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Resource modalities in game semantics

Paul-André Melliés Nicolas Tabareau *

Abstract

The description of resources in game semantics has never achieved the simplicity and
precision of linear logic, because of a misleading conception: the belief that linear logic
1s more primitive than game semantics. We advocate instead the contrary: that game
semantics is conceptually more primitive than linear logic. Starting from this revised point
of view, we design a categorical model of resources in game semantics, and construct a
Conway game model extended with a notion of payoff in order to capture various resource
policies: linear, affine, relevant and exponential.

Keywords: Game semantics, linear logic, resources, continuation monads, categorical
models.

1 Introduction

Game semantics and linear logic. Contemporary game semantics is the younger
sibling of linear logic: born (or rather reborn after the work of Lorenzen’s school |28, 29])
at the beginning of the 1990s, in the turmoil produced by the recent discovery of linear
logic by Girard [13], it remained under its spiritual influence for a long time.

In the early days, this radiance of linear logic was extraordinarily healthy and profitable.
Properly guided, game semantics developed steadily, following the idea that every formula
of linear logic describes a game; and that every proof of the formula describes a strategy
for playing on that game.

This correspondence between formulas of linear logic and games is supported by a series
of elegant and striking analogies. One basic principle of linear logic is that negation

Ar— —A

is involutive. This means that every formula A is equal (or at least isomorphic) to the

formula negated twice:
A =2 A (1)

This principle is nicely reflected in game semantics by the idea that negating a game A
consists in permuting the roles of the two players. Hence, negating a game twice amounts
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to permuting the role of Proponent and Opponent twice, which is just like doing nothing.
Typically, if A is a chess board where White starts, - A is a is the chess board where Black
starts, and —=—A is again the chess board where White starts. Another basic principle of
linear logic is that every formula behaves as a resource, which disappears once consumed.
In particular, a proof of the formula

A—oB

enables to deduce the conclusion B by using (we rather say : consuming) exactly once its
hypothesis A — seen here as a resource. Again, this principle is nicely reflected in game
semantics, by the idea that playing a game is just like consuming a resource, the game
itself.
The connectives of linear logic are also convincingly reflected in game semantics. For
instance, the tensor product
A® B

of two formulas A and B is suitably interpreted as the game (or formula) A played in
parallel with the game (or formula) B, where only Opponent may switch from a component
to the other one. This amounts to place two boards on the same table and to say that
Black must respond on the board where White has just played. Similarly, the sum

A®B

of two formulas A and B is interpreted as the game where Proponent plays the first move,
which consists in choosing between the game A and the game B, before carrying on in the
selected component. This amounts to place two boards on the same table and to let Black
decides if he wants to play on the left or right board. This choice is then irreversible.
Finally, the exponential modality of linear logic

1A

applied to the formula A is interpreted as the game where several copies of the game A are
played in parallel, and only Opponent is allowed (a) to switch from a copy to another and
(b) to open a fresh copy of the game A. This amounts to play on parallel chess boards as
for tensor but with the ability for White to add a new chess board to those already there.

What we describe here is in essence the game semantics of linear logic defined by Blass
in [9]. Simple and elegant, the model reflects the full flavor of the resource policy of linear
logic. Interestingly, this game semantics is an early predecessor to linear logic [8]. It has
first been introduced indirectly by Berry and Curien [7] through their model of concrete
data structures which constitutes the first interactive semantics for sequential algorithms.
Game semantics has then been used directly to obtain complete models of multiplicative
linear logic |2, 18]. These works have then been pursued on more extended fragment
of linear logic |25, 5|. Game semantics has also been related to the calculus of linear
head-reduction computed by some abstract machines [11].

A schism with linear logic. The destiny of game semantics has been to emancipate
itgelf from linear logic in the mid—1990s, in order to comply with its own designs, inherited
from denotational semantics:

1. the desire to interpret programs written in programming languages with effects (re-
cursion, states, etc.) and to characterize exactly their interactive behavior inside
fully abstract models;



2. the desire to understand the algebraic principles of programming languages and
effects, using the language of category theory.

A new generation of game semantics arose, propelled by (at least) two different lines of
research:

1. Abramsky and Jagadeesan [2]| noticed that the (alternating variant of the) Blass
model does not define a categorical model of linear logic. Worse: it does not even
define a category, for lack of associativity. Abramsky dubs this phenomenon the
Blass problem and describes it in [1].

2. Hyland and Ong [19] introduced the notion of arena game, and characterized the
interactive behavior of programs written in the functional language PCEF — the
simply-typed A-calculus with conditional test, arithmetic and recursion. A similar
result with a slightly different model has been obtained by Abramsky, Malacaria
and Jagadeesan [3]. Note that despite their publication dates, those works have
both been done during 1994.

So, the Blass problem indicates that it is difficult to construct a (sequential) game model
of linear logic; and arena games became mainstream in the mid-1990s, although they do
not define a model of linear logic. These two reasons (at least) opened a schism between
game semantics and linear logic: it suddenly became accepted that categories of (sequen-
tial) games and strategies would only capture fragments of linear logic (intuitionistic or
polarized) but not the whole thing.

A conciliation through tensorial logic. In order to understand in deep resource
modalities of linear logic in game semantics, it appears necessary to reunify the two sub-
jects. Since the disagreement started with category theory, this reunification should occur
at the categorical level. We explain (in §2) how to achieve this by relazing the involutive
negation of linear logic into a less constrained tensorial negation. This negation induces
in turn a linear continuation monad, whose unit

refines the isomorphism (1) of linear logic. Moving from an involutive to a tensorial
negation means that we replace linear logic by a more general and primitive logic — which
we call tensorial logic. As we will see, this shift to tensorial logic clarifies the Blass
problem, and describes the structure of arena games. It also enables the expressions of
resource modalities in game semantics, just as it is usually done in linear logic.

