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Abstract

One fundamental aspect of linear logic is that its conjunction behaves in the same way as

a tensor product in linear algebra. Guided by this intuition, we investigate the algebraic

status of disjunction – the dual of conjunction – in the presence of linear continuations. We

start from the observation that every monoidal category equipped with a tensorial negation

inherits a lax monoidal structure from its opposite category. This lax structure interprets dis-

junction, and induces a multicategory whose underlying category coincides with the kleisli

category associated to the continuation monad. We study the structure of this multicategory,

and establish a structure theorem adapting to linear continuations a result by Peter Selinger

on control categories and cartesian continuations.

Key words: Linear logic, monoidal categories, tensorial negation, control categories,

linear continuations.

1 Introduction

Linear logic is a proof-theoretic yoga based on two basic ingredients: linearity and

duality. Linearity means that every hypothesis is used exactly once in a proof. In

other words, an hypothesis cannot be discarded, nor repeated in linear logic – unless

the modal operator “of course” enables it explicitly on the formula. A real surprise

in the 1980s, when linear logic was discovered, is that this linear policy on proofs

leads to a tangible connection between proof theory and tensor algebra. The striking

observation was that, once tamed by linearity, the conjunction behaves in the same

way as the tensor product of linear algebra. Conceptually speaking, this enables

to interpret the conjunction of linear logic as the tensor product of a monoidal

category – just like the conjunction of intuitionistic logic is naturally interpreted as

the cartesian product of a cartesian category.
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The second main ingredient of linear logic is classical duality. Classical duality

means that the negation operator ¬ of linear logic is involutive, in the sense that the

equality

A = ¬¬A (1)

holds for every formula A. From this follows a duality phenomenon already familiar

in classical logic: namely, that every connective of linear logic comes with a dual

connective. Typically, the dual of the linear conjunction ⊗ is the linear disjunction

� defined by the de Morgan equality:

A � B := ¬ ( ¬A ⊗ ¬B ). (2)

Moreover, it follows from the equality (1) that the disjunction is associative:

A1 � (A2 � A3) = (A1 � A2)� A3.

A logic of tensor and negation. In this article, we will outline a theory combin-

ing harmoniously linear logic and the theory of continuations in computer science.

The theory itself is based on a relaxation of linear logic into a logic of tensor and

negation, where the equality (1) is replaced by the existence of a canonical proof

A ⊢ ¬¬A (3)

Given a program of type A, it is natural to think of its environment (also called

evaluation context, or continuation) as a program of the dual type ¬A. Now, it is

well-known in the theory of continuations that applying the negation another time

to the type ¬A does not give back the type A itself, but the slightly more liberal

type ¬¬A.

This phenomenon is reflected in categorical semantics by the existence of a con-

tinuation monad ¬¬ associated to any tensorial negation (see definition below) in a

monoidal category C. The canonical proof (3) is then interpreted in the category C

as the unit of the monad

A −→ ¬¬A.

One central observation is that, after replacing the involutive negation by a tensorial

negation, it is still possible to derive the disjunction� from the conjunction ⊗ using

the de Morgan equality (2). One should be careful, however, because the resulting

binary connective is not associative anymore. In fact, the good way to proceed is to

define simultaneously the family of n-ary disjunctions:

[ A1 � · · · � An ] := ¬ ( ¬A1 ⊗ · · · ⊗ ¬An ).
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It appears then that this family of n-ary disjunctions is associative, but in the lax

sense: it defines what Leinster calls a lax monoidal product. Typically, one has

canonical morphisms:

[A1 � [A2 � A3]] −→ [A1 � A2 � A3] ←− [[A1 � A2]� A3]

which are not required to be isomorphisms. There is also a canonical morphism

A −→ [A]

which coincides with the unit of the continuation monad.

This leads us to replace the involutive negation of linear logic by a tensorial nega-

tion, and to study the resulting logic of tensor and negation – which we call tenso-

rial logic. Our general policy, then, is to lift the theory of linear logic to this relaxed

framework.

For instance, it is well-known in the theory of continuations that the monad ¬¬ is

strong, ie. is equipped with two morphisms

tA,B : A ⊗ ¬¬B→ ¬¬(A ⊗ B)

t′A,B : ¬¬A ⊗ B→ ¬¬(A ⊗ B)

natural in A and B, and compatible with the unit and multiplication of the monad,

and with the symmetry of the category, in the expected sense.

In this article, we will study the structure of various kleisli categories induced by a

continuation monad. Two particularly important situations have been studied com-

prehensively in the literature: the case when the continuation monad is commuta-

tive ; and the case when the continuation monad is not commutative, but the tensor

product of the category C is cartesian. After reviewing in turn the two situations, we

explain why one needs to consider multicategories in order to handle the general

case of a linear continuation.

First situation: a commutative monad. A particularly simple but important sit-

uation is when the tensorial negation induces a commutative monad. This means
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that the pair of left and right strength t and t′ makes the following diagram

¬¬(¬¬A ⊗ B)
¬¬(t′

A,B
)

//¬¬¬¬(A ⊗ B)
µA⊗B

��
¬¬A ⊗ ¬¬B

t¬¬A,B

33

t′
A,¬¬B ++

¬¬(A ⊗ B)

¬¬(A ⊗ ¬¬B)
¬¬(tA,B)

//¬¬¬¬(A ⊗ B)
µA⊗B

@@

commute, for all objects A and B. It is folklore that a commutative monad is the

same thing as a lax monoidal monad, equipped in this case with the induced mor-

phisms

m1 : 1 −→ ¬¬1 and mA,B : ¬¬A ⊗ ¬¬B −→ ¬¬(A ⊗ B).

It is also folklore that the kleisli category of a monad on a monoidal category C is

monoidal, with its monoidal structure inherited from C, if and only if, the monad

is lax monoidal.

Masahito Hasegawa [5] has observed that a continuation monad is commutative if

and only if the two morphisms

¬ηA : ¬¬¬A −→ ¬A η¬A : ¬A −→ ¬¬¬A

are inverse of one another, for every object A. This property is equivalent to the

statement that the continuation monad is idempotent, this meaning that every mor-

phism

µA : ¬¬¬¬A −→ ¬¬A

is an isomorphism, for every object A. We shall see that the kleisli category of a

continuation monad is ∗-autonomous, with its monoidal structure inherited from

the original category, if and only if the continuation monad is lax monoidal. Every

commutative continuation monad thus defines a model of linear logic in this way.

Recall that in that case, the kleisli category K is the category with the same objects

as C, whose maps are described by the equality:

K(A, B) = C(A,¬¬B) = C(¬B,¬A)

It is worth noting that many models of multiplicative linear logic are produced in

this way, starting from phase spaces, coherence spaces, or more recently, finite-

ness spaces or KÃ¶the spaces [2]. This adapts to a proof-theoretic setting the well-

known fact that the negated objects (of the form ¬A) of a heyting algebra define a

boolean algebra.
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Second situation: a cartesian tensor. The continuation monad ¬¬ is not com-

mutative in many familiar situations: typically, when ¬A is defined as A⇒ ⊥ for a

given object ⊥ in a cartesian closed category. In that case, the kleisli category is not

necessarily ∗-autonomous. However, an interesting phenomenon arises when the

tensor product ⊗ is cartesian, and the category C has finite coproducts (noted ⊕). In

that case, indeed, one observes that the opposite category Kop is cartesian closed.

