj , i) onto aj will provide an estimator of H

(with an appropriate choice of (aj)j). Hence, the asymptotic behavior of VN (a) will completely give the
behavior of the estimator (see the Section 5 for details). There are four main advantages to use such an
estimator: firstly, it a semi-parametric method that may be easily generalized. Secondly, it is based on
the log-regression of the wavelet coefficient sample variances onto several scales and the graph of such a
regression provides interesting information concerning the goodness-of-fit of the model (χ2 goodness-of-fit
were defined and studied in [4] or [6] from this log-regression). Thirdly, it is very low consuming time
estimator (this is due to the Mallat’s algorithm for computing the wavelet coefficients). Finally, it is a
very robust method: it is not sensitive to possible polynomial trends as soon that the number of vanishing
moments Q is large enough.
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Such a method was introduced by Flandrin [15] in the case of fBm, enlarged to more general pro-
cesses in [2] or [1]. The asymptotic behavior of such an estimator was specified in the case of long-memory
Gaussian processes in [7] or [19], of long memory linear processes in [26] or of locally fractional Gaussian
processes in [6]. However the case of Rosenblatt process was not already studied (note that the wavelet
synthesis of Rosenblatt processes was treated in [3] and we will use this method in the section devoted to
simulations). Since this process is not a Gaussian or a linear process, the standard techniques for obtaining
limit theorems (based respectively on Hermite or Appell decomposition) do not in principle work in its case.
We will use a recently developed theory based on Malliavin calculus and Wiener-Itô multiple stochastic
integrals. Let us briefly recall these new results. In [24] the authors gave necessary and sufficient condi-
tions for a sequence of random variables in a fixed Wiener chaos (that means in essence that these random
variables are iterated integrals of a fixed order with respect to a given Brownian motion) to converge to
a standard normal random variable (one of these conditions is that the sequence of fourth order moments
converges to 3 which represents the moment of order 4 of a standard normal random variable). Another
equivalent condition is given in the paper [23] in terms of the Malliavin derivative. These results created a
powerful link between the Malliavin calculus and limit theorems and they have already been used in several
papers (for example in [31] and [10] to study the variations of the Hermite processes).

Recall (see [15] and [4]) that if X = BH , a fBm, in (3) then the following fact happens: for any
Q > 1 and H ∈ (0, 1) the statistics VN (a) renormalized by

√
N converges to a centered normal random

variable. If Q = 1 then the barrier H = 3/4 appears: that is the behavior of VN (a) is normal (that is, it
satisfies a central limit theorem) only if H ∈ (1/2, 3/4) and we prove in Section 3 that the limit of VN (a)
(normalized by N2−2H) is a Rosenblatt random variable ZH1 when H ∈ (3/4, 1). In this case we also prove
that the limit is in law and not in L

2 in contrast with the case of quadratic variations studied in [31].

The study of VN (a) in the Rosenblatt case (see Section 3, formula (14) for the definition) with
H ∈ (1/2, 1/4) put in light interesting and somehow intriguing phenomena. The main fact is that the num-
ber of vanishing moments Q does not affect its convergence and the limit of VN (a) is always non-Gaussian
(it is still Rosenblatt). Actually, the statistics VN can be decomposed into two parts: a term in the fourth
chaos (an iterated integral of order 4 with respect to a Wiener process) and a term in the second chaos.
We analyze here both terms and we deduce that the term in the fourth Wiener chaos keeps some of the
characteristics of the Gaussian case (it has to be renormalized by

√
N and it has a Gaussian limit for

H ∈ (1/2, 3/4)). But the main term in VN (a) which gives the normalization is the second chaos term and
its detailed analysis shows that the normalization depends on H (it is N1−H) and its limit is (in law) a
Rosenblatt random variable. In contrast with the case of the statistics based on the quadratic variations
of the observed process (see [31] and [10]), we prove that the convergence in the non-central case holds in
law and not in L

2.

The consequence of these results are also interesting for the wavelet based estimator of the self-
similarity. Assume that (X1, · · · , XN ) is known, where X is a fBm or a Rosenblatt process. First, we

consider a statistic V̂N (a) computed from (X1, · · · , XN ) where approximated wavelet coefficients (for in-
stance computed from Mallat’s cascade algorithm) replace formula (2) and we prove that limit theorems

satisfied by VN (a) also hold with V̂N (a) as soon as a is large enough with respect to N . Secondly, we deduce
convergence rates for the wavelet based estimator of H following the cases: Q ≥ 2 and X is a fBm, Q = 1,
H ∈ (3/3, 1) and X is a fBm, X is a Rosenblatt process (the regularity of ψ also plays a role). For practical
use, it is clear that if X is fBm it is required to chose Q ≥ 2 and ψ twice continuously differentiable (for
instance, when ψ is a Daubechies wavelet with order ≥ 8). But if X is a Rosenblatt process Q plays no

role. Simulations illustrate the convergence of V̂N (a) and of the estimator of H in this last case.
These results are also interesting because they open other relative questions: for a process constituted by
the increments of a Rosenblatt process, which is a parametric stationary long-memory process, what are
the convergence rates of usual long-memory parameter estimators such as Whittle’s maximum likelihood
or log-periodogram estimators? As for wavelet based estimator, it may be possible that these convergence
rates are different from those obtained for Gaussian or linear processes...

3



We organized the paper as follows. Section 2 contains some preliminaries on multiple Wiener-Itô inte-
grals with respect to the Brownian motion. In Section 3 we treat the situation when the driven process
is the fBm. In this case our new result is the Non-Central Limit Theorem satisfied by the wavelet based
statistics proved in Theorem 2. In Section 4 we enter into a non-Gaussian world: our observed process is
the Rosenblatt process and using the techniques of the Malliavin calculus and recent interesting results for
the convergence of sequence of multiple stochastic integrals, we study in details the sequence VN (a). In
Section 5 we construct an observable estimator based on the approximated wavelet coefficient and we study
its asymptotic behavior (under certain hypothesis, it has the same limit as VN (a)) and its convergence as
well as wavelet based estimator convergence are then illustrated by numerical simulations.

2 Preliminaries

2.1 Basic tool on multiple Wiener-Itô integrals

Let (Wt)t∈[0,T ] be a classical Wiener process on a standard Wiener space (Ω,F , P ). If f ∈ L
2([0, T ]n) with

n ≥ 1 integer, we introduce the multiple Wiener-Itô integral of f with respect to W . We refer to [22] for a
detailed exposition of the construction and the properties of multiple Wiener-Itô integrals.

Let f ∈ Sn, that means that there exists n ≥ 1 integer such that

f :=
∑

i1,...,in

ci1,...in1Aii
×...×Ain

where the coefficients satisfy ci1,...in = 0 if two indices ik and iℓ are equal and the sets Ai ∈ B([0, T ]) are
disjoints. For a such step function f we define

In(f) :=
∑

i1,...,in

ci1,...inW (Ai1 ) . . .W (Ain)

where we put W ([a, b]) = Wb −Wa. It can be seen that the application In constructed above from Sn
equipped with the scaled norm 1√

n!
‖·‖L2([0,T ]n) to L

2(Ω) is an isometry on Sn, i.e. for m,n positive integers,

E (In(f)Im(g)) = n!〈f, g〉L2([0,T ]n) if m = n,

E (In(f)Im(g)) = 0 if m 6= n.

It also holds that
In(f) = In

(
f̃
)

(4)

where f̃ denotes the symmetrization of f defined by f̃(x1, . . . , xx) = 1
n!

∑
σ∈Sn

f(xσ(1), . . . , xσ(n)).

Since the set Sn is dense in L
2([0, T ]n) for every n ≥ 2 the mapping In can be extended to an

isometry from L
2([0, T ]n) to L

2(Ω) and the above properties hold true for this extension. Note also that
In can be viewed as an iterated stochastic integral

In(f) = n!

∫ 1

0

∫ tn

0

. . .

∫ t2

0

f(t1, . . . , tn)dWt1 . . . dWtn

(this follows e.g. by Itô’s formula).
We recall the product for two multiple integrals (see [22]): if f ∈ L

2([0, T ]n) and g ∈ L
2([0, T ]m)

are symmetric, then it holds that

In(f)Im(g) =

m∧n∑

ℓ=0

ℓ!CℓmC
ℓ
nIm+n−2ℓ(f ⊗ℓ g) (5)

where the contraction f ⊗ℓ g belongs to L
2([0, T ]m+n−2ℓ) for ℓ = 0, 1, . . . ,m ∧ n and is given by

(f ⊗ℓ g)(s1, . . . , sn−ℓ, t1, . . . , tm−ℓ) =

∫

[0,T ]ℓ
f(s1, . . . , sn−ℓ, u1, . . . , uℓ)g(t1, . . . , tm−ℓ, u1, . . . , uℓ)du1 . . . duℓ.
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3 The case of the fractional Brownian motion

3.1 A presentation using chaos expansion

We will assume in this part that X = BH a (normalized) fractional Brownian motion (fBm in the sequel)
with Hurst parameter H ∈ (0, 1). Recall that BH is a centered Gaussian process with covariance function

RH(t, s) := IE (BHt B
H
s ) =

1

2

(
s2H + t2H − |t− s|2H

)
, s, t ∈ [0, N ]. (6)

It is the only normalized Gaussian H-self-similar process with stationary increments. Recall also the fBm
(BHt )t∈[0,N ] with Hurst parameter H ∈ (0, 1) can be written

BHt =

∫ t

0

KH(t, s)dWs, t ∈ [0, N ]

where (Wt, t ∈ [0, N ]) is a standard Wiener process and for s < t, and H > 1
2

KH(t, s) := cHs
1
2−H

∫ t

s

(u− s)H− 3
2uH− 1

2 du (7)

with cH =
(

H(2H−1)

β(2−2H,H− 1
2 )

) 1
2

and β(·, ·) the beta function. For t > s, we have

∂KH

∂t
(t, s) := ∂1K

H(t, s) = cH

(s
t

) 1
2−H

(t− s)H− 3
2 . (8)

In this case it is trivial to decompose in chaos the wavelet coefficient d(a, i). By a stochastic Fubini theorem
we can write

d(a, i) =
√
a

∫ 1

0

ψ(x)BHa(x+i)dx =
√
a

∫ 1

0

ψ(x)dx

(∫ a(x+i)

0

dBHu

)

=
√
a

∫ 1

0

ψ(x)dx

∫ a(x+i)

0

KH(a(x + i), u)dWu = I1 (fa,i(·))

where I1 denote the multiple integral of order one (actually, the Wiener integral with respect to W ) and
we denoted by

fa,i(u) := 1[0,a(i+1)](u)
√
a

∫ 1

( u
a
−i)∨0

ψ(x)KH(a(x+ i), u)dx. (9)

Thus, for all a > 0 and i ∈ N,

IE
(
d2(a, i)

)
= ‖fa,i‖2

H = a2H+1C(H)

with C(H) := −1

2

∫ 1

0

∫ 1

0

ψ(x)ψ(x′)|x − x′|2Hdx dx′ (10)

(see [4]). This formula will be essential for the estimation of H (see Section 5). Using the product formula

I1(f)I1(g) = I2(f ⊗ g) + 〈f, g〉H
(here and in the sequel H denotes the space L

2([0, N ])) and we get

VN (a) =
1

Na

Na∑

i=1

(I2
(
f⊗2
a,i

)
+ ‖fa,i‖2

H
(IE d(a, i))2

− 1
)

= I2(fN,a)

where

f
(a)
N := a−2H−1C(H)−1 1

Na

Na∑

i=1

f⊗2
a,i . (11)

5



3.2 A multidimensional Central Limit Theorem satisfied by (VN(ai)
)
1≤i≤m

.