Tensorial logic provides a new insight on polarized logic introduced by Girard in his
work on classical logic and system LC [14]. An unexpected phenomenon shows up in
these polarized logic: resource modalities change the polarity of a formula. This peculiar
fact is explained in tensorial logic by a decomposition of the lifting operator ,l; into two
constructors: the exponential modality ! which do not change the polarity of formulas, an
the tensorial negation, noted { in this framework (rather that =), whose role as a negation
is to swap the point of view of Opponent and Proponent on a formula — which amounts
to reverse its polarity:

phlA = 1{A.



We would like to promote a radical change of perspective on polarized logic. Indeed,
according to us, tensorial logic is not reduced to a fragment of linear logic, as one used to
think of polarized logic. On the contrary, we defend the thesis that tensorial logic is a more
primitive logic that linear logic, closer to mechanisms of continuation described by game
semantics. And in the same way that classical logic is interpreted in intuitionistic logic
through the Godel translation, we will see that linear logic is interpreted in tensorial logic
through a similar translation, of a categorical nature (Kleisli construction). In a word,
tensorial logic is to linear logic what intuitionistic logic it to classical logic: a formalism
closer to computations and programs.

Plan of the paper. We describe (§2) a categorical semantics of resources in game
semantics, and explain (§3) in what sense the resulting topography refines both linear
logic and polarized logic. After that, we construct (§4) a compact-closed (that is, self-dual)
category inspired by Conway games, where the resource policy is enforced by a notion of
payoff. From this, we derive (§5) a model of our categorical semantics of resources, using
a family construction, and conclude (§6).

2 Categorical models of resources

Despite its apparent efficiency to model fragments of linear logic, game semantics has,
for a long time, resist to multiple attempts to make it interpreting the whole linear logic.
This is due in particular to the Blass problem , pointed out by Abramsky and Jagadeesan
[2], which indicates that the game semantics introduced by Blass [9] does not give rise
to a category. One had to wait the beginning of this century, and the work of the first
author [33, 34] on asynchronous games, to get a first completeness result. Curiously, the
solution is based on a quotient on strategies — quotient which, in the light of the work
of Hasegawa, amounts to transform a strong continuation monad into a commutative
continuation monad. It is then natural to wonder what would be a linear logic where
the continuation monad is not commutative; which leads us to tensorial logic — a more
primitive logic deeply related to game semantics.

It appears that most of the models of linear logic arise in this way, from model of
tensorial logic where the continuation monad is commutative. This is the case for example
for coherent spaces, phase spaces, finiteness spaces [12], etc. One of the interests of the
approach is that we can define different negations on the same model — which harmoniously
generate different models of linear logic (coherent spaces, finiteness spaces [38]). This
insight of linear logic through tensorial logic looks trickily like the one brought by polarized
logics [26]. The main difference lies in our desire to distinguish resource modalities, like
the exponential, from the negation; and thus to get rid of the Cartesian paradigm which
is inherent to polarized logics.

We introduce now the notion of tensorial negation on a symmetric monoidal category;
and then explain how such a category with negation (called a dialogue category) may be
equipped with additives and various resource modalities. The first author describes in [31]
how to extract a syntaz of proofs from a categorical semantics, using string diagrams and
functorial boxes. The recipe may be applied here to extract the syntax of a logic, called
tensorial logic. However, we provide in section 3 a sequent calculus for tensorial logic, in
order to compare it to linear logic or Olivier Laurent’s polarized linear logic [26].



Tensorial negation. A tensorial negation on a symmetric monoidal category (C,®,1)
is defined as a functor

- C — (CP
together with a family of bijections
YAB,C - C(A®B7"C) = C(Avﬁ(B®C))

natural in A, B and C' such that the diagram

C(A® (B®C),~ D) — 4807 o4 g B)oC,- D)
\L@A@B,C,D

$A,BRC,D C(A® B,~(C® D))
\L@A,B,C@D

C(A,-((B®(C)® D))

C(A,~(B®(C®D)))

C(A,ﬁag,laD)

commutes. A symmetric monoidal category equipped with a tensorial negation is said to
be a dialogue category. Given a negation, it is customary to define the formula false as
the object L 4f 1 obtained by “negating” the unit object 1 of the monoidal category.
Note that we use the notation 1 (instead of I or e) in order to remain consistent with the
notations of linear logic. Note also that the bijection ¢4 p 1 provides then the category C
with a one-to-one correspondence

waB1 @ C(A®B,1l) = C(A,-B)

for all objects A and B. For that reason, the definition of a negation — is often replaced
by the — somewhat too informal — statement that “the object L is exponentiable” in the
symmetric monoidal category C, with negation —A noted L4.

Self-adjunction. In his PhD thesis, Thielecke [39] observes for the first time a funda-
mental “self-adjunction” phenomenon, related to negation. This observation plays then a
key role in an unpublished work by Selinger and the first author [32] on polar categories,
a categorical semantics of polarized linear logic, continuations and games. The same idea
reappears recently in a nice, comprehensive study on polarized categories (=distributors)
by Cockett and Seely [10]. In our situation, the “self-adjunction” phenomenon amounts to
the fact that every tensorial negation is left adjoint to the opposite functor

- C? — C (3)
because of the natural bijection

C?(-A, B)

12

C(A,-B).



Continuation monad. Every tensorial negation — induces an adjunction, and thus a
monad

-— : C—C

This monad is called the continuation monad of the negation. One fundamental fact
observed by Moggi [35] is that the continuation monad is strong but not commutative in
general. By strong monad, we mean that the monad —— is equipped with a family of
morphisms:

tA,B : A® B — - (A@B)

natural in A and B, and satisfying a series of coherence properties. By commutative
monad, we mean a strong monad making the two canonical morphisms

——A®-—-B = - (A®B) (4)

coincide. A tensorial negation — is called commutative when the continuation monad
induced in C is commutative — or equivalently, a monoidal monad in the lax sense.