The cocartesian structure in C lifts to K, and becomes a cartesian structure in Kop.

Hence, the cartesian product in Kop of two objects A and B is defined as A⊕ B. The

series of natural bijections

Kop(A ⊕ B,C) � C(¬(A ⊕ B),¬C)

� C(¬A ⊗ ¬B,¬C)

� C(¬A,¬(¬B ⊗C))

� Kop(A,¬B ⊗C)

establishes that ¬B ⊗ C defines the intuitionistic implication B ⊸ C from the ob-

ject B to the object C in the category Kop. This provides a basic recipe to construct

a cartesian closed category from a cartesian category C with negation.

At this point, one would like to clarify what particular kind of cartesian closed

categories are of the form Kop for a cartesian category C with negation, and finite

coproducts. In particular, there should remain in the category Kop something of the

cartesian product ⊗ of the original category C. A general result by John Power and

Edmund Robinson states that to give a (bi-)strength for the monad ¬¬ is to give

a premonoidal structure on the kleisli category K such that the canonical functor

j : C → K is a strict premonoidal functor. This means, in particular, that every

object A and B of the category K defines two functors:

B 7→ A ⊗L B A 7→ A ⊗R B

which coincide on objects, in the sense that the object A ⊗L B is equal to the ob-

ject A ⊗R B – which is generally noted A ⊗ B. Note in particular that the diagram

A ⊗ B
f⊗LB //

A⊗Rg

��

A′ ⊗ B

A′⊗Rg

��
A ⊗ B′

f⊗LB′ // A′ ⊗ B′

(4)

does not necessarily commute for f : A −→ A′ and g : B −→ B′. Intuitively, each

border of the diagram captures a particular order of evaluation of the components f
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and g. A map f : A −→ A′ is called central when the diagram (4) commutes for

every g : B −→ B′. Note that a monoidal category is a premonoidal category where

all the maps are central.

Hence, the cartesian product ⊗ of the original category C induces a premonoidal

structure ⊗ on the kleisli category K.

In his work on control categories, Peter Selinger [15] characterizes the cartesian

closed categories of the form Kop for a cartesian category C with negation, and

finite coproducts. To that purpose, he starts from the observation that the pre-

monoidal structure (⊗) just discussed on K, may be seen alternatively as a pre-

monoidal structure (�) in the opposite category Kop. Selinger axiomatizes the prop-

erties of the premonoidal structure� inside the cartesian closed category Kop, start-

ing from the key observation that the isomorphism

(¬A ⊗ B) ⊗C � ¬A ⊗ (B ⊗C)

in the category C induces an isomorphism

(A⊸ B)�C � A⊸ (B�C)

in the category Kop. This leads to the definition of control category. Selinger es-

tablishes then a structure theorem, which states that every control category P is of

the form Kop for a given cartesian category C with negation, and finite coproducts.

The crux of the proof is the definition of C as the sub-category of central maps

in the control category P. The category C happens to be cartesian with negation,

and finite coproducts. Moreover, the associated category Kop is equivalent to the

original control category P in a suitable 2-category of control categories.

In a later manuscript, Selinger [16] explains how to get rid of the assumption that

the category C has finite coproducts. Recall that the category Kop has the same

objects as the category C, with

Kop(A, B) = C(¬A,¬B).

The idea is to replace K1 = Kop by the category K2 whose objects (A1, . . . , Am) are

finite sequences of objects of the category C, with

K2((A1, . . . , Am), (B1, . . . , Bn)) = C(¬A1 ⊗ · · · ⊗ ¬Am,¬B1 ⊗ · · · ⊗ ¬Bn).

The two categories K1 = Kop and K2 are equivalent (as cartesian closed cate-

gories) when the original category C has finite coproducts. The reason is that
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every object (A1, . . . , Am) in the category K2 is isomorphic to the singleton ob-

ject (A1 ⊕ · · · ⊕ Am). Selinger observes that, in contrast to K1 = Kop, the category

K2 is cartesian – with cartesian product given by concatenation on objects – even

when the category C does not have finite coproducts. Moreover, the category K2 is

cartesian closed because every morphism

¬A1 ⊗ · · · ⊗ ¬Am → ¬B1 ⊗ · · · ⊗ ¬Bn

in the category C decomposes (by cartesianity of ⊗) as a sequence of n morphisms

¬A1 ⊗ · · · ⊗ ¬Am → ¬Bi (5)

from the object (A1, . . . , Am) to the singleton object (Bi) in the category K2. This

enables to define the closed structure⊸ in the category K2 in two steps. First, the

closed structure is defined on singleton objects as:

(A1, . . . , Am)⊸ B := ¬A1 ⊗ · · · ⊗ ¬Am ⊗ B (6)

and then extended to all objects using the well-known isomorphism

X ⊸ (B1, . . . , Bn) � (X ⊸ B1, . . . , X ⊸ Bn)

satisfied in any cartesian category. Selinger shows that the category K2 defines a

control category P, and extends in this way his structure theorem to a cartesian

category C with negation, but without finite coproducts.

General situation. Here, we want to extend the theory of control categories to

the general situation of a monoidal category with negation – without assuming that

the tensor product ⊗ of C is cartesian. The situation is apparently hopeless: we

have seen that the category K1 = Kop is premonoidal, but not monoidal, and that

the category K2 is monoidal, but not closed. What category K1 or K2 should we

consider?

Well, our starting point will be to consider both categories at the same time, or more

precisely, the full and faithful functor

ι : I −→M (7)

which transports the premonoidal category I = K1 into the surrounding monoidal

category M = K2.
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Every monoidal category M is equipped with a tensor product, defining a functor

⊗ : M ×M −→M.

Our main observation is that the category I induces an exponential ideal in the

monoidal category M. The notion of exponential ideal extends the usual notion of

monoidal closed category, which we recall now.

Definition 1 A monoidal closed category M is a monoidal category equipped with

a functor

⊸ : Mop ×M −→M

and a natural isomorphism

Mop ×Mop ×M
⊗op×M //

Mop×⊸

��

Mop ×M

M(−,−)

��

� ϕ

Mop ×M M(−,−)
// Set

where the functor

M(−,−) : Mop ×M −→ Set

transports every pair of objects (A, B) to the set of morphisms M(A, B).

However, the notion of monoidal closed category is sometimes too restrictive, be-

cause in many situations of interest, the arrow A⊸ B is only defined for objects B

of a specific subcategory I of the category M. Moreover, in those situations, the

object A ⊸ B is an element of the subcategory I whenever the object B is an el-

ement of the subcategory I. This leads to the definition of exponential ideal I of a

monoidal category M where the arrow defines a functor

⊸ : Mop × I −→ I

satisfying a series of suitable properties. Here, we slightly extend the notion by

replacing the subcategory I of the category of M by a functor ι : I −→M.