When the observed process is the fBm with H < 3/4, the statistics VN (a) satisfies a central limit theorem.
This fact is known and we will not insist on this case. We just recall it to situate it in our context. Since
IE I2(f) = 2!‖f‖2

H we have for (ai)1≤i≤m a family of integer numbers such that ai = i a for i = 1, . . . ,m
and a ∈ N

∗,

Cov (VN (ap), VN (aq)) = 2!(p q a2)−2H−1C(H)−2 1

Nap

1

Naq

Nap∑

j=1

Naq∑

j′=1

〈f⊗2
ap,j

, f⊗2
aq,j′

〉H⊗2

= 2(p q a2)−2H−1C(H)−2 1

Nap

1

Naq

Nap∑

j=1

Naq∑

j′=1

〈fap,i, faq,j〉2H.

We know from [4] and [5] that:

〈fap,j , faq,j′〉H = IE (d(ap, j)d(aq, j
′))

= −1

2
(p q a2)1/2a2H

∫ 1

0

∫ 1

0

ψ(x)ψ(x′)|px− qx′ + pj − qj′|2Hdx dx′. (12)

and from a Taylor expansion and using property (1) satisfied by ψ,

〈fap,j, faq,j′〉2H = p q a4H+2O
(
1 + |pj − qj′|

)4H−4Q

=⇒ |Cov (VN (ap), VN (aq))| ≤ C
1

N2
aq

Nap∑

j=1

Naq∑

j′=1

O
(
1 + |pj − qj′|

)4H−4Q
.

Consequently, if Q > 1 and H ∈ (0, 1) or if Q = 1 and H ∈ (0, 3/4),

N

a
Cov (VN (ap), VN (aq)) −→

N→∞
ℓ1(p, q,H) with

ℓ1(p, q,H) =
1

2 dpq (p q)2H−1

∞∑

k=−∞

( 1

C(H)

∫ 1

0

∫ 1

0

ψ(x)ψ(x′)|px− qx′ + kdpq|2Hdx dx′
)2

, (13)

where dpq = GCD(p, q). Moreover,

Theorem 1 Let VN (a) be defined by (3) and L1(H) = (ℓ1(p, q,H))1≤p,q≤m. Then if Q > 1 and H ∈ (0, 1)
or if Q = 1 and H ∈ (0, 3/4), for all a > 0,

(√N

a
VN (i a)

)

1≤i≤m

D−→
N→∞

Nm

(
0 , L1(H)

)
.

Proof: It is well-known in the literature (see e.g. [4]).

3.3 A non-Central Limit Theorem satisfied by VN(a).

We need at this point to define the Rosenblatt process. The Rosenblatt process, denoted in the sequel by
(ZH(t))t∈[0,N ] appears as a limit in the so-called Non Central Limit Theorem (see [12] or [28]). It is not
a Gaussian process and can be defined through its representation as double iterated integral with respect
to a standard Wiener process (see [30]). More precisely, the Rosenblatt process with self-similarity order
H ∈ (1

2 , 1) is defined by

ZHt :=

∫ t

0

∫ t

0

LHt (y1, y2)dWy1dWy2 (14)

6



where (Wt, t ∈ [0, N ]) is a Brownian motion,

LHt (y1, y2) := dH1[0,t](y1)1[0,t](y2)

∫ t

y1∨y2
∂1K

H′

(u, y1)∂1K
H′

(u, y2)du, (15)

with KH the standard kernel defined in (7) appearing in the Wiener integral representation of the fBm its
derivatives defined in (8) and

H ′ :=
H + 1

2
and dH :=

1

H + 1

(
H

2(2H − 1)

)− 1
2

.

Among the main properties of the Rosenblatt process, we recall

• it is H-self-similar in the sense that for any c > 0, (ZH(ct)) =(d) (cHZH(t)), where ” =(d) ” means
equivalence of all finite dimensional distributions;

• it has stationary increments, that is, the joint distribution of (ZH(t + h) − ZH(h), t ∈ [0, T ]) is
independent of h > 0.

• IE (|ZHt |p) < ∞ for any p > 0, and (ZH(t)) has the same variance and covariance than a standard
fractional Brownian motion with parameter H .

• the Rosenblatt process is Holdër continuous of order δ < H .

We obtain the following non central limit theorem for the wavelet coefficient of the fBm with H > 3
4 .

Define

ℓ2(H) :=
(2H2(2H − 1)

4H − 3

)1/2
( ∫ 1

0 xψ(x) dx
)2

C(H)
. (16)

Then,

Theorem 2 If Q = 1 and 3
4 < H < 1 then there exists a Rosenblatt random variable R2H−1

1 with self-
similarity order 2H − 1 such that

ℓ−1
2 (H)N2−2H

a VN (a)
D−→

N→∞
Z2H−1

1 .

where Z2H−1
1 is a Rosenblatt random variable given by (14).

Proof: With f
(a)
N defined as in (11), we can write

N2−2H
a VN (a) = N2−2H

a I2
(
f

(a)
N

)
.

But using the expression of fa,i provided in (9),

f
(a)
N (y1, y2) :=

1

a2HCψ(H)

1

Na

Na∑

i=1

1[0,a(i+1)](y1)1[0,a(i+1)](y2)

×
∫ 1

(
y1
a
−i)∨0

∫ 1

(
y2
a
−i)∨0

ψ(x)ψ(z)KH (a(x+ i), y1)K
H (a(z + i), y2) dxdz.

To show that the sequence ℓ−1
2 (H)N2−2H

a I2

(
f

(a)
N

)
converges in law to the Rosenblatt random

variable Z2H−1 it suffices to show that its cumulants converges to the cumulants of Z2H−1
1 . We know (see

[17], [24]) that the k-cumulant of a random variable I2(f) in the second Wiener chaos can be computed as
follows

ck(I2(f)) =

∫

[0,1]k
dy1 . . . dykf(y1, y2)f(y2, y3) . . . f(yk−1, yk)f(yk, y1)

7



and thus

ck

(
N2−2H
a I2

(
f

(a)
N

))

= N (2H−2)k
a N−k

a

Na∑

i1,...,ik=1

∫

[0,1]k
dy1 . . . dyk

∫

[0,1]2k

dx1dz1..dxkdzkψ(x1)ψ(z1)ψ(x2)ψ(z2) . . . ψ(xk)ψ(zk)

×KH(a(x1 + i1), y1)K
H(a(z1 + i1), y2)K

H(a(x2 + i2), y2)K
H(a(z2 + i2), y3)

. . .KH(a(xk−1 + ik−1), yk−1)K
H(a(zk + ik), yk)K

H(a(xk + ik), yk)K
H(a(zk + ik), y1)

Using Fubini theorem and the fact that

∫ a(x+i)∧a(x′+j)

0

KH(a(x + i), y1)K
H(a(x′ + j), y1)dy1 = RH((a(x+ i), a(x′ + j)))

we get

ck

(
N2−2H
a I2

(
f

(a)
N

))

= N (2H−2)k
a a2HkN−k

a

Na∑

i1,...,ik=1

∫

[0,1]2k

dx1dz1..dxkdzkψ(x1)ψ(z1)ψ(x2)ψ(z2) . . . ψ(xk)ψ(zk)

RH(z1 + i1, x2 + i2)R
H(z2 + i2, x3 + i3) . . . R

H(zk−1 + ik−1, xk + ik)R
H(zk + ik, x1 + i1)

= N (2H−2)k
a a2HkN−k

a

Na∑

i1,...,ik=1

∫

[0,1]2k

dx1dz1..dxkdzkψ(x1)ψ(z1)ψ(x2)ψ(z2) . . . ψ(xk)ψ(zk)

× [|z1 − x2 + i1 − i2| · |z2 − x3 + i2 − i3| . . . · |zk−1 − xk + ik−1 − ik| · |zk − x1 + ik − i1|]2H

= N (2H−2)k
a a2HkN−k

a

Na∑

i1,...,ik=1

(|i1 − i2| . . . · |ik−1 − ik| · |ik − i1|)2H

×
∫

[0,1]2k

dx1dz1..dxkdzkψ(x1)ψ(z1)ψ(x2)ψ(z2) . . . ψ(xk)ψ(zk)

∣∣∣∣∣

(
1 +

z1 − x2

i1 − i2
)

)2H

..

(
1 +

zk − x1

ik − i1
)

)2H
∣∣∣∣∣

∼ N (2H−2)k
a a2HkH2k(2H − 1)2kN−k

a

Na∑

i1,...,ik=1

(|i1 − i2| . . . · |ik−1 − ik| · |ik − i1|)2H−2

∫

[0,1]2k

dx1dz1..dxkdzkψ(x1)ψ(z1)ψ(x2)ψ(z2) . . . ψ(xk)ψ(zk)x1z1 . . . xkzk

and we used the fact that the integral of the mother wavelet vanishes and a Taylor expansion of second order.

As a consequence, by a Riemann sum argument it is clear that the cumulant of ℓ−1
2 (H)N2−2H

a I2

(
f

(a)
N

)

converges to ∫

[0,1]2k

[|x1 − x2| · . . . |xk−1 − xk| · |xk − x1|]2H−2 dx1 . . . dxk

which represents the k cumulant of the Rosenblatt random variable Z2H−1
1 (see [28], [30]).

In the case of the statistics based of the variations of the fBm, in the case H ∈ (3/4, 1) the
renormalized statics converges in L

2(Ω) to a Rosenblatt random variable at time 1. In the wavelet world,
our above result gives only the convergence in law. The following question is then natural: can we get L

2

convergence for the renormalized statistics VN (a)? The answer is negative and it is proved below.