Linear implication. A dialogue category C, with negation — is not very far from being
monoidal closed. It is possible indeed to define a linear implication — when its target - B

is a negated object:
def

A — -B = - (A®B).
In this way, the functor (3) defines what we call an exponential ideal in the category C.
When the functor is faithful on objects and morphisms, we may identify this exponential
ideal with the subcategory of negated objects in the category C. The exponential ideal
discussed in McCusker’s PhD thesis [30] arises precisely in this way.

Continuation category. FEvery dialogue category C, with negation —, induces a category
of continuations C with the same objects as C, and morphisms defined as

c(A,B) ¥ ¢4 -B).
Note that the category C™ is the Kleisli category associated to the comonad in C°? induced
by the adjunction; and that it is at the same time the opposite of the Kleisli category
associated to the continuation monad in C. Because the continuation monad is strong,
the category C™ is premonoidal in the sense of Power and Robinson [36]. Note that string
diagrams in premonoidal categories are inherently related to control flow charts in software
engineering, as explained by Jeffrey [22].

Semantics of resources. A resource modality on a symmetric monoidal category (C, ®, e)
is defined as an adjunction:

M 1 C (5)

where

e (M,e u) is a symmetric monoidal category,



e U is a symmetric monoidal functor.

Recall that a symmetric monoidal functor U is a functor which transports the symmetric
monoidal structure of (M, e, u) to the symmetric monoidal structure of (C,®,e), up to
isomorphisms satisfying suitable coherence properties. Another more conceptual definition
of a resource modality is possible: it is an adjunction defined in the 2-category of symmetric
monoidal categories, laz symmetric monoidal functors, and monoidal transformations.
Now, the resource modality is called

e affine when the unit u is the terminal object of the category M,
e relevant when every object of M is duplicable, that is when there exists a diagonal

o4 : A — AR A

natural in A, compatible with the symmetry and satisfying the associativity diagram

A—2 L AzaA A o4 A® A
\ iUA’A (6) 5Al J/A@)(SA (7)
da
AR A AR A Y ARAR A

e cxponential when the tensor product e is a cartesian product, and the unit « is the
terminal object of the category M.

This definition of resource modality is inspired by the categorical semantics of linear logic,
and more specifically by Benton’s notion of Linear-Non-Linear model [6] — which may be
now reformulated as a symmetric monoidal closed category C equipped with an exponential
modality in our sense. Very often, we will identify the resource modality and the induced
comonad ! = U o F on the category C. We sum up the different resource modalities in
the following table.

Modality Category (M, ®,e)
Affine the unit e is terminal
Relevant every object is duplicable
Exponential | the structure is cartesian

The work of Jacobs on affine and relevant modalities [21] is based on a commutative monad
on a cartesian closed category. He then considers the Eilenberg-Moore category induced
by this (affine or relevant) monad in order to deduce models of intuitionistic linear logic
(ILL) equipped with a (affine or relevant) modality. The weak point of this construction
is its limitation to very special kind of model of ILL which are obtained as categories of
algebras.

3 Tensorial logic
In our philosophy, tensorial logic is entirely described by its categorical semantics —

which is defined in the following way. First, every dialogue category C defines a model of
multiplicative tensorial logic. Such a category defines a model of multiplicative additive



tensorial logic when the category C has finite coproducts (noted @) which distribute over
the tensor product: this means that the canonical morphisms

(AB)® (A®(C) — A®(BaO)

0 — A®O0

are isomorphisms. Then, a model of (full) tensorial logic is defined as a model of multi-
plicative additive tensorial logic, equipped with an affine resource modality (with comonad
noted J,), a relevant resource modality (with comonad noted !) as well as an exponential
resource modality (with comonad noted !).

The diagrammatic syntax of tensorial logic will be extracted from its categorical defini-
tion, using the recipe explained in [31]. To give a more familiar presentation of tensorial
logic, we now formulate its sequent calculus in two different but equivalent ways: bilateral
and monolateral.

Bilateral presentation. The formulas A, B, ... of tensorial logic (in its bilateral pre-
sentation) are constructed as follows:

multiplicatives 1|-A|A®B
additives 0O|Ae B
resource modalities bA| A LA

The sequents are of two forms: I' H A where I' is a context, and A is a formula; I" -
where I' is a context. The sequent calculus of the multiplicative fragment appears in Fig-
ure 1. The first four rules express the monoidal structure on C, the two below define a
tensorial negation and the two last just represent identity and composition of our cate-
gory C. Figure 2 describes the rules managing finite coproducts. Figure 3 depicts the
expected rules for the exponential modality (those are the rules of the ! of linear logic).
The rules for the affine modality, given in Figure 4, are the same as for the exponential
modality, but without contraction. The rules for the relevant modality, given in Figure 5,
are the same as for the exponential modality, but without weakening.

Monolateral presentation. In order to switch to the monolateral formulation of ten-
sorial logic, we need to introduce polarities. The formulas that were on the right in the
bilateral presentation remain there, and are called positive. Dually, the formulas on the
left move on the right, and are now called negative.

Bilateral presentation Monolateral presentation
'+ ~ =
kA ~ FT* A

So, there are two kinds of sequents in this formulation: the sequents - I' where I' con-
tains only negative formulas, and the sequents F I', P containing exactly one positive
formula P. To distinguish between positive and negative formulas, we have to clone each
construct 0,1, ®, ®, J,, L, L into itself: 0,1, D, ®, 4, L, L and its dual: T, L, &, %, J, ¢, 2. The
negation — itself is cloned in two operations T and |, each of them with a specific effect:

e T transports the positive formulas into the negative formulas,
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Figure 1. Multiplicative tensorial logic: bilateral presentation
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Figure 2. Additive tensorial logic: bilateral presentation
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Figure 3. Exponential modality: bilateral presentation
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Figure 4. Affine modality: bilateral presentation
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Figure 5. Relevant modality: bilateral presentation



e | transports the negative formulas into the positive formulas.