Definition 2 (exponential ideal) An exponential ideal in a monoidal category M

consists of a pair of functors

ι : I −→M ⊸ : Mop × I −→ I
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and a natural isomorphism

Mop ×Mop × I
⊗op×I //

Mop×⊸

��

Mop × I

Mop×ι

��
� ϕ Mop ×M

M(−,−)

��
Mop × I Mop×ι

// Mop ×M M(−,−)
// Set

Observe that a monoidal closed category M is the same thing as a monoidal cate-

gory equipped with an exponential ideal where the functor ι is equal to the identity.

In the simplest situations, the functor ι is the embedding of a subcategory I inside

the category M. In that case, the exponential ideal provides a natural bijection

ϕ : M(A ⊗ B, J) � M(B, A⊸ J)

for every pair of objects A, B of M, and every object J of the ideal I. The definition

also ensures that the object A ⊸ J is an element of I. In fact, a simple argument

based on the Yoneda lemma ensures that there exists a canonical isomorphism

(A ⊗ B)⊸ J � A⊸ (B⊸ J).

Coming back to linear continuations, it appears that the full and faithful embed-

ding ι : I −→M formulated in (7) defines an exponential ideal, where

• I is the full subcategory consisting of the singleton objects in M,

• the linear implication⊸ is defined as:

(A1, . . . , Am)⊸ B
def
= ¬A1 ⊗ · · · ⊗ ¬Am ⊗ B.

Observe that the definition of linear implication coincides with (6) and thus gener-

alizes the situation induced by a cartesian category with negation.

The task of the article is to define a notion of linear control category axiomatizing

the various properties satisfied by the three connectives ⊗,⊸ and � ; and then, to

establish a structure theorem for linear control categories generalizing the result by

Selinger on control categories.

We are guided by the observation that the functor ι induces a multicategory M

9



whose objects are the objects of the category I and whose morphisms from a n-

tuple of objects (A1, . . . , An) to an object B are defined as the elements of:

M(A1, . . . , An; B)
def
= M((A1, · · · , An), (B))

= C(¬A1 ⊗ · · · ⊗ ¬An,¬B).

At this point, one feels in familiar grounds again. Remember that the control cat-

egory Kop is the opposite of the kleisli category K induced by the continuation

monad on the category C. We are in a similar situation here, except that the contin-

uation monad has been replaced by the lax disjunction:

[ A1 � · · · � An ] := ¬ ( ¬A1 ⊗ · · · ⊗ ¬An ).

discussed at the very beginning of the article. Categorically speaking, this lax dis-

junction defines a lax monoidal structure on the category C. Just like every monad

induces a kleisli category, every such lax monoidal structure induces a kleisli mul-

ticategory. And just like the control category Kop is the opposite of the kleisli cat-

egory K, the multicategoryM is the opposite of the kleisli multicategory induced

by the lax disjunction:

M(A1, . . . , An; B) = C(B,¬(¬A1 ⊗ · · · ⊗ ¬An))

= C(B, [A1 � · · ·� An]).

Hence, our analysis of linear continuations requires to generalize the traditional

notion of continuation monad, and at the same time the traditional notion of kleisli

category.

We also advocate this extension from monads to lax monoidal structures because it

is inherently justified by a 2-categorical point of view. On the one hand, a monad

in C is the same thing as a lax algebra structure on C, for the identity 2-monad Id

on Cat. On the other hand, a lax monoidal structure on C is the same thing as a

lax algebra structure, for the “free monoidal category” 2-monad T on Cat. There

exists a unique 2-monad morphism Id −→ T because the 2-monad Id is initial

in the category of 2-monads on Cat. This enables to transport every lax monoidal

structure (that is, a lax algebra for T ) to a monad (that is, a lax algebra for Id)

by “change of basis” along the map Id −→ T . In our case, the lax disjunction is

transported to the continuation monad, understood now as the unary case of the lax

disjunction:

[A] = ¬¬A.
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We benefit today of the rich formal theory of monads developed by Ross Street and

his collaborators [17,7]. One motivation for our work is to encourage the develop-

ment of an equivalent formal theory of lax monoidal structures, and more generally,

of lax monoidal algebras for various 2-monads.

Related works. Yves Lafont, Bernhard Reus and Thomas Streicher [8] observe

that the fragment of intuitionistic logic with negation instead of implication is suf-

ficient to interpret the λ-calculus, using a continuation passing style translation.

Later on, Martin Hofmann and Thomas Streicher [6] define a semantics of the

call-by-name λµ-calculus in terms of categorical continuation models induced by

response categories. They establish moreover that these continuation models are

complete among all the models of the call-by-name λµ-calculus.

The first attempt to characterize algebraically those categories of continuation is

made by Hayo Thielecke [18] in his study of ⊗¬-categories. To that purpose, Thi-

elecke introduces the important idea that these categories should be premonoidal,

instead of monoidal. He also observes that negation defines a self-adjoint functor,

whose associated monad is the continuation monad.

Peter Selinger introduces the notion of control category [15] and establishes a fun-

damental structure theorem, stating that every such category is the continuation

category of a particular response category. Our work is largely inspired from this

result, and the techniques Selinger introduced to that purpose.

A different class of models for the call-by-name λµ-calculus, based on fibrations,

was defined by Luke Ong for the original λµ-calculus [12] and later extended to the

disjunctive λµ-calculus by David Pym and Eike Ritter [14]. These models clarify

the fibered nature of the λµ-calculus with respect to control contexts. These fibered

categories offer a rich algebraic structure, in which the λµ-calculus is recovered as

an internal language. There is a back-and-forth translation between these fibered

models of the λµ-calculus and control categories, based on the idea that an object

A in a fiber ∆ should be identified with the object A � ∆ in the control category.

John Power and Edmund Robinson observe that this recipe is an instance of a gen-

eral construction, defining a fibration from any premonoidal structure, with fibers

provided by the comonoid objects of the category [13].

In his PhD thesis, Olivier Laurent [9] suggests a notion of linear control category,

standing half way between the notions of control category and linearly distributive
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category [1]. Laurent establishes then that every such category provides a model of

MALLP, a polarized variant of multiplicative and additive linear logic. In contrast

to control categories, the definition of linear control category does not attempt to

capture the precise properties of the continuation models induced by a monoidal

response category. This task of this article is precisely to answer this open question.

Plan of the article. In section 2, we recall the definition of tensorial logic and its

connection to polarized linear logic and ludics. In section 3, we introduce multicat-

egories and a notion of footprints that enables to see a multicategory as a functor

from a category to a monoidal category. In section 4, we define the notion of lin-

ear control categories and categories of linear continuation, and prove a structure

theorem between them.

2 Tensorial logic

In this section, we introduce a logic of tensor and negation – called tensorial logic.

We proceed in reverse order to the usual order in proof theory: instead of defining

the logic first, we start by explaining its categorical semantics. The reason is that the

algebraic setting is basic and concise: it simply consists of a tensorial negation on a

symmetric monoidal category. Once the categorical situation settled, we formulate

the sequent calculus of the resulting logic – this leading us to tensorial logic.