Proposition 1 Under assumptions of Theorem 2, the statistics N2−2H
a VN (a) does not converge in L

2(Ω)
as Na → ∞.
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Proof: It is equivalent to show that the sequence N2−2H
a f

(a)
N is not Cauchy in the space L

2([0,∞)2). We
compute

‖N2−2H
a f

(a)
N −M2−2H

a f
(a)
M ‖2

L2([0,∞)2)

= a−4HCψ(H)−2

(
N4−4H
a

∫

[0,1]2
dy1dy2(f

(a)
N )2(y1, y2) +M4−4H

a

∫

[0,1]2
dy1dy2(f

(a)
M )2(y1, y2)

−2(MaNa)
2−2Hf

(a)
M (y1, y2)f

(a)
N (y1, y2)dy1dy2

)

and

N4−4H
a

∫

[0,1]2
dy1dy2(f

(a)
N )2(y1, y2)

= N2−4H
a

∫

[0,1]2
dy1dy2

Na∑

i,j=1

1[0,a(1+i)](y1)1[0,a(1+i)](y2)
(∫ 1

0

∫ 1

0

dxdzψ(x)ψ(z)

∫ 1

0

∫ 1

0

dx′dz′ψ(x′)ψ(z′)
)

×KH(a(x + i), y1)K
H(a(z + i), y2)K

H(a(x′ + j), y1)K
H(a(z′ + j), y2)

and then by Fubini

N4−4H
a

∫

[0,1]2
dy1dy2(f

(a)
N )2(y1, y2)

= N2−4H
a a4H 1

4

∫

[0,1]4
ψ(x)ψ(z)ψ(x′)ψ(z′)dxdzdx′dz′

×
Na∑

i,j=1

(
|x+ i|2H + |x′ + j|2H − |x− x′ + i− j|2H

) (
|z + i|2H + |z′ + j|2H − |z − z′ + i− j|2H

)

= N2−4H
a a4H 1

4

∫

[0,1]4
ψ(x)ψ(z)ψ(x′)ψ(z′)dxdzdx′dz′ ×

Na∑

i,j=1

|x− x′ + i− j|2H |z − z′ + i− j|2H

= N2−4H
a a4H 1

4

∫

[0,1]4
ψ(x)ψ(z)ψ(x′)ψ(z′)dxdzdx′dz′ ×

Na∑

i,j=1

|i− j|4H
(

1 +
x− x′

|i− j|

)2H (
1 +

z − z′

|i− j|

)2H

Computing similarly the scalar product M2−2H
a N2−2H

a 〈f (a)
N , f

(a)
M 〉L2([0,∞)2) and repeating some of

the above arguments, we can write

‖N2−2H
a f

(a)
N −M2−2H

a f
(a)
M ‖2

L2([0,∞)2)

∼ a4HH2(2H − 1)2
∫

[0,1]4
ψ(x)ψ(z)ψ(x′)ψ(z′)xx′zz′dxdzdx′dz′

×



N2−4H
a

Na∑

i,j=1

|i− j|4H ||i− j|−4 − 2M1−2H
a N1−2H

a

Ma∑

i=1

Na∑

j=1

|i− j|4H |i− j|−4 +M2−4H
a

Ma∑

i,j=1

|i− j|4H ||i− j|−4





= ca,H
[
N2−4H
a N4H−2

a +M2−4H
a M4H−2

a −M1−2H
a N1−2H

a

(
M4H−2
a +N4H−2

a − |Ma −Na|4H−2
)]

= ca,H

[
2 +

( |Ma −Na|2
NaMa

)2H−1

−
(
Ma

Na

)2H−1

−
(
Na
Ma

)2H−1
]

where ca,H is a positive constant depending on a and H . The last expression does not tends to zero in
general for Ma, Na → ∞ (take for instance Ma = 2Na).
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Let us further comment of the behavior of the sequence N2−2H
a which is decisive for the behavior

of our statistics VN (a) constructed from wavelet coefficients. The term f
(a)
N can be written as

f
(a)
N (y1, y2) =

1

a2HCψ(H)

1

Na

Na∑

i=1

1[0,a(i+1)](y1)1[0,a(i+1)](y2)

×
(
1[0,ai](y1)1[0,ai](y2)

∫ 1

0

∫ 1

0

dxdzψ(x)ψ(z)KH(a(x+ i), y1)K
H(a(z + i), y2)

+1[0,ai](y1)1[ai,a(1+i)](y2)

∫ 1

0

∫ 1

y2
a
−i
dxdzψ(x)ψ(z)KH(a(x+ i), y1)K

H(a(z + i), y2)

+1[0,ai](y2)1[ai,a(1+i)](y1)

∫ 1

y1
a
−i

∫ 1

0

dxdzψ(x)ψ(z)KH(a(x+ i), y1)K
H(a(z + i), y2)

+1[ai,a(1+i)](y1)1[ai,a(1+i)](y2)

∫ 1

y1
a
−i

∫ 1

y2
a
−i
dxdzψ(x)ψ(z)KH(a(x+ i), y1)K

H(a(z + i), y2)
)

:= f
(a,1)
N (y1, y2) + f

(a,2)
N (y1, y2) + f

(a,3)
N (y1, y2) + f

(a,4)
N (y1, y2).

First we show that the terms N2−2H
a f

(a,2)
N , N2−2H

a f
(a,3)
N and N2−2H

a f
(a,4)
N converge to zero in

L2([0,∞)2) as Na → ∞. Similar techniques apply for all these three terms; we illustrate below the

convergence of f
(a,4)
N :

‖f (a,4)
N ‖2

L2([0,∞)2)

=
1

a4HC2
ψ(H)

1

N2
a

Na∑

i=1

∫

[0,∞)2
dy1dy21[ai,a(1+i)](y1)1[ai,a(1+i)](y2)

∫ 1

y1
a
−i

∫ 1

y2
a
−i

∫ 1

y1
a
−i

∫ 1

y2
a
−i

ψ(x)ψ(z)ψ(x′)ψ(z′)KH(a(x+ i), y1)K
H(a(z + i), y2)K

H(a(x′ + i), y1)K
H(a(z′ + i), y2)dxdzdx

′dz′

=
1

a4HC2
ψ(H)

1

N2
a

Na∑

i=1

∫

[0,1]4
dxdzdx′dz′ψ(x)ψ(z)ψ(x′)ψ(z′)

×
(∫ (a(x+i))∧(a(x′+i))

0

KH(a(x + i), y1)K
H(a(x′ + i), y1)dy1

)

×
(∫ (a(z+i))∧(a(z′+i))

0

KH(a(z + i), y2)K
H(a(z′ + i), y2)dy2

)

and since
∫ t∧s
0

KH(t, u)KH(s, u)du = RH(t, s) with RH(t, s) given in (6), we obtain

‖f (a,4)
N ‖2

L2([0,∞)2)

=
1

a4HC2
ψ(H)

1

N2
a

Na∑

i=1

∫

[0,1]4
dxdzdx′dz′ψ(x)ψ(z)ψ(x′)ψ(z′)RH(a(x+ i), a(x′ + i))RH(a(z + i), a(z′ + i))

=
1

a4HC2
ψ(H)

1

N2
a

Na∑

i=1

∫

[0,1]4
dxdzdx′dz′ψ(x)ψ(z)ψ(x′)ψ(z′)

×a
4H

4
(|x|2H + |x′|2H − |x− x′|2H)(|z|2H + |z′|2H − |z − z′|2H)

=
1

4C2
ψ(H)

1

Na

( ∫

[0,1]2
dxdx′ψ(x)ψ(x′)|x − x′|2H

)2

=
1

Na

from property (1), and therefore N4−4H
a ‖f (a,4)

N ‖2
L2([0,∞)2) converges to zero as Na → ∞ since H > 3

4 .

It remains to study the convergence of the therm f
(a,1)
N . Using again the property (1) of the mother wavelet
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ψ we can write

f
(a,1)
N (y1, y2) =

1

a2HCψ(H)

1

Na

Na∑

i=0

∫ 1

0

∫ 1

0

dxdzψ(x)ψ(z)1[0,ai](y1)1[0,ai](y2)

×
(
KH (a(x+ i), y1) −KH (ai, y1)

) (
KH (a(z + i), y2) −KH (ai, y2)

) )
.

Therefore, with α(a, i, x) and β(a, i, z) respectively located in [ai, ax+ ai] and [ai, az + ai],

I2
(
f

(a,1)
N

)
=

1

a2HCψ(H)

1

Na
I2

( Na∑

i=0

∫ 1

0

∫ 1

0

dxdzψ(x)ψ(z)1[0,ai](y1)1[0,ai](y2)

×ax ∂1K
H(α(a, i, x), y1) × az ∂1K

H(β(a, i, z), y2)
)

and by approximating the points the points α(a, i, x) and β(a, i, z) by ai and since from a usual approxi-
mation of a sum by a Riemann integral, when Na → ∞, with y1, y2 ∈ [0, N ],

Na∑

i=0

1[0,ai](y1)1[0,ai](y2)∂1K
H(ai, y1)∂1K

H(ai, y2) ∼
∫ Na

(y1∨y2)/a
du ∂1K

H(au, y1)∂1K
H(au, y2)

∼ 1

d2H−1 a
L2H−1
N (y1, y2)

where L2H−1
N is the kernel (see its definition in (15)) of the Rosenblatt process with self-similarity index 2H−

1. As a consequence ℓ−1
2 (H)N2−2H

a f
(a,1)
N is equivalent (in the sense that it has the same limit pointwise)

to N1−2HL2H−1
N . In some sense ℓ−1

2 (H)N2−2H
a VN (a) is equivalent to N1−2HI2(L

2H−1
N ) = N1−2HZ2H−1

N =
Z2H−1

1 but this equivalence is only in law. The fact that the sequence N2−2H
a VN (a) is not Cauchy in L

2

comes from the fact that the sequence N1−2HZ2H−1
N is not Cauchy in L

2 as it can be easily seen.

4 The Rosenblatt case

We study in this section the wavelet-based statistics VN given by (3) in the situation when the driving
process is the Rosenblatt process. Although this section, assume that ZH is a Rosenblatt process with
self-similarity order H . In this case, the wavelet coefficient can be written as

d(a, i) =
√
a

∫ 1

0

ψ(x)ZHa(x+i)dx

=
√
a

∫ 1

0

ψ(x)dx
( ∫ a(x+i)

0

∫ a(x+i)

0

La(x+i)(y1, y2)dWy1dWy2

)

= I2 (ga,i(·, ·))

with

ga,i(y1, y2) := dH
√
a 1[0,a(i+1)](y1)1[0,a(i+1)](y2)

×
∫ 1

y1∨y2
a

−i
dxψ(x)

( ∫ a(x+i)

y1∨y2
∂1K

H′

(u, y1)∂1K
H′

(u, y2)du
)
.

Recall the product formula for multiple stochastic integrals

I2(f)I2(g) = I4(f ⊗ g) + 4I2(f ⊗1 g) + 2〈f, g〉L2[0,N ]2

11



if f, g ∈ L
2([0, N ]2) are two symmetric functions and the contraction f ⊗1 g is defined by

(f ⊗1 g)(y1, y2) =

∫ N

0

f(y1, x)g(y2, x)dx.

Thus, we obtain

d2(a, i) = I4
(
g⊗2
a,i

)
+ 4I2 (ga,i ⊗1 ga,i) + 2‖ga,i‖2

L2[0,N ]2

and noting that, since the covariance of the Rosenblatt process is the same as the covariance of the fractional
Brownian motion, we will also have

IE
(
d2(a, i)

)
= IE (I2(ga,i))

2
= 2‖ga,i‖2

L2[0,N ]2 = a2H+1C(H).

Therefore, we obtain the following decomposition for the statistic VN (a):

VN (a) = a−2H−1Cψ(H)−1 1

Na

[
Na∑

i=1

I4
(
g⊗2
a,i

)
+ 4

Na∑

i=1

I2 (ga,i ⊗1 ga,i)

]
= T2 + T4

with

{
T2 := a−2H−1Cψ(H)−1 4

Na

∑Na

i=1 I2 (ga,i ⊗1 ga,i)

T4 := a−2H−1Cψ(H)−1 1
Na

∑Na

i=1 I4
(
g⊗2
a,i

) . (17)

To understand the limit of the sequence VN we need to regard the two terms above (note that similar terms
appear in the decomposition of the variation statistics of the Rosenblatt process, see [31]). In essence, the
following will happen: the term T4 which lives in the fourth Wiener chaos keeps some characteristics of
the fBm case (since it has to be renormalized by

√
Na except in the case Q = 1 where the normalization

is N2−2H
a for H > 3

4 ) and its limit will be Gaussian (except for Q = 1 and H > 3
4 ). Unfortunately, these

somehow nice behavior does not affect the limit of VN which is non-normal.