Remark that the affine and exponential modalities do not change polarities themselves:
this is a main difference with polarized logic. We use the letters P and @ for the positive
formulas, the letters L and M for the negative formulas, and the letters I') A for the
contexts of negative formulas. Formulas are constructed by the following grammar:

Positives 0 | 1 | 4L | PRQ | P&Q | LP | P | P
Negatives L | T |t | LM | L&M | {L | 2L | 2L

Every positive formula P has a dual negative formula P, obtained by dualizing every
logical construct appearing in the formula P. The sequent calculus in Figure 6 for the
multiplicatives adapts Figure 1; Figure 7 for the additives adapts Figure 2. Figures 8, 9
and 10 for the resource modalities adapt Figures 3, 4 and 5.

Arena games and classical logic. Starting from Thielecke’s work, Selinger [37] designs
the notion of control category in order to axiomatize neatly the semantics of classical logic.
Then, prompted by a completeness result established by Hofmann and Streicher in [17],
he proves a beautiful structure theorem, stating that every control category P is the
continuation category C™ of a response category C. Now, a response category C — where
the monic requirement on the units (2) is relaxed — is exactly the same thing as a model
of multiplicative additive tensorial logic, where the tensor ® is cartesian and the tensor
unit 1 is terminal.

A purely proof-theoretic analysis of classical logic leads exactly to the same conclusion.
Starting from Girard’s work on polarities in LC [14], Laurent developed a comprehensive
and perspicuous analysis of polarities in logic, incorporating classical logic [26], (non-well-
bracketed) arena games [27] and control categories [27]. Now, it appears that Laurent’s
polarized logic coincides with multiplicative additive tensorial logic — where the monoidal
structure is cartesian. This appears clearly in the monolateral formulation of tensorial
logic. We sum up the difference between tensorial logic and classical logic in a very
schematic table:

® is monoidal

Tensorial logic . .
- is tensorial

® is cartesian

Classical logic ) .
! st — Is tensorial

Game semantics and linear logic. The continuation monad A — or A of game
semantics lifts an Opponent-starting game A with an Opponent move —p followed by a
Player move = p. Now, it appears that the Blass problem mentioned in §1 arises precisely
because the monad is strong, but not commutative [32, 33|. Indeed, one obtains a game
model of (full) propositional linear logic by identifying the two canonical strategies (4) —
this leading to a fully complete model of linear logic, in the way described in [34].

This construction in game semantics has a nice categorical counterpart. We already
mentioned that the continuation category C™ inherits a premonoidal structure from the
symmetric monoidal structure of C. Now, Hasegawa Masahito shows [16] that the con-
tinuation category C™ equipped with this premonoidal structure is *x-autonomous if and

10
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Figure 6. Multiplicative tensorial logic: monolateral presentation
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Figure 10. Relevant modality: monolateral presentation



only if the continuation monad is commutative. The specialist will recognize here a cat-
egorification of Girard’s phase space semantics [13]. Anyway, this shows that linear logic
is essentially tensorial logic in which the tensorial negation is commutative.

& is momnoidal

Linear logic . .
- 1s commutative

We now formalize this idea and show that any model of tensorial logic, for which the
continuation monad is commutative, induces a model of linear logic. To show this, we will
mainly work on the Kleisli category of the continuation monad

Fr

TN

C 1 Cr

N 7

Gr
We first show that the exponential modality lift to the Kleisli category

Lemma 1 The exponential modality ! lift to an exponential modality | on the Kleisli
category Cr.

Proof: According to Power and Robinson [36], the left adjoint Fr between C and Cr is
a symmetric monoidal strong functor. We then deduce that the adjunction is symmetric
monoidal. As symmetric monoidal adjunctions do compose, the resulting adjunction

U Fr
M i C i Cr
) Gr

is symmetric monoidal. Now, M is cartesian, so this adjunction builds a commutative
®-comonoid

14=2%1--4

on CT. O

Now, we recall a folklore result among category theorist: the Kleisli catégory preserves
finite coproducts. More precisely

Proposition 1 Let T be a monad on a category C equipped with finite coproducts. The
Kleisli category Cr is also equipped with finite coproducts. Furthermore, if finite coproducts
commute with the tensor product in C, they still do in Cp.

Proof: Note A+ B the coproduct of A and B. Injections are defined as

NA+B

B—2. A+ B T(4+ B)

NA+B
)

A—D e A4 B E.T(A+ B
Let X be an object of C and f: A — TX et g: B — TX be two morphisms, one defines

the sum f 4 g by

ALB f+g

TX

12



One easily check that this arrow gives rise to a coproduct.

For the commutation with the tensor product, it suffices to notice that the definition
of the tensor product and of finite coproducts are given by the image of Frr of those in C.
Then, the canonical distributivity morphism

(AB)d (A®(C) 2 A® (Ba(0)
in Cr is the image by Fr of the distributivity morphism in C. It is an isomorphism in C

S0 it is an isomorphism in Cr as any functor preserves isomorphisms. [

By duality, we deduce that the Kleisli category Cr on the continuation monad is quipped
with finite products

A&B ¥ (4@ -B).
We can now express a last lemma.

Lemma 2 The isomorphism

1%

(A& B) = 1A ® B

holds in the category Cr.

Proof: The isomorphism comes from the fact that right adjoints (here ! and G) preserve
finite products and that the left adjoints Fr and U are strong monoidal functors. [J

The Kleisli category Cr thus defines a model of linear logic. It is also the case for its
opposite category C™, the only difference is that the exponential modality is, in that case,
given by

14 ¥ A
Theorem 1 Let C be a model of tensorial logic (multiplicative, additive, exponential) for
which the continuation monad —— is commutative. The category of continuation C™ gives
rise to a model of linear logic (multiplicative, additive, exponential).

4 Payoff Conway games

We define here and in §5 a simple game semantics with resource modalities in order to
give a model of tensorial logic. We achieve this by enriching the model of Conway games,
introduced by Joyal in his pioneer work [23], with a notion of payoff.