From that point of view, tensorial logic may be seen as a very natural relaxation of

linear logic, where the assumption that negation is involutive

A � ¬¬A (8)

is lifted. The idea of relaxing linear logic into tensorial logic is originally moti-

vated by our categorical analysis of game semantics [11]. In the game-theoretic

account of logic, every negation of the formula is interpreted as a turn in the game

– where Proponent gives the hand to Opponent, or conversely. The assumption (8)

that negation is involutive implies that every turn between Proponent and Opponent

becomes invisible in linear logic. Hence, the idea behind tensorial logic is simply

to relax this assumption.

Interestingly, the resulting logic of tensor and negation provides just another ac-

count of polarities in logic. The idea that logic is regulated by polarities is far from
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new: it was discovered by Jean-Yves Girard in his seminal work on LC [4]. Our

presentation simply clarifies the fact that polarities and continuations describe the

same duality phenomenon in their own logical and computational language, respec-

tively. In particular, we take the opportunity to clarify here in what sense the sequent

calculus underlying ludics is related to the notion of lax disjunction discussed in the

introduction.

Tensorial negation. A tensorial negation in a symmetric monoidal category (C,⊗, 1)

is defined as a functor

¬ : C −→ Cop (9)

equipped with a family of bijections

ψA,B,C : C(A ⊗ B,¬C) � C(A,¬ (B ⊗C))

natural in A, B and C and such that the following diagram

C(A ⊗ (B ⊗C),¬ D)
C(αA,B,C ,¬C)

//

ψA,B⊗C,D

��

C((A ⊗ B) ⊗C,¬ D)

ψA⊗B,C,D

��
C(A ⊗ B,¬ (C ⊗ D))

ψA,B,C⊗D

��
C(A,¬ ((B ⊗C) ⊗ D))

C(A,¬α−1
B,C,D

)
// C(A,¬ (B ⊗ (C ⊗ D)))

commutes for all objects A, B, C and D in C, where α denotes the associativity of

the tensor product in C. A symmetric monoidal category equipped with a tensorial

negation is called a dialogue category.

Given a negation, it is customary to define the formula false as the object ⊥
def
= ¬ 1

obtained by “negating” the unit object 1 of the monoidal category. Note that the

bijection ϕA,B,1 provides then the category C with a one-to-one correspondence

ϕA,B,1 : C(A ⊗ B,⊥) � C(A,¬B)

for all objects A and B. For that reason, the definition of a negation ¬ is often

replaced by thestatement that “the object ⊥ is exponentiable” in the symmetric

monoidal category C, with negation ¬A noted ⊥A. In the theory of continuation,

such an object is called an object of responses. It appears that the existence of

an exponential object in a monoidal category C is equivalent to the presence of a

tensorial negation in that category.
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The starting point of this work is to think of a tensorial negation ¬ as a pair of

functors:

L : C −→ Cop R : Cop −→ C

defined by the functor L given in (9) and its opposite functor R. This formulation

reveals that the functor L is left adjoint to the functor R,

L : C
//

oo Cop : R (10)

this reflecting the existence of a bijection

C(A,¬B) � C(B,¬A)

natural in A and B, described by the adjunction (10) as a bijection

C(A,RB) � Cop(LA, B).

This adjunction L ⊣ R induces a monad ¬¬ = R ◦ L on the category C, called

the continuation monad associated to the tensorial negation. This monad has been

thoroughly studied in computer science, because it captures the essential features

of continuations in programming languages. The monad has also a purely logical

status. Typically, its unit provides a natural transformation

ηA : A −→ ¬¬A

which reflects the fact that every formula A implies its double negation ¬¬A.

Tensorial logic. The algebraic situation induced by a tensorial negation is re-

flected in proof theory by a logic of tensor and negation – called tensorial logic.

We formulate below the sequent calculus of the logic. The formulas of tensorial

logic are defined by the following grammar:

A , B ::= true | A ⊗ B | ¬A.

where true will very soon play the role of the tensor unit. The rules of the sequent

calculus of the logic is given in Figure 1.

Polarities. The relationship between polarities and continuations is nicely cap-

tured by reformulating the bilateral sequent calculus above as a monolateral sequent

calculus. To that purpose, one needs indeed to introduce polarities on formula. The

formulas A that were on the right in the bilateral presentation remain there, and are
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Axiom
A ⊢ A

Γ ⊢ A A , ∆ ⊢ B
Cut

Γ , ∆ ⊢ B

Γ , A , B ⊢ C
Left ⊗

Γ , A ⊗ B ⊢ C

Γ ⊢ A ∆ ⊢ B Right ⊗
Γ , ∆ ⊢ A ⊗ B

Γ ⊢ A
Left true

Γ , true ⊢ A
Right true

⊢ true

Γ ⊢ A
Left ¬

Γ , ¬A ⊢

Γ , A ⊢
Right ¬

Γ ⊢ ¬A

A1 , . . . , An ⊢ Permutation (for any permutation σ)
Aσ(1) , . . . , Aσ(n) ⊢

Fig. 1. The sequent calculus for multiplicative tensorial logic: bilateral presentation

called positive. On the other hand, the formulas on the left of the sequent jump on

the right of the sequent, and are now called negative.

To distinguish between positive and negative formulas, we have to clone each con-

struct 1,⊗ into itself: 1,⊗ and its dual: ⊥,�. The negation ¬ itself is cloned in two

operations ✁ and ✂, each of them with a specific effect:

• ✁ transports the positive formulas into the negative formulas,

• ✂ transports the negative formulas into the positive formulas.

We use the letters P and Q for the positive formulas, the letters M and N for the neg-

ative formulas, and the letters Γ,∆ for the contexts of negative formulas. Formulas

are constructed by the following grammar:

Positives 1 | ✁N | P ⊗ Q

Negatives ⊥ | ✂P | M � N

Every positive formula P has a dual negative formula P⊥, obtained by dualizing

every logical construct appearing in the formula P.

There are two kinds of sequents in the bilateral presentation of tensorial logic: (1)

the sequents Γ ⊢ A with a conclusion, and (2) the sequents Γ ⊢without a conclusion.

Consequently, there are two kinds of sequents in the monolateral presentation: (1)

the sequents ⊢ Γ, P containing exactly one positive formula P, and (2) the sequents
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Axiom
⊢ P⊥, P

⊢ Γ, P ⊢ P⊥,∆,Q
Cut

⊢ Γ,∆,Q

⊢ Γ, P ⊢ ∆,Q
Tensor

⊢ Γ,∆, P ⊗ Q

⊢ Γ1, L,M,Γ2, P
Par

⊢ Γ1, L � M,Γ2, P

One
⊢ 1

⊢ Γ
Bottom

⊢ Γ,⊥

⊢ Γ,N
Linear strengthening

⊢ Γ, ✁N

⊢ Γ, P
Linear dereliction

⊢ Γ, ✂P
⊢ N1 , . . . , Nn Permutation (for any permutation σ)
⊢ Aσ(1) , . . . , Aσ(n)

Fig. 2. The sequent calculus for multiplicative tensorial logic: monolateral presentation

⊢ Γ where Γ contains only negative formulas.

Once understood the general recipe, the monolateral sequent calculus follows im-

mediately from the bilateral sequent calculus as depicted in Figure 2.