Now, let us study the asymptotic behavior of the term T4. From (17), we have

T4 = I4(g
(a)
N )

where

g
(a)
N := a−2H−1Cψ(H)−1 1

Na

Na∑

i=1

g⊗2
a,i , (18)

and thus, by the isometry of multiple stochastic integrals,

IE T 2
4 = 4!Cψ(H)−2a−4H−2 1

N2
a

Na∑

i,j=1

〈g⊗2
a,i , g

⊗2
a,j〉L2[0,N ]4

= 4!Cψ(H)−2a−4H−2 1

N2
a

Na∑

i,j=1

〈ga,i, ga,j〉2L2[0,N ]2

But,

〈ga,i, ga,j〉L2[0,N ]2 =
1

2
IE (d(a, j)d(a, j′))

and since the second order are the same, we obtain the same behavior (up to a multiplicative constant) as
in the case of the fractional Brownian motion. That is,

Proposition 2 From (13), if Q > 1 and H ∈ (1
2 , 1) or if Q = 1 then for H ∈ (1

2 ,
3
4 ), then

N

a
IE (T 2

4 ) −→
N→∞

3 ℓ1(1, 1, H) (19)

and, from Theorem 2, if Q = 1 and H ∈ (3
4 , 1) then

(N
a

)4−4H

IE (T 2
4 ) −→

N→∞
3 ℓ2(H). (20)

12



4.1 Asymptotic behavior of the term T2

Evaluation of IE T 2
2

We evaluate in this part the L
2-norm of the second chaos term and we will compare it with the corresponding

norm of the term T4 in order to determinate the normalization of VN (note that IE (T4T2) = 0 by the
orthogonality of the multiple integrals). Recall that we have

T2 = I2(h
(a)
N )

with

h
(a)
N := 4

1

a2H+1C(H)

1

Na

Na∑

i=1

ga,i ⊗1 ga,i. (21)

We compute the contraction ga,i ⊗1 ga,i. We have

(ga,i ⊗1 ga,i)(y1, y2) =

∫ Na

0

ga,i(y1, z)ga,i(y2, z)dz

= a d2
H 1[0,a(i+1)](y1)1[0,a(i+1)](y2)

∫ a(i+1)

0

dz
[ ∫ 1

y1∨z

a
−i
dxψ(x)

( ∫ a(x+i)

y1∨z
∂1K

H′

(u, y1)∂1K
H′

(u, z)du
)]

×
[ ∫ 1

y2∨z

a
−i
dx′ ψ(x′)

(∫ a(x′+i)

y2∨z
∂1K

H′

(u′, y2)∂1K
H′

(u′, z)du′
)]

= a d2
H 1[0,a(i+1)](y1)1[0,a(i+1)](y2)

([ ∫ 1

y1
a
−i
dxψ(x)

∫ 1

y2
a
−i
dx′ ψ(x′)

×
∫ a(x+i)

y1

∫ a(x′+i)

y2

M(u, y1, u
′, y2) du du

′
∫ u∧u′

0

M(u, z, u′, z)dz
]

where M(u, y1, u
′, y2) := ∂1K

H′

(u, y1)∂1K
H′

(u′, y2) and H ′ = (H + 1)/2. Now, we have already seen that∫ t∧s
0 KH(t, z)KH(s, z)dz = RH(t, s) with RH(t, s) given in (6) and therefore

∫ u∧u′

0

M(u, z, u′, z) dz = H ′(2H ′ − 1) |u− u′|2H′−2. (22)

Thus denoting αH := H ′(2H ′ − 1) = H(H + 1)/2 and since ψ is [0, 1]-supported, we obtain

(ga,i ⊗1 ga,i)(y1, y2) = a d2
HαH 1[0,a(i+1)](y1)1[0,a(i+1)](y2)

∫ 1

( y1
a
−i)∨0

∫ 1

( y2
a
−i)∨0

dxdx′ψ(x)ψ(x′)

×
∫ a(x+i)

y1

∫ a(x′+i)

y2

|u− u′|2H′−2M(u, y1, u
′, y2) du du

′.
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We compute now the expectation of the square of the term T2. From (21) and by the isometry property
of multiple Wiener-Itô integrals

IE T 2
2 = 16 a−4H−2C(H)−22!

1

N2
a

Na∑

i,j=1

〈ga,i ⊗1 ga,i, ga,j ⊗1 ga,j〉L2[0,N ]2

= 32 a−4H α2
Hd

4
H

C2
ψ(H)

1

N2
a

Na∑

i,j=1

∫ a(i∧j+1)

0

∫ a(i∧j+1)

0

dy1dy2

×
∫ 1

( y1
a
−i)∨0

dxψ(x)

∫ 1

( y2
a
−i)∨0

dx′ψ(x′)

∫ 1

( y1
a
−j)∨0

dzψ(z)

∫ 1

( y2
a
−j)∨0

dz′ψ(z′)

×
∫ a(x+i)

y1

du

∫ a(x′+i)

y2

dv∂1K
H′

(u, y1)∂1K
H′

(v, y2)|u − v|2H′−2

×
∫ a(z+j)

y1

du′
∫ a(z′+j)

y2

dv′∂1K
H′

(u′, y1)∂1K
H′

(v′, y2)|u′ − v′|2H′−2

and by calculating first the integrals dy1 and dy2

IE T 2
2 = 32 a−4H α2

Hd
4
H

C2
ψ(H)

1

N2
a

Na∑

i,j=1

∫

[0,1]4
ψ(x)ψ(x′)ψ(z)ψ(z′)dxdx′dzdz′

×
∫ a(x+i)

0

du

∫ a(x′+i)

0

dv

∫ a(z+j)

0

du′
∫ a(z′+j)

0

dv′
(
|u− v| · |u′ − v′|

)2H′−2

×
(∫ u∧u′

0

M(u, y1, u
′, y1)dy1

)(∫ v∧v′

0

M(v, y2, v
′, y2)dy2

)

= 32
α4
Hd

4
H

C2
ψ(H)

1

N2
a

Na∑

i,j=1

∫

[0,1]4
ψ(x)ψ(x′)ψ(z)ψ(z′)dxdx′dzdz′

×
∫ x+i

0

du

∫ x′+i

0

dv

∫ z+j

0

du′
∫ z′+j

0

dv′
(
|u− v| · |u′ − v′| · |u− u′| · |v − v′|

)2H′−2

= 32
α4
Hd

4
H

C2
ψ(H)

1

N2
a

Na∑

i,j=1

∫

[0,1]4
ψ(x)ψ(x′)ψ(z)ψ(z′)dxdx′dzdz′

×
∫ x+i

i

du

∫ x′+i

i

dv

∫ z+j

j

du′
∫ z′+j

j

dv′
(
|u− v| · |u′ − v′| · |u− u′| · |v − v′|

)2H′−2

where the property (1) of ψ is applied four time to reduce the domain of integration. Using the change of
variables ū = 1

x (u− i) (and similarly for the other variables) we obtain

IE T 2
2 = 32

α4
Hd

4
H

C2
ψ(H)

1

N2
a

Na∑

i,j=1

∫

[0,1]4
ψ(x)ψ(x′)ψ(z)ψ(z′)xx′zz′dxdx′dzdz′

×
∫

[0,1]4
dudu′dvdv′

(
|ux− vx′| · |u′z − v′z′| · |ux− u′z + i− j| · |vx′ − v′z′ + i− j|

)2H′−2
.

Denote by

SNa
:=

1

N2
a

Na∑

i,j=1

(
|ux− u′z + i− j| · |vx′ − v′z′ + i− j|

)2H′−2
.

14



We have

SNa
=

1

N2
a

Na∑

k=−Na

(Na − |k|)|ux− u′z + k|2H′−2|vx′ − v′z′ + k|2H′−2

=
1

Na

Na∑

k=−Na

N2(2H′−2)
a (1 − |k|

Na
)

∣∣∣∣
ux− v′z

Na
+

k

Na

∣∣∣∣
2H′−2 ∣∣∣∣

vx′ − v′z′

Na
+

k

Na

∣∣∣∣
2H′−2

.

and clearly, since 2(2H ′ − 2) = 2H − 2 and the terms ux−v′z
Na

and vx′−v′z′
Na

are negligible in front of k
Na

for
large k, we get by a Riemann sum argument that for every x, . . . , v′,

N2−2H
a SNa

−→
N→∞

2

∫ 1

0

(1 − x)x2H−2dx =
1

H(2H − 1)
.

As a consequence, with

∫

[0,1]2
dudv|ux− vx′|2H′−2 = (2H ′(2H ′ − 1))−1

(
x2H′

+ (x′)2H
′ − |x− x′′|2H′)

and

the property (1) of ψ,

N2−2H
a IE T 2

2 −→
N→∞

32
α4
Hd

4
H

H(2H − 1)C2
ψ(H)

( ∫

[0,1]4
ψ(x)ψ(x′)xx′|ux− vx′|2H′−2dxdx′dudv

)2

−→
N→∞

8
2H − 1

H(H + 1)2

( 1

C(H)

∫

[0,1]2
ψ(x)ψ(x′)xx′|x− x′|H−1dxdx′

)2

:= C2
T2

(H). (23)

In conclusion the asymptotic behavior of the term T2 depends on H and, surprisingly and contrary to the
Gaussian case, it is not influenced by the number Q of vanished moment of ψ. Thus for any Q ≥ 1

IE
[(N

a

)1−H
T2

]2
−→
N→∞

C2
T2

(H).

Therefore, from this formula and (19) and (20), for any Q ≥ 1 and H ∈ (1
2 , 1) the term T2 is dominant

with respect to T4 for the behavior of IE V 2
N (a). We are able to prove the following result:

Theorem 3 Let (ZHt )t∈[0,N ] be a Rosenblatt process with self-similarity index H ∈ (1
2 , 1) and the statistic

VN (a) computed from (ZHt )t∈[0,N ]. Then for any Q ≥ 1 and H ∈ (1
2 , 1),

IE
[
N1−H
a VN (a)

]2
−→
N→∞

C2
T2

(H).

The limit of the term T2

We prove in this paragraph that the sequence T2 (and therefore the sequence VN (a)) converges in L
2(Ω)

to a Rosenblatt random variable with self-similarity index H .

Theorem 4 Let (ZHt )t≥0 be a Rosenblatt process and let T2 be the sequence given by (17) and computed
from (ZHt )t≥0. Then, for any Q ≥ 1 and H ∈ (1

2 , 1), there exists a Rosenblatt random variable RH1 with
self-similarity order H such as

C−1
T2

(H)
(N
a

)1−H
T2

D−→
N→∞

RH1 =⇒ C−1
T2

(H)
(N
a

)1−H
VN (a)

D−→
N→∞

RH1 ,

where CT2 is given by (23).