Conway games. Conway games give a very intuitive formalism which connects directly
game semantics to algorithmic notions using the structure of graphs explicitly.
A Conway game A is an oriented rooted graph (V4, Ea, Aa) consisting of

- a set V4 of vertices called the positions of the game,
- aset B4 C V4 x Vy of edges called the moves of the game,

- a function A4 : B4 — {—1,+1} indicating whether a move belongs to Opponent
(—1) or Proponent (+1),

We note x4 the root of the underlying graph. A Conway game is said to be negative (resp.
positive) when all its move starting from the root belongs to Opponent (resp. Proponent).

13



Path and play. A play m1-mo-...-mg_1-my of a Conway game A is a path starting
from the root x4 :
mi mo mEg—1 mg
hp — T] — e —— T ] — Tk (8)
Two paths are parallel when they have the same initial and final positions. A play (8) is
alternating when:

Vie{l,...,k—1}, Aa(mizr) = =Aa(my).

We note Play 4 the set of plays of a game A.

Strategies. Remark that the definition of a Conway game does not imply that all the
plays are alternating. The notion of alternation between Opponent and Proponent only
appears at the level of strategies (i.e. programs) and not at the level of games (i.e. types).
This corresponds to the intuition that a game describes a fairly liberal space of computation
whereas a strategy describes regulated executions.

A strategy o of a Conway game A is defined as a non empty set of alternating plays of
even length such that

e every non empty play starts with an Opponent move,

e o is closed by even length prefix: for all plays s and for all moves m,n,

s-m-n€c implies s € o;

e o is determinism: for all plays s, and for all moves m,n,n’,

/ . . /
s*-m-n€oc and s-m-n €c implies n=n'.

Note that our notion of strategy is partial because a strategy does not necessarily have
to answer to an Opponent move. We write o : A to indicate that o is strategy over the
game A.

Dual. Every Conway game A induces a dual game A* obtained simply by reversing the
polarity of moves. More formally, A* = (Va«, Eg+, Aa+) is defined by

o Ve =V
o Ep+ = Ey;
L4 )\A* = _)\A-

Tensor product. The tensor product A® B of two Conway games A and B is essentially
the asynchronous product of the two underlying graphs. More formally, it is defined as:

- its positions are the pairs (z,y) noted z ® y with xq4gp = x4 ® *p, that is

Vagp = Va x Vg,
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- its moves are of two kinds :

L@y — z®y if x — z in the game A
Y x® z if y — z in the game B,

- the polarity of moves in the game A ® B is inherited from games A and B.

The Conway game 1 with a unique position * and no move is the neutral element of the
tensor product. As usual in game semantics, every play s of the game A ® B can be seen
as the interleaving of a play s of the game A and a play s|p of the game B.

Composition. We now define the composition of two strategies using the concept of
“parallel and hiding” which works for game semantics as well as for more abstract settings
such as traced monoidal category or compact closed category.

We proceed as in |30, 15|, and say that u is an interaction on three games A, B, C, this
noted u € intapc, when the projection of u on each game A* ® B, B* ® C and A* ® C
is a play. Given two strategies 0 : A* ® B, 7 : B* ® C, we define the composition of these
strategies as follows:

0;7 = {uja=gc | © € intaBc, Ua+gp € 0, UBgc € T}

The composition of two strategies is a strategy.

Identity morphism. We define the identity morphism id4 on a game A as a variation
on the copycat strategy on the game A* ® A described by André Joyal in [23]. Coarsely,
for every Opponent move in one of the component A* or A, the copycat strategy responses
with the dual move in the other component. More formally, the identity is defined as

. f

idg dof {s € 13151371%{’1%?142 | Vit <" s, ta, = t|A2}
where we use the tags 1 and 2 to distinguish between the two occurrences of A and where
the exponent even restricts the prefix relation on paths to the prefix relation on even
paths.

The category Conway of Conway games. The category Conway has Conway games
as objects, and strategies o of A* @ B as morphisms ¢ : A — B. The resulting cat-
egory Conway is compact-closed in the sense of [24] with units n4 : 1 — A ® A* and
counits €4 : A*® A — 1 defined as copycat strategies. Compact closure means that ® = %
from a logical point of view, or that there exist an isomorphism (A® B)* & A* ® B* natu-
ral in A and B. All we need here is that Conway is automatically monoidal closed, with

closure defined as
A*® B.

Before introducing a notion of resources through a payoff function, we have to restrict
ourselves to negative Conway games. Indeed, if we stay in an entirely self dual setting,
having a notion of winning strategies that compose is quite tricky. In particular, the
payoff function can not be positional and the constraints imposed on strategies have to
deal with every subpath of a play rather than every reached positions. Such a notion
has been developed in [38] in order to extends the notion of bracketing to a self dual
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framework, leading to the notion of multibracketing. Hopefully, it is possible to give a
model of tensorial logic by much simpler conditions.

The full subcategory N of negative Conway games is no longer compact closed but
inherits the closure of Conway. Given a Conway game A, we note A~ the negative
Conway game obtained by removing all Proponent moves starting from the root.

This construction extends to a fully faithful functor from Conway to A/, which makes
N a coreflexive category of Conway. This is enough to export the closure of the category
Conway to the category N by

A—-B Y A eB)-

as shown by the following proposition.

Proposition 2 (transport of closure) Let (C,®,—) be a symmetric monoidal closed
category and (D, ) be a symmetric monoidal category. Suppose that there exists a monoidal
adjunction U 4 F : D — C where U is fully faithful. We can export the closure on C to a
closure on D which is defined, for every A, B in D, by:

A — B =F(U(A) - U(B))

Proof: As the adjunction is monoidal, the functor U is strong monoidal. The closure is
deduced from the following cascade of bijections:

D(B,A — C) D(B,F(U(A) - U(C)))

C(U(B),U(A) - U(C)) adjunction U 4 F
C{UA) e U((B),U(C)) closure in C
C(U(A® B),U(C)) U strong monoidal
D(Ae B,C) U fully faithful

1111111

O

Proposition 3 The category N is symmetric monoidal closed.