This monolateral formulation clarifies in what sense tensorial logic, a logic of linear

continuations, is at the same time a polarized logic. In fact, tensorial logic coincides

with the multiplicative fragment of MALLP, a linear variant of polarized linear

logic introduced by Olivier Laurent in his PhD thesis [9]. The interested reader

will find in [11] how this multiplicative fragment of tensorial logic is extended to

additives and exponentials.

3 Multicategories and fingerprints

As depicted in the introduction, adapting control categories to a linear setting leads

naturally to the study of a multicategoryM induced by a functor

ι : I −→M.

We recall here the basics of the theory of multicategories. We also introduce a no-

tion of fingerprint I −→ M which captures the fact that a multicategoryM can be

formulated as a functor from a category I – describing the objects of the multicate-

gory – to a monoidal category M – describing the morphisms of the multicategory.

We refer the reader to the Tom Leinster’s book Higher Operads, Higher categories
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[10] for a comprehensive work on multicategories.

Multicategories A multicategoryM consists of (1) a classM0 whose elements

are called the objects ofM, (2) for each n ∈ N and A1, . . . , An, B ∈ M0, a class of

morphismsM(A1, . . . , An; B) whose elements f are depicted graphically as

A1 A2
. . . An−1 An

f

B

or simply (when f is implicit)

A1 A2
. . . An−1 An

B

(3) for each n, k1, . . . , kn ∈ N and Ai, A
j

i
, B ∈ M0, a function

M(A1, . . . , An; B) ×M(A1
1
, . . . , A

k1

1
; A1) × · · · ×M(A1

n, . . . , A
kn

1
; An)

−→M(A1
1
, . . . , A

k1

1
, . . . , A1

n, . . . , A
kn

1
; B)

called composition and written

(g, f1, . . . , fn) 7→ g ◦ ( f1, . . . , fn)

and (4) for each A ∈ M0, an element idA ∈ M(A; A) called the identity on A,

satisfying to the usual identity and associativity axioms.

A multicategoryM is called symmetric when it is equipped with a bijection

M(A1, . . . , An; A)
∼
−→ M(Aσ(1), . . . , Aσ(n); A)

for any objects A1, . . . , An, A ∈ M0 and permutation σ ∈ S n. One requires that this

bijection is the identity when σ is the identity, and is compatible with the composi-

tion of permutations, and the composition of morphisms in the multicategory.

Maps of multicategories. Let M and N be multicategories. A map (or homo-

morphism) of multicategories F : M → N consists of a function F0 : M0 → N0

(usually just written F) together with a function

M(A1, . . . , An; B) −→ N(F(A1), . . . , F(An); F(B))
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for each A1, . . . , An, B ∈ M0, such that identities and composition are preserved.

The map of multicategories F is called symmetric when the two underlying multi-

categories are symmetric, and F preserves the symmetry.

This defines a category Multicat of multicategories and homomorphisms.

Every monoidal category M gives rise to a multicategory U (M) where commas

are understood as tensors

A1, . . . , An → B
def
= A1 ⊗ · · · ⊗ An → B.

When the monoidal category is not strict, there is an ambiguity in what we mean

by the object A1 ⊗ · · · ⊗ An. A nice way to get rid of this ambiguity is to work

with an unbiased formulation of our monoidal category (see definition 3.1.1, page

67 of [10]). For simplicity, we will ignore this issue in the rest of the paper. The

construction U defines a functor

U : MonCat −→Multicat

from the category MonCat of monoidal categories and strict monoidal functors, to

the category Multicat.

Conversely, every multicategoryM gives rise to a monoidal category F (M) whose

objects are finite sequences (A1, . . . , An) of objects ofM concatenated by the tensor

product

A1 ⊗ · · · ⊗ An
def
= (A1, . . . , An)

and whose morphisms are sequences of morphisms in M put side by side, as de-

picted informally below:

A1 ⊗ · · · ⊗ Am

B1 ⊗ · · · ⊗ Bn

def
=

A1
. . . Ai1

B1

Ai1+1
. . . Ai2

B2

. . .

Ain−1+1
. . . Am

Bn

It is folklore that this construction defines a functor

F : Multicat −→MonCat

left adjoint to the functor U . We explain now how this adjunction enables to see ev-

ery multicategoryM as a functor from a category of objects to a monoidal category

of morphisms – what we call the fingerprint of the multicategoryM.
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Fingerprint. Suppose given three categories A, B and C and two adjunctions

L1 : A
//

oo B : R1 L2 : B
//

oo C : R2

The adjunctions L1 ⊣ R1 and L2 ⊣ R2 induce a comonad L1 ◦R1 and a monad R2 ◦L2

on the category B. Every object B of the category B is thus equipped with a pair of

morphism

L1 ◦ R1(B)
εB // B

ηB // R2 ◦ L2(B) (11)

provided by the counit ε of the comonad and the unit η of the monad, both of them

instantiated at the object B. Now, imagine that the composite morphism

L1 ◦ R1(B) // R2 ◦ L2(B) (12)

characterizes the object B, up to isomorphism. In that case, we declare that the

composite morphism is the fingerprint of the object B.

Typically, this situation arises when the category B is equipped with a factoriza-

tion system (E ,M ) in the sense of Freyd and Kelly [3] and moreover, the counit

morphism εB is element of E and the unit morphism ηB is element of M. In that

case, the pair of morphisms (11) is recovered, up to isomorphism, by factoring the

morphism (12) as a composite of a morphism in E and a morphism in M.

Remark that, by adjunction, the fingerprint (12) may be seen equivalently as a mor-

phism

R1(B) // R1 ◦ R2 ◦ L2(B)

in the category A, or as a morphism

L2 ◦ L1 ◦ R1(B) // L2(B)

in the category C.

Fingerprints for multicategories. An illustration of this situation is when A is

the category Cat of categories and functors, B is the category MultiCat of multi-

categories and homomorphisms, and C is the category MonCat of monoidal cat-

egories and strict monoidal functors; and the factorization system in MultiCat is

provided by the set of bijective on objects homomorphisms for E and the set of full

and faithful homomorphisms for M .

The functor

L1 : Cat −→Multicat
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transports every category A to the multicategory L1(A) with the same objects, and

the same morphisms. In particular, the multicategory L1(A) is filiform in the sense

that it does not contain any morphism with n inputs for n , 1. The functor

R1 : Multicat −→ Cat

is obtained by transporting every multicategory B to the category R1(B) with the

same objects, obtained by restricting B to its morphisms with exactly one input.

The adjunction L2 ⊣ R2 is the adjunction F ⊣ U described above.

This demonstrates that every multicategoryM may be seen alternatively as a par-

ticular functor

M : I→M.

We find the multicategory back by taking as objects the objects of I and as mor-

phisms of type A1, . . . , An → A the morphisms of type

MA1 ⊗ · · · ⊗MAn →MA

in M. Remark that we can assume – and we will do so in the rest of the paper –

without lost of generality that the functorM is the identity on objects.

4 Linear control categories

Premonoidal categories It is a well-known fact that the category Cat of cate-

gories has exactly two symmetric monoidal closed structures.The traditional one –

where the tensor product is cartesian and the exponential is the category of functors

and natural transformations – gives rise to a cartesian 2-category, also noted Cat.