Proof: This proof follows the lines of the proof of Theorem 2. With T2 = I2(h
(a)
N ) in mind, as in the

proof of Theorem 2, a direct proof that the cumulants of the sequence N1−H
a I2

(
h

(a)
N

)
converge to those

15



of the Rosenblatt process can be given. Indeed, by combining the proof of theorem 2 and the estimation
of the square mean of T2 we will obtain

ck

(
N1−H
a I2

(
h

(a)
N

))

= ca,HN
k(1−H)
a N−k

a

Na∑

i1,...,ik=1

∫

[0,1]4k

k∏

j=1

ψ(xj)ψ(x′j)ψ(zjψ(z′j)dxjdx
′
jdzjdz

′
j

=

∫

[0,1]4k

dukjdu
′
jdvjdv

′
j

k∏

j=1

(
|ujxj − vjx

′
j | · |u′jzj − v′jz

′
j |
)2H′−2

k∏

j=1

(
|ujxj − u′jzj + ij − ij+1| · |vjx′j − v′jz

′
j + ik − ij+1|

)2H′−2

with the convention ik+1 := i1. The key fact is that the sequence

SkNa
= N−k

a

Na∑

i1,...,ik=1

k∏

j=1

( |ujxj − u′jzj + ij − ij+1| · |vjx′j − v′jz
′
j + ik − ij+1|

Na

)2H′−2

converges as a Riemman sum (for fixed xj , x
′
j , zj , z

′
j, uj, vj , u

′
j, v

′
j) to, modulo a constant, the integral

∫

[0,1]k
dx1 . . . dxk (|x1 − x2| · |x2 − x3| · . . . |xk − x1|)2H

′−2

which is the cumulant of ZH1 .

But we prefer to do here a more detailed study of the sequence N1−H
a h

(a)
N to understands why

we have only the convergence in law and the convergence L
2 does not hold. Actually, as in the proof of

Theorem 2, we prove first that the sequence N1−H
a h

(a)
N is NOT Cauchy in L2([0,∞)2) and by the isometry

of multiple stochastic integrals we will obtain that N1−H
a I2(h

(a)
N ) is NOT Cauchy in L

2(Ω). But here we

want to understand the limit and the behavior of this sequence. We can decompose h
(a)
N (defined in (21))

as follows:

h
(a)
N (y1, y2) = 4

d2
HαH

a2HC(H)

1

Na
×

Na∑

i=1

1[0,ai](y1)1[0,ai](y2)

∫

[0,1]2
dxdx′ψ(x)ψ(x′)

∫ a(x+i)

y1

∫ a(x′+i)

y2

∂1K
H′

(u, y1)∂1K
H′

(v, y2)|u − v|2H′−2dudv

+1[0,ai](y1)1[ai,a(i+1)](y2)

∫ 1

0

∫ 1

y2
a
−i
ψ(x)ψ(x′)dxdx′

∫ a(x+i)

y1

∫ a(x′+i)

y2

∂1K
H′

(u, y1)
∂KH′

∂v
(v, y2)|u− v|2H′−2dudv

+1[0,ai](y2)1[ai,a(i+1)](y1)

∫ 1

y1
a
−i

∫ 1

0

ψ(x)ψ(x′)dxdx′
∫ a(x+i)

y1

∫ a(x′+i)

y2

∂1K
H′

(u, y1)∂1K
H′

(v, y2)|u − v|2H′−2dudv

+1[ai,a(i+1)](y1)1[ai,a(i+1)](y2)

∫ 1

y1
a
−i

∫ 1

y2
a
−i
ψ(x)ψ(x′)dxdx′

∫ a(x+i)

y1

∫ a(x′+i)

y2

∂1K
H′

(u, y1)∂1K
H′

(v, y2)|u− v|2H′−2dudv

:= h
(a,1)
N (y1, y2) + h

(a,2)
N (y1, y2) + h

(a,3)
N (y1, y2) + h

(a,4)
N (y1, y2).

Following a similar proof as for Theorem 2, we first show that the terms N1−H
a h

(a,2)
N , N1−H

a h
(a,3)
N and

N1−H
a h

(a,4)
N converge to zero in L

2([0,∞)2) as N → ∞. We treat the case N1−H
a h

(a,4)
N goes to zero as

N goes to infinity; the convergence of the other sequences will follow similarly (the key fact is that the
presence of the interval [ai, a(i+ 1)] allows only diagonal terms in their L

2 norm). Following the previous

16



computations in the proof of Theorem 2, there exists kH , k
′
H > 0 not depending on N and a such that

‖h(a,4)
N ‖2

L2([0,∞)2) = kH
1

N2
a

Na∑

i=1

∫

[ai,a(i+1)]2
dy1dy2

∫ 1

y1
a
−i

∫ 1

y2
a
−i

∫ 1

y1
a
−i

∫ 1

y2
a
−i
ψ(x)ψ(x′)ψ(z)ψ(z′)dxdx′dzdz′

×
∫ a(x+i)

y1

∫ a(x′+i)

y2

∫ a(z+i)

y1

∫ a(z′+i)

y2

|u− v|2H′−2|u′ − v′|2H′−2∂1K
H′

(u, y1)∂1K
H′

(v, y2)∂1K
H′

(u′, y1)∂1K
H′

(v′, y2)dudvdu
′dv′

=
k′H
N2
a

Na∑

i=1

∫

[0,1]4
ψ(x)ψ(x′)ψ(z)ψ(z′)dxdx′dzdz′

∫ a(x+i)

ai

∫ a(x′+i)

ai

∫ a(z+i)

ai

∫ a(z′+i)

ai

(
|u− v||u′ − v′||u− u′||v − v′|

)2H′−2
dudvdu′dv′

using once again the relation (22). With changes of variables,

∫ a(x+i)

ai

∫ a(x′+i)

ai

∫ a(z+i)

ai

∫ a(z′+i)

ai

(
|u− v||u′ − v′||u− u′||v − v′|

)2H′−2
dudvdu′dv′

= a8H′−4xx′zz′
∫

[0,1]4

(
|ux− vx′||u′z − v′z′||ux− zu′||vx′ − v′z′|

)2H′−2
dudvdu′dv′

and therefore with k′′H > 0 not depending on N and a,

‖h(a,4)
N ‖2

L2([0,∞)2) = k′′H a
8H′−4 1

Na
=⇒ ‖N1−H

a h
(a,4)
N ‖2

L2([0,∞)2) −→
N→∞

0.

Let us now study the term h
(a,1)
N . This term will give actually the limit of the sequence VN (a). Note that

we can replace the integration interval [y1, a(x + i)] by [ai, a(x+ i)] since ψ satisfies the property (1). So
we can write

h
(a,1)
N (y1, y2) =

4 d2
HαH

a2HC(H)

1

Na

Na∑

i=1

1[0,ai](y1)1[0,ai](y2)

∫ 1

0

∫ 1

0

dxdx′ψ(x)ψ(x′)

×
∫ a(x+i)

ai

∫ a(x′+i)

ai

∂1K
H′

(u, y1)∂1K
H′

(v, y2)|u − v|2H′−2dudv

and by making the change of variable ū = 1
x (ua − i) and v̄ = 1

x′ (
v
a − i), we get

N1−H
a h

(a,1)
N (y1, y2) =

4 d2
HαH

a2H−2C(H)

1

NH
a

Na∑

i=1

1[0,ai](y1)1[0,ai](y2)

∫ 1

0

∫ 1

0

xx′ψ(x)ψ(x′)dxdx′

×
∫ 1

0

∫ 1

0

∂1K
H′

(aux+ ai, y1)∂1K
H′

(avx′ + ai, y2)|aux− avx′|2H′−2du dv

∼ 4 d2
HαH

aH−1C(H)

1

NH
a

Na∑

i=1

1[0,ai](y1)1[0,ai](y2)

∫ 1

0

∫ 1

0

xx′ψ(x)ψ(x′)dxdx′

×
∫ 1

0

∫ 1

0

∂1K
H′

(ai, y1)∂1K
H′

(ai, y2)|ux− vx′|2H′−2

where an ∼ bn means that the sequence an and bn have the same limit as n → ∞. We proceed to a fist
approximation. For y1, y2 ∈ [0, N ],

N1−H
a h

(a,1)
N (y1, y2) =

4 d2
HαH

aH−1C(H)

1

NH
a

Na∑

i=
[

y1∨y2
a

]

∫ 1

0

∫ 1

0

xx′ψ(x)ψ(x′)dxdx′

×
∫ 1

0

∫ 1

0

∂1K
H′

(aux+ ai, y1)∂1K
H′

(avx′ + ai, y2)|ux− vx′|2H′−2dudv.
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But, for i > y1/a, from the formula of ∂1K
H(t, s) given in (8),

∣∣∣∂1K
H′

(aux+ ai, y1) − ∂1K
H′

(ai, y1)
∣∣∣ ≤

(
cH
(3
2
−H

)(ai
y1

)H−1/2 1

(ai− y1)5/2−H

)
aux.

Now, since for ai− y1 large enough,

(ai
y1

)H−1/2 1

(ai− y1)5/2−H
∼ 1

(ai− y1)3−2H
=⇒

∑

i>y1/a

(ai
y1

)H−1/2 1

(ai− y1)5/2−H
<∞,

one deduces that

N1−H
a h

(a,1)
N (y1, y2) ∼ 4 d2

HαH
aH−1C(H)

1

NH
a

C0

Na∑

i=
[

y1∨y2
a

]
∂1K

H′

(ai, y1)∂1K
H′

(ai, y2)

where

C0 =

∫ 1

0

∫ 1

0

xx′ψ(x)ψ(x′)dxdx′
∫ 1

0

∫ 1

0

|ux− vx′|2H′−2du dv

=

∫ 1

0

∫ 1

0

xx′ψ(x)ψ(x′)dxdx′ × 1

2H ′(2H ′ − 1)xx′
(
|x|2H′

+ |x′|2H′ − |x− x′|2H′)

= − 1

H(H + 1)

∫ 1

0

∫ 1

0

ψ(x)ψ(x′)|x − x′|2H′

dxdx′ =
2

H(H + 1)
C(H ′).

As a consequence, from a usual comparison between a sum and an integral of positive terms,

N1−H
a h

(a,1)
N (y1, y2) ∼ 8 d2

HαH C(H ′)

H(H + 1) aH−1C(H)

1

NH
a

1[0,N ](y1)1[0,N ](y2)

∫ Na

y1∨y2
a

∂1K
H′

(au, y1)∂1K
H′

(au, y2)du

∼
( 8 dHαH C(H ′)

H(H + 1) aHC(H)

) 1

NH
a

× LHN(y1, y2)

∼ CT2(H)N−HLHN(y1, y2),

where LN is the kernel of the Rosenblatt process (see its definition in (15)). But from the self simi-

larity property, N−HI2
(
LHN
)

has the same law as I2
(
LH1
)
. Using the equivalence N1−H

a h
(a,1)
N (y1, y2) ∼

CT2(H)N−HLHN(y1, y2) it can be easily deduced in the proof of Theorem 2 that the sequence I2

(
N1−H
a h

(a,1)
N

)

(and therefore I2

(
N1−H
a h

(a)
N

)
and thus N1−H

a C−1
T2

(H)T2 has the cumulants convergent to those of the

Rosenblatt random variableZH1 (but the direct argument proposed at the beginning of this proof also holds).
In essence, the renormalized statistics VN (a) does not converge in L

2 because N−HI2
(
LHN
)

= N−HZHN
does not converge in L

2 as it can be easily seen.