This category will be the new base on which we will define our notion of gain.

Payoff Connway games. A payoff Conway game is a negative Conway game A =
(Va, Ea, Aa) equipped with a payoff function (defined on positions)

ka:Vy—{-1,0,+1}.

A position is said to be winning if ka(x) € {0,41}. Intuitively, the value —1 denotes a
winning position for Opponent, the value 4+1 denotes a winning position for Proponent,
and the value 0 denotes a “neutral” position.
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(@ [ -1[0 [+1] (= -1[0 [+1]

1| -1]-1]-1 -1 +1|+1|+1
0 -1 0 | +1 0 —-1] 0 | +1
+1 ] =1 | +1]+1 +1] -1 | -1]+1

Table 1. “Truth tables” of the tensor product and the closure.

Tensor product and closure of payoff games. We now extend the payoff function to
the tensor product and the closure operator. As the payoff is positional, it is sufficient to
provide a “truth table” (cf. Table 1). Those “Truth tables” are guided by the intuition that
® corresponds to the boolean conjunction A, — corresponds to the boolean implication
=, —1 means false, +1 means true and 0 never changes the polarity.

Thus, the payoff Conway game A® B is defined as the underlying Conway game A® B,
equipped with the payoff function

KaeB(T ®Y) = ka(®) ® Kp(Y);

and the payoff Conway game A — B is defined as the underlying Conway game A — B,
equipped with the payoff function

KA—oB(T —0 y) = ka(z) —o kp(Y).

We set to 0 the unique position of the game 1.

Winning strategies. With the general notion of strategy, every negative game has a
unique morphism to 1. We will use the payoff function to define winning strategies, which
will help us to distinguish between affine games (whose polarity of the root is 0) and linear
games (whose polarity of the root is +1).

A strategy o on a payoff Conway game A is winning when all the plays in the strategy
lead to winning positions, that is position of payoff 0 or +1:

forall s:z—vy, seo implies ka(s) e {0,+1}

We will define a category of payoff Conway games whose morphisms from a game A to a
game B are winning strategies on A —o B. Remark that our definition of payoff on A — B
implies that there is no wining strategies from A to B when k4(x4) — kp(xp) = —1.
This is the case when the game A is linear and the game B is affine. To define a category,
we need to show that winning strategies do compose.

Proposition 4 When o : A — B and 7 : B — C are winning strategies, Too : A — C
15 also a winning strategy.

Proof: We already know that strategies do compose, it just remains to check the winning
condition. As it is defined positionally, it suffices to observe by a case analysis that the
composite of two winning positions on —o is winning, in the sense that

rka(z) — kp(y) € {0,+1} (x — y : winning)
kp(y) — keo(z) € {0,+1} (y —o z : winning)
ka(z) — ko(z) € {0,+1} (x — z : winning)
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This works because the definition of the payoff function on — comes from the boolean
implication =, which is itself stable by composition. [

Proposition 5 (category of payoff Conway games) The category — whose objects are
payoff Conway games and whose morphisms from A to B are winning strategies on A — B
— 18 symmetric monoidal closed.

Proof: We already know that A is a symmetric monoidal closed category. It remains
to check that

(ka(z) ® £B(Y)) — Ko(2) = ka(z) — (kB(Y) — Ko (2))

for all positions x € V4, y € Vg and z € V. This equation can be deduced from the
validity of the boolean formula

(ANB)=C=A= (B=20C).
U

Technically, in order to define an exponential modality on our category, we need to
restrict ourselves to games whose root is winning. From now on, we will work with the full
subcategory P whose objects are restricted to payoff Conway games with a winning root.
For short, we will denote such games as payoff games. Remark that P is still symmetric
monoidal but no longer closed as —o does not preserve winning root. It is nevertheless
possible to define a tensorial negation on P.

Tensorial negation. Let L the linear game as follows
e two position x| et x,
e a unique Opponent move m, : % —» x,
e ki(x1)=+41and Kk (x) =0.

As presented in Section 2, the closure operator gives rise to a tensorial negation in the
following way: the tensorial negation of a payoff game A is defined as
A€ Aol

Proposition 6 The category P is a dialogue category.
5 A game model with resources
We now give an explicit description of the three resource modalities of tensorial logic

in our game model. We prove the additional properties that the affine and exponential
modalities are free, but not the relevant modality.
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Affine modality. We have already mentioned that a payoff games A is said to be affine
when its root is of payoff 0. The unique strategy from A to 1, noted ¢4, is then winning.
We note P, the subcategory of affine payoff games.

The affine game ), A associated to a payoff game A is obtained by posing that the root
of A is of payoff 0. This modality extends to a strategy o : A —o B by posing o = 0.
This definition is valid because making the roots of A and B neutral only grows up the
number of winning positions on A — B.

Lemma 3 Let A be an affine payoff game and B be a payoff game. Every position x — y
of A — B (or indifferently of A —,B) satisfies

ra(r) —rp(y) €{0,+1}  iff  ra(z) — ryn(y) € {0,+1}

Proof: If y is not the root of B, y has the same polarity in both games B and J,B. Thus,
it suffices to consider the case where y = xp. In that case, x = x4 because Opponent
must play its first move in B (both game are negative). As A is affine, we deduce that

rka(x) — kp(y) = kp(*B) € {0,+1} car la racine est gagnante
— kyp(y) = Kkyp(*B) =0 car J,B est affine.

O

Proposition 7 The functor ), : P — Py, which associates ,A to a payoff game A, defines
an affine modalities on P.