The notion of monoidal category follows, in the sense that a monoidal category is

the same thing as a pseudo-monoid in Cat.

The other monoidal closed category is generally noted Cat′. Informally speaking,

its tensor product A⊗B has the same objects as A×B, and its morphisms are finite

alternating sequences of non-identity morphisms of A and B. The tensor product

A ⊗ B may be defined conceptually the following pushout in Cat [13]

|A| × |B| //

��

A × |B|

��
|A| × B // A ⊗ B
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where |A| denotes the discrete category with same objects as the category A. Its

exponential [A,B] is the category of functors and transformations from A to B.

Intuitively, the objects of C ⊗ D are |C| × |D| and its morphisms are finite alternat-

ing sequences of non-identity arrows of C and D. The tensor is then obtained by

concatenation and cancellation according to the composition in C and D.

For instance, a sesqui-category is a category enriched over the symmetric monoidal

category Cat′, just like a 2-category is a category enriched over the symmetric

monoidal category Cat. Consequently, a sesqui-category is essentially a 2-category

for which the interchange formula is not valid, that is horizontal and vertical com-

positions of 2-cells do not commute.As the category Cat′ is symmetric closed, it

may be also seen as a sesqui-category with categories as objects, functors as mor-

phisms, and transformations (without naturality) as 2-cells.

John Power and Edmund Robinson [13] observe that a monoid in Cat′ is the same

thing as a strict premonoidal category. Usually, one obtains the non-strict version

of the structure by considering pseudomonoids instead of monoids. However, this

pseudo-machinery does not work directly here because the structural 2-cells of a

premonoidal category are required to be natural and central. Hence, considering

pseudomonoid is not enough as the structural 2-cells have no reason to be cen-

tral. We propose here to introduce the definition of a natural 2-cell in a sesqui-

category, in order to provide a 2-dimensional definition of (non necessarily strict)

premonoidal categories.

However, observe that a transformation is natural if and only if it satisfies the inter-

change law with every precomposed cell. From now on, we call natural 2-cell in a

sesqui-category, any cell commuting to every precomposed 2-cell. Then, we define

a premonoidal category as a pseudomonoid in the sesqui-category Cat′ such that

every 2-cell generated by the structure is natural.

This provides a purely conceptual definition of premonoidal categories. However,

it is often convenient to work with the more concrete definition given below.

Let � be a functor from C⊗C to C. A morphism f : A→ A′ is called central if for

any morphism g : B→ B′, the two composite ( f�B′)◦(A�g) and (A′�g)◦( f�B)

agree, and the two composite (B′� f ) ◦ (g� A) and (g� A′) ◦ (B� f ) agree. In this

case, we shall use the notation f � g and g� f respectively.

A premonoidal category is a category C, together with a functor � : C ⊗ C → C

together with an object ⊥ and central natural isomorphisms αA,B,C : (A� B)�C →
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A�(B�C), lA : A→ A�⊥ and rA : A→ ⊥�A subject to the same coherence con-

ditions as for monoidal categories: the Mac Lane’s pentagon expressing coherence

of α, and the triangle expressing coherence of l and r with respect to α.

A symmetric premonoidal category has in addition a family of central natural iso-

morphisms σa,b : a�b→ b�a, satisfying σ◦σ = id and the evident compatibility

conditions with respect to α, l and r.

The central morphism of a premonoidal category C form a monoidal category

Z(C). In particular, a premonoidal category is monoidal if and only ifZ(C) = C.

Linear control categories. Shifting from a cartesian category C to a monoidal

category in the theory of control categories, introduces a new issue: the fact that K2

is monoidal, but not closed. This is handled by considering not only the monoidal

category K2 but the whole functor

ι : K1 −→ K2

as explained in the introduction and in Section 3. Actually, we will see later that the

equivalence between linear control categories and linear continuation categories is

more precisely stated at the level of the underlying multicategory M defined by

the functor ι. We temporarily postpone this issue to give a simple and intuitive

definition of a linear control category.

Definition 1 (linear control category) A linear control category is a symmetric

monoidal category (M,⊗, 1) together with a functor

P : I −→M

that embeds a symmetric premonoidal category (I,�,⊥) into the symmetric monoidal

category M and defines an exponential ideal

⊸ : Mop × I→ I.

Besides, these structures are related by a transformation (called the exponential

strength)

sA,B,C : (A⊸ B)�C
�

−→ A⊸ (B�C)

natural in A in M and in B,C in I, satisfying the following coherence conditions in
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the category I:

((A⊸ B)�C)� D

α

��

s`D // (A⊸ (B�C))� D s // A⊸ ((B�C)� D)

A⊸α

��
(A⊸ B)� (C � D) s // A⊸ (B� (C � D))

A⊸ B
A⊸l

''PPPPPPPPPPP

l

wwnnnnnnnnnnn

(A⊸ B)� ⊥ s // A⊸ (B� ⊥)

Finally, using the symmetry σ of the premonoidal category I, we define

s′A,B,C = σC,A⊸B; sA,B,C; A⊸ σB,C : C � (A⊸ B)
∼
−→ A⊸ (C � B)

and require that the following coherence condition holds in the category I

(A⊸ B)� (C ⊸ D) s′ //

s

��

C ⊸ ((A⊸ B)� D)

C⊸s

��
A⊸ (B�C ⊸ D) A⊸s′ // A⊸ (C ⊸ (B� D)) smcc // C ⊸ (A⊸ (B� D))

As explained in Section 3, the functor P can be seen as the fingerprint of a mul-

ticategory that we will still denote by P. The starting point of our analysis is to

work exclusively on the multicategory P but using the structure provided by the

underlying monoidal and premonoidal categories.

Example : categories of linear continuation. Before studying more deeply the

structure of a linear control category, we check that the axioms above are satisfied

by a category of linear continuation associated to a dialogue category C.

Given such a symmetric monoidal category C, we have already seen in the introduc-

tion that the opposite of the kleisli category K1 = Kop is symmetric premonoidal,

and that the category K2 is symmetric monoidal – with monoidal structure inherited

from C. The category K2, together with the functor ι : K1 −→ K2 is then called the

category of linear continuation.

To show that ι is a linear control category, it remains to define the linear implica-

tion⊸ of the exponential ideal, and its strength. As discussed in the introduction,
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they are simply given by

A⊸ B = ¬ A ⊗ B

(A⊸ B)�C = (¬ A ⊗ B) ⊗C � ¬ A ⊗ (B ⊗C) = A⊸ (B�C)

Once these data properly defined, it is routine to check that they define a linear

control category.

The key bijection of the center. Our goal is to show that the monoidal category

Z(I) is equipped with a negation. To do that, we will establish a bijection between

arrows in Z(I) and arrows in P. A first step toward this bijection is to examine

what remains of the premonoidality of I and of the exponential ideal ⊸ in the

multicategory P. The exponential ideal induces a family of bijections natural in

A1, . . . An, and B,

ϕA,A1,...,An,B :
A, A1, . . . , An → B

A1, . . . , An → A⊸ B

One can think of these bijections as part of a definition of a closure on the multicat-

egory P. Nevertheless, we do not believe that it is worth making this intuition more

precise – even if we will use this terminology later in the text – as it will introduce

a large bench of technicality.