4.2 Asymptotic analysis of the term T4

We try here to understand the behavior of the term T4 in the cases Q > 1 and H ∈ (1
2 , 1) or Q = 1 and

H ∈ (1
2 ,

3
4 ). It can be already seen from its asymptotic variance that it is very close to the Gaussian case.

We will show below that this term converges in law to a Gaussian random variable. This of course does
not influence in principle the limit of VN but we find that it is interesting from a theoretical point of view.

We need now to introduce the Malliavin derivative. We will use only this derivative for random variables
in a finite chaos. If f ∈ L

2([0, T ]n) is a symmetric function, we will use the following rule to differentiate
in the Malliavin sense

DtIn(f) = n In−1(f(·, t)), t ∈ [0, 1].

Our strategy is based on the following result (see Theorem 4 in [23], see also [24]).
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Proposition 3 Let FN = In(fN ) be a sequence of square integrable random variables in the nth Wiener
chaos such that IE

[
F 2
N

]
−→
N→∞

1. Then the following are equivalent:

i) The sequence (FN )N≥0 converges to the normal law N (0, 1).

ii) ‖DFN‖2
L2[0,T ] =

∫ T
0
DtIn(f) dt

L
2(Ω)−→

N→∞
n, where D is the Malliavin derivative with respect to the un-

derlying Wiener process W .

Our main result concerning the limit of the renormalized statistic VN is the following. Following
the limit theorem (19), denote by CT4(H) the positive constant such that

C2
T4

(H) := 3 ℓ(1, 1, H),

where ℓ(p, q,H) is defined in (13).

Theorem 5 Suppose that ZH is a Rosenblatt process with self-similarity order H. Suppose that Q > 1 or
Q = 1 and H ∈ (1

2 ,
3
4 ). Then √

N

a
T4

D−→
N→∞

N
(
0 , C2

T4
(H)

)
.

Remark 1 In the other case (Q = 1 and H ∈ (3
4 , 1)) the limit in law of the renormalized VN is a Rosenblatt

random variable.

Proof of Theorem 5: We have seen in (17) that T4 = a−2H−1Cψ(H)−1 1
Na

∑Na

i=1 I4
(
g⊗2
a,i

)
and IE T 2

4 −→
N→∞

0

from (19). Then by the criterium in Proposition 3 it suffices to show that

∫ N

0

dr (DrT4)
2 L

2(Ω)−→
N→∞

4C2
T4

(H).

But we can write that

DrT4 = 4 a−2H−1Cψ(H)−1 1√
Na

Na∑

i=1

I3
(
(g⊗2
a,i )(·, r)

)

and therefore

∫ N

0

dr (DrT4)
2 =

16

a2H+1Cψ(H)

1

Na

Na∑

i,j=1

∫ N

0

I3 ((ga,i ⊗ ga,i)(·, r)) I3 ((ga,j ⊗ ga,j)(·, r)) dr.

The product formula for multiple stochastic integrals (5) gives

∫ N

0

dr (DrT4)
2

=
16

a2H+1Cψ(H)

1

Na

Na∑

i,j=1

∫ N

0

dr
(
I6
(
(ga,i ⊗ ga,i)(·, r) ⊗ (ga,j ⊗ ga,j)(·, r)

)
+ 9 I4

(
(ga,i ⊗ ga,i)(·, r) ⊗1 (ga,j ⊗ ga,j)(·, r)

)

+9 I2
(
(ga,i ⊗ ga,i)(·, r) ⊗2 (ga,j ⊗ ga,j)(·, r)

)
+ I0

(
(ga,i ⊗ ga,i)(·, r) ⊗3 (ga,j ⊗ ga,j)(·, r)

))

:= T46 + T44 + T42 + T4,0.

First the limit theorem (19) we note that:

IE

[∫ N

0

(DrT4)
2dr

]
−→
N→∞

4C2
T4

(H).
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Indeed, this follows easily because for a random variable G in the nth Wiener chaos, we have

n IE
[
G2
]

=

∫ N

0

(DrG)2dr.

This limit is provided by the term T4,0 as for the fBm case. Let us show that the other terms, i.e. T46, T44

and T42, converge to zero. First we regard the term T46.

T46 =
16

a2H+1Cψ(H)

1

Na
I6

( Na∑

i,j=1

∫ N

0

dr(ga,i ⊗ ga,i)(·, r) ⊗ (ga,j ⊗ ga,j)(·, r)
)

=
16

a2H+1Cψ(H)

1

Na
I6

( Na∑

i,j=1

(ga,i ⊗ ga,j) ⊗ (ga,i ⊗1 ga,j)
)
.

Since for any function f ∈ L
2([0,∞)2 one has ‖f‖L2 ≤ ‖f̃‖L2 (see (4)), we obtain, with C > 0 not depending

on N ,

IE T 2
46 ≤ C

1

N2
a

Na∑

i,j,k,l=1

〈ga,i ⊗ ga,j, ga,k ⊗ ga,l〉L2([0,N ]4)〈ga,i ⊗1 ga,j , ga,l ⊗1 ga,k〉L2([0,N ]2)

≤ C
1

N2
a

Na∑

i,j,k,l=1

〈ga,i, ga,k〉L2([0,N ]2)〈ga,j , ga,l〉L2([0,N ]2)〈ga,i ⊗1 ga,j, ga,l ⊗1 ga,k〉L2([0,N ]2).

It is not difficult to see that the dominant term of the above expression appears when |i− j|, |i− k|, |k −
l|, |j − l| ≥ 2. In this case, the scalar product 〈ga,i, ga,k〉L2([0,N ]2) has been already evaluated before: it
behaves for |i− k| ≥ 1 as |i− k|2H−2Q. Let us regard the factor 〈ga,i ⊗1 ga,j, ga,l ⊗1 ga,k〉L2([0,N ]2). It can
be computed as follows

〈ga,i ⊗1 ga,j, ga,l ⊗1 ga,k〉L2([0,N ]2)

=

∫

[0,1]4
dxdx′dzdx′ψ(x)ψ(x′)ψ(z)ψ(z′)

×
∫ a(x+i)

0

du

∫ a(x′+j)

0

dv

∫ a(z+k)

0

∫ a(z′+l)

0

dv′ (|u− v||u′ − v′||u− u′||v − v′|)2H
′−2

=

∫

[0,1]4
dxdx′dzdx′ψ(x)ψ(x′)ψ(z)ψ(z′)xx′zz′

×
∫

[0,1]4
dudvdu′dv′ (|ux− vx′ + i− j||u′z − v′z′ + j − k||ux− zu′ + i− k||vx′ − v′z′|)2H

′−2

and therefore there exists C > 0 not depending on N such that

∣∣〈ga,i ⊗1 ga,j , ga,l ⊗1 ga,k〉L2([0,N ]2)

∣∣ ≤ C
(
(1 + |i− j|)(1 + |k − l|)(1 + |i− k|)(1 + |j − l|)

)2H′−2
.

Consequently since for Na → ∞

1

N2
a

Na∑

i,j,k,l=1

((1 + |i− j|)(1 + |k − l|)(1 + |i− k|)(1 + |j − l|))H−1
((1 + |i− k|)(1 + |j − l|))2H−2Q

≤ 1

Na

∫

[1,Na]3
(xzt(x+ y + z))2H

′−2(zt)2H−2Qdxdydzdt =
C

Na
N2H−1
a ×

(
N6H−4
a 1Q=1 + C1Q≥2

)
,

then
IE T 2

46 −→
N→∞

0 (24)
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for Q > 1 or Q = 1 and H ∈ (1
2 ,

3
4 ).

We prove now the convergence of T44 to zero. It holds that (here (f)s means f̃)

T44 = C
1

Na
I4

( Na∑

i,j=1

∫ N

0

dr(ga,i ⊗ ga,i)(·, r) ⊗1 (ga,j ⊗ ga,j)(·, r)
)s

= C
1

Na
I4

( Na∑

i,j=1

(ga,i ⊗ ga,j)〈ga,i, ga,j〉L2([0,N ]2)

)
+ C

1

Na
I4

( Na∑

i,j=1

(ga,i ⊗1 ga,j) ⊗ (ga,j ⊗1 ga,i)
)

:= T441 + T442.

The expectation of square T441 can be handled as follows

IE T 2
441 ≤ C

1

N2
a

Na∑

i,j,k,l=1

〈ga,i ⊗ ga,j , ga,k ⊗ ga,l〉L2([0,N ]4)〈ga,i, ga,j〉L2([0,N ]2)〈ga,k, ga,l〉L2([0,N ]2)

≤ C
1

N2
a

Na∑

i,j,k,l=1

〈ga,i, ga,k〉L2([0,N ]2)〈ga,j , ga,l〉L2([0,N ]2)〈ga,i, ga,j〉L2([0,N ]2)〈ga,k, ga,l〉L2([0,N ]2)

≤ C
1

N2
a

Na∑

i,j,k,l=1

((1 + |i− k|)(1 + |j − l|)(1 + |i− j|)(1 + |k − l|))2H−2Q

≤ C
1

Na

∫ Na

1

∫ Na

1

∫ Na

1

(
x y z (x+ y + z)

)2H−2Q
dx dy dz

≤ C
1

Na

∫ Na

1

∫ Na

1

∫ Na

1

(
x2 y z

)2H−2Q
dx dy dz ≤ C N2+8H−8Q

a −→
N→∞

0 (25)

since Q > 1 or when Q = 1 then 1
2 < H < 3

4 . Concerning the term T442, since

〈ga,i ⊗1 ga,j , ga,k ⊗1 ga,l〉L2([0,N ]2) ∼ C ((1 + |i− j|)(1 + |k − l|)(1 + |i− k|)(1 + |j − l|))2H
′−2

,

from a similar bound as for IE T 2
441, one obtains that

IE T 2
442 ≤ C

1

N2
a

Na∑

i,j,k,l=1

(
〈ga,i ⊗1 ga,j , ga,k ⊗1 ga,l〉L2([0,N ]4)

)2

≤ C
1

N2
a

Na∑

i,j,k,l=1

((1 + |i− j|)(1 + |k − l|)(1 + |i− k|)(1 + |j − l|))4H
′−4

≤ C N8H−6
a −→

N→∞
0. (26)

Therefore, from (25) and (26), one deduces that IE T 2
44 −→

N→∞
0 when Q > 1 or when Q = 1 and 1

2 < H < 3
4 .