Proof: The category of affine payoff games P, is a symmetric monoidal subcategory
of P, having 1 as terminal object. The backward functor from P, to P is simply the
inclusion functor. It remains to define a bijection between P, (A, ,B) and P(A, B) for
any affine payoff game A and any payoff game B. But Lemma 3 points out that a strategy
on A* ® B is winning if and only if it is winning on A*®/,B. the bijection is thus given
by the identity. [J

Remark, by the way, that this modality is free. Indeed, noting [idg] :,B — B the
copycat strategy which has the same plays as the identity on B, we know that for every
strategy o : A — B, where A is affine, the following diagram commutes uniquely for the
strategy Jo:

JA=A—"-=B

“""J/ lids]
4B

Relevant modality. Every payoff game A induces a relevant game A — which can be
seen as the infinite tensor of A — as follows:

e its positions are words w = x1---xp whose letters are positions x; of the game
A distinct from the root; the intuition is that each letter x; describes the current
position in the i copy of A4,
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e its root x4 is the empty word,
e its moves m : w — w’ are either moves played in one copy :
m
w1-T- W2 — W1 Y-w2

where m : x — y is a move of the game A; or moves where Opponent opens a new

copy:
m
w — w-x

where m : x4 — x is an initial move of A. In particular, if m is a move of A, we
note m the underlying move in A,

e its payoff function on a position w = x1 - - - x is obtained by

ria(w) = Q) ralx)

1<i<n

The polarity of a move in A is directly inherited from the polarity of its underlying move
in A. We will now describes the diagonal strategy

04 + A — AR lA

which makes ! a relevant modality on P. Coarsely, d4 is a copycat strategy plus a manage-
ment of indices. When Opponent opens a new copy in JA® LA, d4 responses by opening
a new copy in LA. This copy is then linked to the former until the end of the interaction.
Consequently, when Opponent plays a move in an already opened copy, d4 responses by
the same move in the related copy. More formally, we define by induction the interleaving
of a play s of JA®R!A as the play (s) of !A that mimics the moves of s. The empty
play in JA®!A is unsurprisingly translated into the empty play in A and a play s-m is

translated into
def

(som) L (s) .
where m’ has the same underlying move
m = m

played in the corresponding copy if m is not initial in A, or in a new copy if m is initial
in A. Using this interleaving function, the strategy d4 can be expressed as

def even

64 = {sePlayl", aeia,) | VE <" s, tia, = (fraseia,) )

Again, the tag 1, 2 and 3 are here to distinguish between the different copies of the game
A. This strategy is winning because every position it plays has the same polarity on the
left and on the right of —o. It is not difficult to see that J4 satisfies the diagrams (6)
and (7) and thus defines a diagonal on !A. This modality extends to winning strategy
0 : A — B by posing

bo== {(z1-a) = (yr-y) | VI <i<k,z —oy €o}
which is a morphism of P as pointed out by the following lemma.

Lemma 4 If o is a winning strategy, then the strategqy | o is also winning.
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Proof: It suffices to observe that for all positions x € V4, y € Vg, z € Vo and t € Vp
such that

K(A—oB)@(C—oD) (T —0 y) ® (2 —o t)) € {0, +1},
we have

K(AaC)—(BaD)(Z ® 2) — (y @ t)) € {0, +1}.
O

We now claim that [ defines a relevant modality. We note P, the subcategory of P of
objects equipped with a diagonal and winning strategies preserving this diagonal.

Proposition 8 The functor | : P — P., which associates the relevant game LA to a game
A, defines a relevant modality on P.

Proof: To define an adjunction between P, and P, it is sufficient to show that [ de-
fines a comonad on P because its adjoint is the inclusion functor. The counit e4 and
comultiplication d4 of the comonad

eq 1A — A da 1A — LA

are defined as for the diagonal — by first defining two interleaving functions from plays
of LA to plays of A and /A and then defining a copycat-like strategy. The empty play is
send to the empty play. Given a play s-m of LA, we define
(s-m)e = (s)e - m (s-m)a=(s)a m'

where m’ has the same underlying move m played in the corresponding copy if m is not
initial in A, or in a new copy if m is initial in A. We then define

en Y {sePlayiyt, a, | VE<T st = (fay)e}

def
dA :e {S S Playiflnﬂ LA, | Vt _<even S, t\éAl = <t|C'éA2>d}

It is easy to check that the coherence diagrams for a comonad are satisfied. [

We can now wonder whether this comonad defines the free duplicable object on the
category P in the sense that any arrow D L A from a duplicable game D to a game A
t
can be uniquely factorized as D f—>(';A 4, A, where f1 preserves the diagonal from D
to LA. This is not possible in general as we can see by considering the game

Unit (L — 1).
This game is affine and we can define a strategy com : 1 — Unit that answer to the unique
Opponent move by the unique Proponent move. Then,

tunit com®@com

Unit — 1=21® 1 ————— Unit ® Unit

makes the game Unit a duplicable object. Now, any strategy ¢ : Unit — ! A that preserves
the duplication cannot play in Unit as expressed by the diagram

ta com@com

Unit—————>1=21®1———="Unit ® Unit

al io@a
oA

LA AR A
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It follows that it is only possible to factor arrows of the form

Unit =5 Loy
Thus, the relevant modality is not free in P. But this is only due to the lack of coherence
requirements between the duplication and the weakening. This enables any affine game
to act as a duplicable game without implementing a “real” duplication. Nevertheless, this
kind of fake duplication will be rejected by considering commutative comonoids instead of
duplicable objects as we will see in the next paragraph.

Exponential modality. The comonoidal game A associated to a payoff game A is
obtained by applying successively both affine and relevant modalities

o

f

1A A = A

The order of application does not matter as the two comonads commute. We easily check
that the game A lives in the cartesian category P, of commutative comonoids on P.

Proposition 9 The functor | : P — P, which associates the comonoidal game LA to each
game A defines an exponential modality on P.