Note that in the theory of control categories, the morphism s defining the exponen-

tial strength is induced by a distributivity law between the monoidal product and

the premonoidal product. Here, on the other hand, there is no such linear distribu-

tivity law. Hence, we introduce the morphism s as an additional structure satisfying

the suitable coherence properties. However, there is a more conceptual perspective

on the presence of the exponential strength.

Indeed, the exponential strength enables to extends the premonoidal structure to the

whole multicategory in the following sense. In any linear control category P, we

have a map

A A1
. . . An−1 An

f

B

C`
−−−→

C`A A1
. . . An−1 An

C` f

C ` B

dinatural in central C, natural in A1, . . . , An and natural in central A, B. This map is

obtained by first applying the closure n-times to get an arrow A → A1 ⊸ (. . . ⊸
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(An ⊸ B)) in I. Then we apply C� in I and use the exponential strength to get an

arrow C � A → A1 ⊸ (. . . ⊸ (An ⊸ C � B)). Finally, we transport the Ai’s back

through the closure. Remark that this construction is compatible with the closure in

the following sense

ϕ( f )�C; s = ϕ(C � f )

Again, one can think of this structure as part of the definition of what should be a

premonoidal multicategory, but we let this prickly question to a later treatment.

Whatever the formulation of premonoidal multicategories, the map C � (and its

symmetrical counterpart � C) enables to extend the notion of central morphism

of I to arrows of P in the following way.

The only difference is that one now needs to specify in which argument the map in

P is central as the multicategory is symmetric and the � can be applied anywhere.

This extended notion of centrality is preserved by the closure in the following sense.

Definition 3 A morphism f : A1, . . . , An → B of a linear control category P is

said to be central in An when for every morphism g : B1, . . . , Bk → C, the two

composites ( f �C) ◦ (An � g) et (B� g) ◦ ( f � B1) are equal. In that case, we can

use the notation f � g that is not ambiguous. Graphically, this equality becomes

Aǹ B
1

. . . B
k

Aǹ g

A
1

. . . Aǹ C

f `C

B`C

=

A
1

. . . Aǹ B
1

f ` B
1

B` B
1 . . . B

k

B` g

B`C

=

Aǹ B
1

A
1

. . . . . . B
k

f ` g

B`C

It is not necessary to define left and right central morphisms as all considered tensor

products are symmetric. It is important to notice that this extended notion of cen-

trality is preserved by the closure coming from the exponential ideal, as indicated

by the following lemma.

Lemma 1 In a symmetric control multicategory, a morphism f : A, A1, . . . , An →

B is central in An iff ϕ( f ) : A1, . . . , An → A⊸ B is central in An.
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Proof: The commutativity of the diagram

A, A1, . . . , An �C
f`C //

A,A1,...,An`g

��

B�C

B`g

��
A, A1, . . . , An � D

f`D
// B� D

is equivalent to the commutativity of

A1, . . . , An �C
ϕ( f`C) //

A1,...,An`g

��

A⊸ (B�C)

A⊸(B`g)

��
A1, . . . , An � D

ϕ( f`D)
// A⊸ (B� D)

by naturality of ϕ, which is equivalent to the commutativity of

A1, . . . , An �C
ϕ( f )`C //

A1,...,An`g

��

(A⊸ B)�C

(A⊸B)`g

��
A1, . . . , An � D

ϕ( f )`D
// (A⊸ B)� D

by compatibility of � with the closure � In the same way, we can prove that when

we compose a morphism f central in A with morphisms on inputs of f that differ

from A, the resulting morphism is still central in A. More formally, the following

lemma holds.

Lemma 2 In a linear control category P, when a morphism f : A1, . . . , An, A→ B

is central in A then any composed morphism ( f1, . . . , fn, ida) ◦ f is central in A,

where fi : C j1 , . . . ,C ji → Ai.

Before stating the key bijection between central maps and ordinary arrow of P,

we study the status of the excluded middle induced by the exponential strength.

Indeed, all axioms of a linear control category are intuitionistically valid except

for the presence of an inverse for the exponential strength. This inverse induces an

nullary morphism tnd (for tertium non datur) representing the excluded middle in

the multicategory P

tnd
−−→ (A⊸ ⊥)� A

def
=

ϕA,A(idA)
−−−−−−→ A⊸ A

s−1
A,⊥,A

−−−−→ (A⊸ ⊥)� A

defined by applying the closure on the identity morphism and then the exponential

strength. Moreover, this arrow is dinatural in A, but it is not central in general.
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Lemma 3 The following equalities hold

[(A⊸ ⊥)� ϕ(idA⊸⊥)] ◦ (tnd, idA⊸⊥) = idA⊸⊥

[ϕ(idA⊸⊥)� A] ◦ (idA, tnd) = idA

Graphically, we get

A⊸ ⊥

(A⊸ ⊥)` A

A⊸ ⊥

=

A⊸ ⊥

A⊸ ⊥

and

A

(A⊸ ⊥)` A

A

=

A

A

At this stage, we are ready to exhibit a one-to-one relationship between some partic-

ular central morphisms of I and the nullary morphisms of P. Following Selinger’s

terminology, we call it the key bijection of the center.

Proposition 2 (key bijection of the center) For every A and B in I, there exists a

bijection

Z(I)(A⊸ ⊥; B) � P(; B� A)

natural in A and natural in central B.

Proof: We define below the two components

θA,B : P(; B� A) −→ Z(I)(A⊸ ⊥; B)

ρA,B : Z(I)(A⊸ ⊥; B) −→ P(; B� A)

of the bijection.

θA,B : Let f be in P(; B � A). By lemma 1 and properties of �, the morphism hB

defined as

hB
def
= B� ϕ(idA⊸⊥) ∈ P(B� A, A⊸ ⊥; B)

is central in its second argument A⊸ ⊥. By lemma 2, the composed morphism

θA,B( f )
def
= hB ◦ ( f , A⊸ ⊥)

is still central.

ρA,B : Let g be inZ(I)(A⊸ ⊥; B). We define ρA,B by

ρA,B(g)
def
= (g� A) ◦ tnd
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To see that θ ◦ ρ( f ) = f holds for all f , consider the following equality chain.

A⊸ ⊥

(A⊸ ⊥)` A

B` A

B

=

A⊸ ⊥

(A⊸ ⊥)` A

A⊸ ⊥

B

=

A⊸ ⊥

B

The equality on the left holds by naturality of B � in central B. The equality on

the right holds by lemma 3 (i).