Finally let us deal with the term T42. It can be also decomposed into two parts as follows

T42 = C
1

Na
I2

( Na∑

i,j=1

∫ N

0

dr(ga,i ⊗ ga,i)(·, r) ⊗2 (ga,j ⊗ ga,j)(·, r)
)s

= C
1

Na
I2

( Na∑

i,j

〈ga,i, ga,j〉L2([0,N ]2) (ga,i ⊗1 ga,j)
)

+ C
1

Na
I2

( Na∑

i,j=1

(ga,i ⊗1 ga,j) ⊗1 (ga,j ⊗1 ga,i)

:= T421 + T422
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and therefore

IE T 2
421 ≤ C

1

N2
a

Na∑

i,j,k,l=1

〈ga,i, ga,j〉L2([0,N ]2)〈ga,k, ga,l〉L2([0,N ]2)〈ga,i ⊗1 ga,j , ga,k ⊗1 ga,l〉L4([0,N ]2)

≤ C
1

N2
a

Na∑

i,j,k,l=1

(
(1 + |i− j|)(1 + |k − l|)

)3H−2Q−1(
(1 + |i− k|)(1 + |j − l|)

)2H′−2

≤ C N8H−4Q−2
a −→

N→∞
0, (27)

since Q > 1 or Q = 1 and 1
2 < H < 3

4 . Concerning T422, we have

(ga,i ⊗1 ga,j) ⊗1 (ga,j ⊗1 ga,i)(y2, y
′
2) =

∫ 1

0

∫

y2
a
−j

∫ 1

0

∫

y′
2

a
−i
dxdx′dzdz′ψ(x)ψ(x′)ψ(z)ψ(z′)

×
∫ a(x+i)

0

∫ a(x′+j)

y2

∫ a(z+j)

0

∫ a(z′+i)

y′2

dudvdu′dv′ (|u− v||u′ − v′||u− u′|)2H
′−2

∂1K
H′

(v, y2)∂1K
H′

(v′, y2)

and therefore with the same changes of variables than in the previous proofs and the property satisfied by
ψ,

IE T 2
422 =

C

N2
a

Na∑

i,j,k,l=1

∫

[0,1]8

8∏

i=1

ψ(xi)dxi

∫ a(x1+i)

0

∫ a(x2+j)

0

∫ a(x3+j)

0

∫ a(x4+i)

0

∫ a(x5+k)

0

∫ a(x6+l)

0

∫ a(x7+l)

0

∫ a(x8+k)

0

8∏

i=1

dui

×
(
|u1 − u2||u3 − u4||u2 − u4|

)2H′−2(|u5 − u6||u7 − u8||u6 − u8|
)2H′−2(|u1 − u5||u2 − u6|

)2H′−2

= C

∫

[0,1]8

8∏

i=1

xiψ(xi)dxi

∫

[0,1]8

8∏

i=1

dui
()2H′−2

S(i, j, k, l, (upxp)p)

with

S(i, j, k, l, (upxp)p) :=
1

N2
a

Na∑

i,j,k,l=1

(
|x1u1−x2u2+i−j||x3u3−x4u4+j−i||x2u2−x4u4+j−i||x5u5−x6u6+k−l|

|x7u7 − x8u8 + l − k||x5u5 − x7u7 + k − l||x1u1 − x5u5 + i− k||x2u2 − x6u6 + j − l|
)2H′−2

.

But, with a first order approximation, it is clear that S(i, j, k, l, (upxp)p) behaves as S(i, j, k, l, 0) since
upxp ∈ [0, 1]. Thus,

S(i, j, k, l, 0) ∼ 1

N2
a

Na∑

i,j,k,l=1

(
|i− j|3|k − l|3|i− k||j − l|

)H−1

∼ C

Na

∫ Na

0

∫ Na

0

∫ Na

0

x3H−3y3H−3zH−1(x+ y + z)H−1dxdydz

∼ C1N
8H−6
a 1H>3/4 + C2 log(Na)1H=3/4 + C3N

4H−3
a 12/3<H<3/4

+C4N
−1/3
a log(Na)1H=3/4 + C5N

2H−2
a 11/2<H<2/3.

Thus if Q = 1 then
∫
[0,1]8

∏8
i=1 xiψ(xi)dxi 6= 0 and it implies that IE T 2

422 −→
N→∞

0 when 1/2 < H < 3/4.

But if Q ≥ 2 then then
∫
[0,1]8

∏8
i=1 xiψ(xi)dxi = 0 and a second order approximation of S(i, j, k, l, (upxp)p)

has to be considered. For instance, from a Taylor expansion,

|x1u1 − x2u2 + i− j|H−1 ≃ |i− j|H−1
(
1 + (H − 1)

x1u1 − x2u2

i− j

)
.
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Therefore in a second order approximation, and using
∫
[0,1]8

∏8
i=1 xiψ(xi)dxi = 0 then

∫

[0,1]8

8∏

i=1

xiψ(xi)dxiS(i, j, k, l, (upxp)p)∼
C

N2
a

∫

[0,1]8

8∏

i=1

uix
2
iψ(xi)dxi

Na∑

i,j,k,l=1

|i− j|3H−6|k − l|3H−6|i− k|H−2|j − l|H−2

∼ C

Na

8∏

i=1

ui .

Hence, when Q ≥ 2, IE T 2
422 −→

N→∞
0 for all 1/2 < H < 1. As a consequence, for Q ≥ 2 or Q = 1 and

1/2 < H < 3/4, with (24), (25), (26) and (27), we have proved that T46, T44 and T42 converge to zero in
L

2(Ω). Therefore T4 behaves as T40, and the behavior of this term is the same as in the case of a fBm with
parameter H .

5 Applications and simulations

Here, we will denote XH as well a fBm with H ∈ (0, 1) or a Rosenblatt process with H ∈ (1/2, 1).

5.1 Asymptotic normality of the sample variance of approximated wavelet

coefficients

Here a sample (XH
0 , X

H
1 , · · · , XH

N ) of XH is supposed to be observed. For (a, b), define the approximated

wavelet coefficients of d(a, b) and d̃(a, b),

e(a, b) =
1√
a

N∑

k=1

XH
k ψ
(k
a
− b
)

and ẽ(a, b) =
e(a, b)

aH+1/2C1/2(H)
, (28)

that are the usual Riemann approximations. Define also for a > 0,

V̂N (a) =
1

Na

Na∑

i=1

(
ẽ2(a, i) − 1

)
. (29)

Remark 2 These approximations of wavelet coefficients and their sample variance can be directly computed
from data for all mother wavelet ψ. In the case of a multiresolution analysis with orthogonal discrete wavelet
transform, the very fast Mallat’s algorithm can be applied to obtain such approximations. It provides a
clear advantage to the wavelet based estimator of the parameter H with regard to the estimators based on
a minimisation of a criterium (such as maximum likelihood estimators).

Now, it can be proved:

Proposition 4 Let a(N) a sequence of integer numbers satisfying N a(N)−1 −→
N→∞

∞, and a(N) −→
N→∞

∞.

Assume also that ψ ∈ Cm(R) with m ≥ 1 and ψ is [0, 1]-supported. Then,

1. if XH is a fBm and Q ≥ 2 or Q = 1 and 0 < H < 3/4, and if N a(N)−2 −→
N→∞

0 and m ≥ 2, then

Theorem 1 holds when VN (a) is replaced by V̂N (a).

2. if XH is a fBm and Q = 1 and 3/4 < H < 1, and if

N a(N)−(5−4H)/(4−4H) −→
N→∞

0 and N a(N)−(3−2H+m)/(3−2H) −→
N→∞

0

then ℓ−1
2 (H)

(
N
a

)2−2H

V̂N (a)
D−→

N→∞
R2H−1

1 , where R2H−1
1 is a (2H − 1)-Rosenblatt random variable.
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3. if XH is a Rosenblatt process, if N a(N)−(3−2H)/(2−2H) −→
N→∞

0 and N a(N)−(1+m) −→
N→∞

0, then

for all Q ≥ 1, C−1
T2

(H)
(
N
a

)1−H
V̂N (a)

D−→
N→∞

RH1 where RH1 is a H-Rosenblatt random variable.

Proof of Proposition 4: Let Q ≥ 1 and XH be as well a fBm with H ∈ (0, 1) or a Rosenblatt process
with H ∈ (1/2, 3/4) (in the sequel we will only use the second-order properties of the process which are
the same for a H-fBm and a H-Rosenblatt process). First,

IE
[
(ẽ(a, i) − d̃(a, i))2

]
=

1

2C(H)

(
−
∫ 1

0

∫ 1

0

dtdt′ψ(t)ψ(t′)|t− t′|2H − 2

a

∫ 1

0

dtψ(t)

a−1∑

k′=0

ψ
(k′

a

)(
|t+ i|2H −

∣∣t− k′

a

∣∣2H
)

+
1

a2

a−1∑

k,k′=0

ψ
(k
a

)
ψ
(k′

a

)(∣∣i+ k

a

∣∣2H +
∣∣i+ k′

a

∣∣2H −
∣∣k
a
− k′

a

∣∣2H
)
.

Now, from usual Taylor expansions, if g is supposed to be a m times continuously differentiable [0, 1]-
supported function for all a > 0,

∣∣∣
1

a

a−1∑

k=0

g
(k
a

)
−
∫ 1

0

g(t)dt
∣∣∣ ≤ sup

t∈[0,1]

|g(m)(t)| 1

am
.

¿From a Taylor expansion, there exists C depending only on H , Q and ψ such that
∣∣∣
∫ 1

0
ψ(t)(i+ t)2Hdt

∣∣∣ ≤
C
(
(1 + i)2H−Q). Therefore, there exists C depending only on H , Q, m and ψ such that for all a > 0

∣∣∣
1

a

a−1∑

k=0

ψ
(k
a

)∣∣∣ ≤ C

am
and

∣∣∣
1

a

a−1∑

k=0

ψ
(k
a

)∣∣i+ k

a

∣∣2H
∣∣∣ = C

(
(1 + i)2H−Q +

(1 + i)2H

am
)
.

Finally, as it was already proved in [4], there exists C depending only on H and ψ such that for all m ≥ 1
and a > 0,

∣∣∣
1

a2

a−1∑

k,k′=0

ψ
(k
a

)
ψ
(k′

a

)∣∣k
a
− k′

a

∣∣2H −
∫ 1

0

∫ 1

0

dtdt′ψ(t)ψ(t′)|t− t′|2H
∣∣∣ ≤ C

a

∣∣∣
1

a

∫ 1

0

dtψ(t)

a−1∑

k′=0

ψ
(k′

a

)∣∣t− k′

a

∣∣2H −
∫ 1

0

∫ 1

0

dtdt′ψ(t)ψ(t′)|t− t′|2H
∣∣∣ ≤ C

a
.

All those inequalities imply that there exists C depending only on H , Q, m and ψ such that for all a > 0,

IE
[
(ẽ(a, i) − d̃(a, i))2

]
≤ C

(1

a
+

(1 + i)2H−Q

am
+

(1 + i)2H

a2m

)
. (30)

But, with Cauchy-Schwarz Inequality,

IE
∣∣V̂N (a) − VN (a)

∣∣ ≤ 1

Na

Na∑

i=1

IE
∣∣ẽ2(a, i) − d̃2(a, i)

∣∣

≤ 1

Na

Na∑

i=1

√
IE
[(
ẽ(a, i) − d̃(a, i)

)2]
√
IE
[(
ẽ(a, i) + d̃(a, i)

)2]

≤ 1

Na

Na∑

i=1

√
IE
[(
ẽ(a, i) − d̃(a, i)

)2]
√
IE
[
8d̃2(a, i) + 2

(
ẽ(a, i) − d̃(a, i)

)2]

≤
√

2
( 1

Na

Na∑

i=1

IE
[(
ẽ(a, i) − d̃(a, i)

)2])1/2( 1

Na

Na∑

i=1

IE
[
4d̃2(a, i) + 2

(
ẽ(a, i) − d̃(a, i)

)2])1/2

,
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where the last inequality follows from the Cauchy-Schwarz Inequality. Now since a = a(N) is supposed
to be such that a(N)N−H/(H+m) −→

N→∞
0, from (30), there exists C > 0 not depending on a and N such

that,

IE
∣∣V̂N (a) − VN (a)

∣∣ ≤ C
( 1√

a
+
NH
a

am
+
N
H−1/2
a

am/2
1Q=1, H>3/4

)
. (31)

Now, the 3 different cases of the Proposition can be deduced:

• Using the Markov Inequality, and ifN a(N)−2 −→
N→∞

0 andm ≥ 2, then P
(
N

1/2
a

∣∣V̂N (a)−VN (a)
∣∣) −→

N→∞
0.

Therefore, if XH is a fBm and Q ≥ 2 or Q = 1 and 0 < H < 3/4, Theorem 1 is still valid when

VN (a) is replaced by V̂N (a).

• if XH is a fBm, Q = 1 and 3/4 < H , then if N a(N)−
5−4H
4−4H −→

N→∞
0 and N a(N)−

3−2H+m
3−2H −→

N→∞
0,

then P
(
N2−2H
a

∣∣V̂N (a) − VN (a)
∣∣) −→

N→∞
0 and therefore ℓ−1

2 (H)
(
N
a

)2−2H

V̂N (a)
D−→

N→∞
R2H−1

1 from

Theorem 2, where R2H−1
1 is a (2H − 1)-Rosenblatt random variable.

• if XH is a Rosenblatt process, if N a(N)−
3−2H
2−2H −→

N→∞
0 and N a(N)−(1+m) −→

N→∞
0, then for all

Q ≥ 1, from Theorem 4, C−1
T2

(H)
(
N
a

)1−H
V̂N (a)

D−→
N→∞

RH1 where RH1 is a H-Rosenblatt random

variable.

Remark 3 We do not think that the conditions provided on a(N) in Proposition 4 are optimal. They

could be improved by computing of IE
[
(V̂N (a)− VN (a))2

]
instead of IE

∣∣V̂N (a)− VN (a)
∣∣ in its proof. How-

ever, such computation should be very long and technical in the case of the Rosenblatt process and we have
preferred not to present them.

Since the case of fBm was already studied (see for instance [4]) we only provide below the results of sim-
ulations when XH is a Rosenblatt process. Thus, we first exhibit the main result of this paper, i.e. the

limit theorem C−1
T2

(H)
(

N
a(N)

)1−H
V̂N (a(N))

D−→
N→∞

RH1 following the following procedure.

Concrete procedure of simulations:

• The samples of Rosenblatt processes are obtained following a similar procedure as the one presented
in [3]. It is a wavelet based method introduced by Sellan in the case of the fBm (see for instance
[18]). The Matlab procedures of generation of fBm or Rosenblatt processes can be downloaded from
http://samos.univ-paris1.fr/-Jean-Marc-Bardet.

• The chosen mother wavelet ψ is a Daubechies wavelet of order 10 (which is such that Q ≥ 2 and
ψ ∈ C2(R).

• The values of both the constants C(H) and CT2 (H) are obtained from usual approximations of
integrals by Riemann sums.

Montecarlo experiments using 100 independent replications of trajectories are realized for each H =
0.6, 0.7, 0.8 and 0.9 and for N = 103 and 104. The sequence of scales (a(N))N is selected to be such
that a(N) = N0.4 and a(N) = N0.6. The following Table 5.1 provides the results of simulations. It

appears that
(
C−1
T2

(H)
(

N
a(N)

)1−H
V̂N (a(N))

)
N

converges in distribution to a centered distribution with
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0.6 0.7 0.8 0.9

N = 103
√

MSE a(N) = N0.4, a(N) = N0.6 1.44, 1.21 1.23, 1.06 0.82, 0.91 0.72, 0.97

N = 104
√

MSE a(N) = N0.4, a(N) = N0.6 1.18, 1.13 0.89, 1.19 0.66, 0.93 0.04, 0.04

Table 1: Convergence of
(
C−1
T2

(H)
(

N
a(N)

)1−H
V̂N (a(N))

)
N

for different choices of H, N and a(N), from

100 independent replications.
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Figure 1: FFT estimation (Silverman’s method) of the density of the limit of
(
C−1
T2

(H)
(

N
a(N)

)1−H
V̂N (a(N))

)
N

for H = 0.7, N = 10000 and a(N) = N0.6 from 100 independent

replications.

a variance close to 1. However, the case H = 0.9 is not as convincing as the other ones because a bias
appears in the limit distribution (the procedure of the generation of a Rosenblatt process for large H and
the very slow convergence rate (N/a(N))0.1 of the limit theorem could explain this weak result).

An example of the estimation of the limit density is also presented in Figure 5.1 in the case H = 0.7,
N = 10000 and a(N) = N0.6. Such a density is quite similar to a standard Gaussian density but a
Kolmogorov-Smirnov test invalides the hypothesis that this distribution is a N (0, 1) law. This result
should be compared with the numerical simulation of the Rosenblatt density given in [29].

Figure 5.1 shows the convergence of the sequence
(
C−1
T2

(H)
(

N
a(N)

)1−H
V̂N (a(N))

)
N

when N increases. It

can be noted that this sequence seems not converge in L
2(Ω).

5.2 Estimation of H

Here we consider that a sample (X1, . . . , XN) of X = σ2XH is known, but H and σ2 are unknown. For
any 3 cases of Proposition 4, one deduces that

1

a(N)2H+1σ2 C(H)

1

Na(N)

Na(N)∑

j=1

e2(a(N), j) = 1 + εN ,
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Figure 2: Convergence of the sequence
(
C−1
T2

(H)
(

N
a(N)

)1−H
V̂N (a(N))

)
N

for H = 0.7 and a(N) = N0.5.

where εN
D−→

N→∞
0. Therefore,

log
( 1

Na(N)

Na(N)∑

j=1

e2(a(N), j)
)
− (2H + 1) log(a(N)) − log(σ2 C(H)) = ε′N ,

where ε′N
D−→

N→∞
0 and the asymptotic distribution of Nα

a(N)εN and Nα
a(N)ε

′
N are the same (a Gaussian or

a Rosenblatt distribution) with α = 1/2, 2−2H or 1−H following the case. Therefore, if ℓ ∈ N∗ \{1} and

ai(N) = ia(N) for i = 1, . . . , ℓ, a log-log-regression of
(

1
Nai(N)

∑Nai(N)

j=1 e2(ai(N), j)
)

1≤i≤ℓ
by
(
ia(N)

)
1≤i≤ℓ

(or
(
i
)
1≤i≤ℓ) provides an estimator of H . Such an estimator is defined by

ĤN :=
(1
2
, 0
)′ ·
(
Z ′
ℓ Zℓ

)−1
Z ′
ℓ

( 1

Nai(N)

Nai(N)∑

i=1

e2(a, i)
)

1≤i≤ℓ
− 1

2
,

where Zℓ(i, 1) = 1 and Zℓ(i, 2) = log i for all i = 1, · · · , ℓ. Then Proposition 4 implies

Proposition 5 Using the same assumptions as in Proposition 4, Then,

1. if XH is a fBm and Q ≥ 2 or Q = 1 and 0 < H < 3/4, and if N a(N)−2 −→
N→∞

0 and m ≥ 2, then

there exists γ2(H, ℓ, ψ) > 0 depending only on H, ℓ and ψ such that
√

N

a(N)

(
ĤN −H

) D−→
N→∞

N
(
0 , γ2(H, ℓ, ψ)

)

2. if XH is a fBm and Q = 1 and 3/4 < H < 1, and if N a(N)−
5−4H
4−4H −→

N→∞
0 and N a(N)−

3−2H+m
3−2H −→

N→∞
0,

then there exists C > 0 depending only on H, ℓ and ψ such that
(

N
a(N)

)2−2H(
ĤN−H

) D−→
N→∞

L where

L is a distribution depending only on H, ℓ and ψ.

3. if XH is a Rosenblatt process, if N a(N)−
3−2H
2−2H −→

N→∞
0 and N a(N)−(1+m) −→

N→∞
0, then for all

Q ≥ 1, there exists C > 0 depending only on H, ℓ and ψ such that
(

N
a(N)

)1−H(
ĤN − H

) D−→
N→∞

L

where L is a distribution depending only on H, ℓ and ψ.
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H 0.6 0.75 0.9

N = 500 Mean, STD,
√

MSE 0.59, 0.15, 0.15 0.67, 0.17, 0.18 0.79, 0.17, 0.19

N = 2000 Mean, STD,
√

MSE 0.61, 0.058, 0.059 0.72, 0.067, 0.075 0.83, 0.075, 0.10

N = 10000 Mean, STD,
√

MSE 0.61, 0.032, 0.033 0.73, 0.035, 0.038 0.86, 0.045, 0.052

Table 2: Convergence of ĤN for different choices of H and N , from 100 independent replications.

Remark 4 i. An estimator of log(σ2C(H)) (and therefore of σ2) can also be provided by this method,
with the same convergence rate.
ii. Concerning the convergence rates, it is obvious that the choice of the sequence a(N) can not depend on
H. The following table summarizes the optimal choice of a(N) and the corresponding convergence rate for

ĤN (with δ > 0 arbitrary small and m ≥ 2):

Choice of a(N) Convergence rate

fBm and Q ≥ 2 or Q = 1 and 0 < H < 3/4 N1/2+δ N1/4−δ/2

fBm and Q = 1 and 3/4 < H < 1 N1/2+δ N1−H−δ(2−2H)

Rosenblatt process N1/2+δ N (1−H)/2−δ(1−H)

It is clear that such convergence rate are weak in a parametric frame. For instance, applied to the increments
of a fBm, the convergence rate of the maximum likelihood or the approximated Whittle maximum likelihood
estimator is N1/2 (see [11] and [16]; we do not know such result concerning the Rosenblatt process).
However, as it was previously recalled in the introduction, the wavelet based estimator can be also applied
to semi-parametric frames.

The results of simulations are given in Table 5.2. It appears that the convergence rate of the estimator
depends on H as it was specified in Proposition 5. However, as m is chosen to increase with N the
convergence rate are better than in Proposition 5.
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Séminaire de Probabilités , XXXIV, 247-262.

[26] F. Roueff and M.S. Taqqu (2008). Asymptotic normality of wavelet estimators of the memory parameter
for linear processes. Preprint arXiv:0805.0778.

[27] G. Samorodnitsky and M.S. Taqqu (1994): Stable Non-Gaussian random variables. Chapman and
Hall, London.

[28] M.S. Taqqu (1975): Weak convergence to the fractional Brownian motion and to the Rosenblatt process.
Z. Wahrsch. Verw. Gebiete, 31, 287-302.

[29] S. Torres and C.A. Tudor (2008): Donsker type theorem for the Rosenblatt process and a binary
market model”, Preprint, to appear in Stochastic Analysis and Applications.

29



[30] C.A. Tudor (2008): Analysis of the Rosenblatt process. ESAIM Probability and Statistics , 12, 230-257.

[31] C.A. Tudor and F. Viens (2007): Variations and estimators for the self-
similarity order through Malliavin calculus. Submitted, preprint available at
http://arxiv.org/PS cache/arxiv/pdf/0709/0709.3896v2.pdf.

30