To see that ρ ◦ θ(g) = g holds, it suffices to use lemma 3 (ii) together with the

equality B� idA = idB`A. �

Structure theorem. Suppose that one starts with a dialogue category C and its

associated category of linear continuation

ι : K1 −→ K2,

and that one considers it as a linear control category as explained above. The func-

tor ι is the fingerprint of a multicategory denotedM. It appears that it is not possible

to reconstruct the category C from the multicategoryM, but another dialogue cat-

egory D of “central maps” living insideM. From this dialogue category D follows

another category of linear continuation

ι′ : K′1 −→ K′2

whose associated multicategory coincides withM. The point is that, although the

functors ι and ι′ are different in general, they induce the same multicategory. So,

the structure theorem is stated with respect to the underlying multicategoryM, not

with respect to the category of linear continuation ι : K1 −→ K2 itself. This justifies

to work with multicategories, since the canonical object is not the category of linear

continuation, but its underlying multicategory. The structure theorem may be also

understood as “normalizing” the linear continuation ι : K1 −→ K2 into the linear

continuation ι′ : K′
1
−→ K′

2
canonically generated by the multicategoryM.

In order to state our structure theorem, we need a notion of strong functors and

equivalence of linear control categories. Those notions will be defined at the level of

the underlying multicategories. For example, a functor between two linear control

categories will be described by a map on the underlying multicategories preserving
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the structure. The following definitions are the expected one, the only subtlety lies

in the fact that all structural isomorphisms are required to be central.

A strong functor of linear control categories from P to P′ is a (symmetric) map of

multicategories F : P → P′ that respects the structure up to central isomorphisms,

together with central natural isomorphisms

FA⊸ FB � F(A⊸ B)

FA� FB � F(A� B)

⊥ � F(⊥)

for any A and B in P, preserving the structural morphisms in all the evident ways.

For example, the functor must preserved the exponential strength in the sense that

the following diagram commutes.

F((A⊸ B)�C)

FsA,B,C

��

� // F(A⊸ B)� FC � // (FA⊸ FB)� FC

sFA,FB,FC

��
F(A⊸ (B�C)) � // FA⊸ F(B�C) � // FA⊸ (FB� FC)

A natural transformation θ between two morphisms F and G of linear control cat-

egories is a natural transformation between the underlying morphisms of multicat-

egories, such that θa is central for every A et such that the structural morphisms are

preserved in all the evident ways. For example, the following diagram

F(A� B)

θA`B

��

� // FA� FB

θA`θB

��
G(A� B) � // GA�GB

commutes for every A and B of P.

Those two notions defines a 2-category of linear control categories from which

we extract a notion of equivalence between two linear control categories. Namely,

an equivalence of linear control categories P and P′ is given by a pair of strong

functors of linear control categories, F : P → P′ and G : P′ → P, together with

two natural isomorphisms G ◦ F � idP and F ◦G � idP′ .

We are now ready to show that every linear control category is equivalent, as a linear

control category, to the multicategory associated to a category of linear continua-

tion. We already now that every category of linear continuation induces a linear

control category. For the converse direction, we will show that the center of a linear
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control category defined a dialogue category whose category of linear continuation

is equivalent to the linear control category we have started with.

Let D be the opposite category of Z(I). Like Z(I), it is a symmetric monoidal

category (with tensor product noted ⊗). More interestingly, the key bijection of the

centre indicates that D is a dialogue category.

Proposition 3 The functor ¬ : D→ Dop defined on objects and arrows of D by

¬A
def
= A⊸ ⊥ and ¬ f

def
= f ⊸ ⊥

defines a tensorial negation on the symmetric monoidal category D.

Proof: First of all, we prove that ¬ sends central morphisms to central mor-

phisms. This is established by the commutativity of the diagram

(B⊸ C)� D
( f⊸C)`D //

(B⊸C)`g

��

(A⊸ C)� D

(A⊸C)`g

��
(B⊸ C)� E

( f⊸C)`E
// (A⊸ C)� E

which follows from the commutativity of

B⊸ (C � D)
f⊸(C`D) //

B⊸(C`g)

��

A⊸ (C � D)

A⊸(C`g)

��
B⊸ (C � E)

f⊸(C`E)
// A⊸ (C � E)

by naturality of the strength and functoriality of⊸. Then, there remains to construct

the bijection characterizing a negation. We will use the correspondence between

exponential object ad tensorial negation, and just show that ⊥ is exponentiable.

The following sequence of bijections

D(A ⊗ B,⊥) � Z(I)(⊥, A� B)

� P(; A� B)

� Z(I)(B⊸ ⊥; A)

� D(A,¬B)

natural in A and B shows that ⊥ is exponentiable. �

Now that we know that D is a dialogue category, it remains to show that the asso-

ciated category of linear continuation.
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Theorem 4 (Structure theorem) Any linear control category P is equivalent to

the multicategory associated to a category of linear continuation coming a dialogue

category.

Proof: LetN be the multicategory defined by the category of linear continuation

associated to the dialogue category

¬ : D→ Dop.

The map of multicategories F from P to N is the identity on objects. The only

difficulty is to construct a bijection between maps of P and maps of N by

P(A1, . . . , An; B) � P(; An ⊸ (. . .⊸ (A1 ⊸ B)))

� P(; (An ⊸ ⊥)� . . .� (A1 ⊸ ⊥)� B)

� Z(I)(¬B;¬An � . . .� ¬A1)

� D(¬A1 ⊗ . . . ⊗ ¬An,¬B)

� N(A1, . . . , An; B)

natural in A1, . . . , An. So F defines an equivalence of multicategories. It is then

routine to check that it preserves the structure of a linear control category. �

5 Discussion.

Connections to λµ-calculus.

Connections to ludics. Every tensorial negation in a symmetric monoidal cate-

gory C induces a lax monoidal structure, defined as a family of n-ary connectives

on the objects of C:

[ A1 � · · · � An ] := ¬(¬A1 ⊗ · · · ⊗ ¬An)

alternatively defined as

[ A1 � · · · � An ] := R(LA1 ⊗ · · · ⊗ LAn).
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As mentioned in the introduction, the multicategoryM has the same objects as the

category C, and its n-ary morphisms are defined as

M(A1, . . . , An; B)
def
= C(B, [ A1 � · · · � An ]).

We indicate how this multicategory reflects the logical engine of ludics. The se-

quent calculus of ludics is based on two different kinds of sequents:

• the sequents with a fork

B ⊢ A1, . . . , An

are interpreted as

B −→ [ A1 � · · · � An ]

in the category C, and thus as a n-ary morphism

A1 A2
. . . An−1 An

f

B

in the multicategoryM,

• the sequents without a fork

⊢ A1, . . . , An

interpreted as

1 −→ [ A1 � · · · � An ]

in the category C, and thus as a n-ary morphism

A1 A2
. . . An−1 An

f

1

in the multicategoryM.

6 Conclusion.

This work is part of a wider research program, aiming at an elegant synthesis be-

tween linear logic, and the theory of continuations. We believe that this synthesis

is possible, and that it will be extremely fruitful. Our ambition is to extend every

aspect of the beautiful and rich theory of linear logic, to the relaxed setting of linear
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continuations. Typically, the fundamental idea that every continuation monad is the

unary component of a lax disjunction [A1� · · ·�An] is the product of a crossbreed-

ing of the two theories. One lesson of this article is that a successful hybridization

will certainly require to enrich the mathematical toolbox of each field – integrating

the recent developments of the theory of 2-dimensional algebra. In this way, we

hope to see slowly emerge a monoidal theory of computational effects, combining

linear logic, game semantics, and higher dimensional algebra.
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