Proof: The commutation of J, and ! induces a distributive law between those two comon-
ads, equipping automatically ! of a comonadic structure on P. [

We will now show that this comonad defines the free commutative comonoid. We
suppose — without lost of generality because the affine modality is free — that B is an
affine game. Let us introduce the strategy i, : B®" — B that plays a copycat on the
first n copies of B in B®" and does not answer to the opening of the n + 1" copy.
Given a strategy ¢ : A — B from a commutative comonoid A — with counit noted 4
and comultiplication noted d — to a game B, we define ¢f(® is defined by the following
commutative diagram :

A— s pon
O.T(n)l \Lo.@n
éB in B®n

where dg = e, dy is the identity on A and d, denotes the n — 1 applications of the
comultiplication d. The following diagram shows that (" c gf(n+1)

dn
A ®n+1 XN
dn+1 A A® Rt 4
oT(n+1) l o®n+1 \L lo.®n
in B®n®t
B e s Bon+1 ® B&®n

\/

in
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In the diagram above, all the faces commute except the bottom one which is just an
inclusion and the extremal clockwise path is equal to of(™. Thus, we can define the
comonoidal lifting strategy of by

U o)

n

We will now show that o is comonoidal. We have the inclusion chain
§p o i) - (JT(H) ® UT(H)) od C dgo o12n)
Taking the limit of this inclusion chain gives us:

dpoc’ C (ol ®@cT)od C dpool,
®n dn
which is the required equality. Remark that !B 5 °B, pgen coequalizes o and of(")
where — as for d,, — the notation dB stands for ep, dB is the identity on !B and d’ denotes
the n — 1 applications of the comultiplication dp . Using this remark for n = 1 gives the
commutative diagrams
l

B

R g

€BOO'T:U.

U:K—D:-

—

which indicates that

It remains to show the uniqueness of this lifting.

Proposition 10 Given a strategy o : A — B from a commutative comonoid A to a payoff
game B, o : A =B is the unique strategy that satisfies :

A1 Aw A A—2 >R
O‘T\L 4 l loT(@UJr G’T\L %
IB IB IB®\B \B

Proof: We have already shown that of was a good candidate. It remains to show that
it is the only one. Take another candidate 7. We define 7(™ as the sub-strategy of 7 that
plays only on the first n copies of !B, that is

() — in O (e%n odg)oT and T = U ()

Consider now the commutative diagrams

ABn === g%
Tl J/—@n \LU@n
B 1B®" B®n
€B
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Postcomposing this diagrams with 4, directly gives the equality

which means that 7 = of. O

The only things that are missing to have a model of tensorial logic are additives. Unfor-
tunately, the category P does not have coproducts. We will use the family construction,
described by Abramsky et McCusker in [4], to add them freely to our category.

Finite products. For our family construction to fit well with the tensorial negation, we
need finite products. Given a family (A;);es of payoff games indexed on a finite set I, the
product &;ecrA; is defined as

e its underlying graph is obtained by taking the disjoint union of the graphs underlying
each A;, and by merging their root,

e the polarity of moves is directly inherited from the polarity of the moves in A;;

e the payoff function is inherited from the payoff function of each A;, except for the
root which has payoff +1 if all the roots of the A; are of payoff +1, and has payoff
0 else. In particular, the game &;c7A; is affine as soon as one of the game is affine.

The ith projection is given by the obvious copycat strategy on the game A;.

Free finite coproducts. Let us now construct the free completion under finite coprod-
ucts — noted Fam(P) — of the category P.

Given a category C, its free completion under finite coproducts Fam(C) is defined as
follows:

e objects: families {A;|i € I'} of objects of C, where I is a finite set,

e morphisms: a morphism from {A; | i € I} to {B; | j € J} consist in a reindexing
function f : I — J together with a family of morphisms {f; : A; — By | i € I} of
C.

Finite coproducts in Fam(C) are simply given by disjoint unions of families. This con-
struction extends to a 2-monad. Hyland and Power give this 2-monad as an example
of a symmetric pseudocommutative 2-monad in [20]. From this, they deduce that it
distributes with the 2-monad for symmetric monoidal categories. Consequently, (a) the
category Fam(C) inherits the symmetric monoidal structure of C, (b) finite coproducts in
Fam(C) distributes with the tensor product, and (¢) Fam preserves monoidal adjunction.

Abramsky and McCusker [4] have shown that this family construction preserves also
finite products and the existence of a terminal objects. Thus, we deduce that this con-
struction preserves affine, relevant and exponential modalities; and that the finite products
of C lifts to Fam(C). More concretely, the tensor product and product of A = {A;|i € I}
and B = {Bj|j € J} are defined as

A9B ¥ {A4,®B;|(i,j)elxJ}

A&B Y (A &B;| (i) elxJ}
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When C has a tensorial negation, it can also be exported to Fam(C) by associated to
any A = {A;|i € I} the singleton family

A = {&i(~A)}.

Proof: A morphism A® B — —=C in Fam(C) is given by morphisms f; ; : A; ® B; —
& (—Ag) (the reindexing function is trivial here). Those morphisms can be projected by
7o fij 1 A ® Bj — —Cj. We can now use the tensorial negation of C to get morphisms
gijk : Ai — —(Bj ® C) on which we can form the product
def
9 = &k gijr o Ai— &p(Bj @ Cy).
We obtain in this way a morphism g : A — —(B ® C) on the category Fam(C). It is

easy to check that the transformation defines above induces a one-to-one correspondence
between Fam(C)(A® B,—C) and Fam(C)(A,~(B® (C)). O

Gathering all those remarks, we obtain that:

Proposition 11 Fam(P) is a model of tensorial logic.
6 Conclusion

In this paper, we integrate resource modalities in game semantics, a task which has
always appeared extremely difficult to accomplish in the past. The task requires indeed to
put many ideas together, and to reunderstand the topography of the field. In particular,
linear logic is refined along the way into tensorial logic, where the involutive negation of
linear logic is replaced by a tensorial negation. It is then possible to keep the best of
linear logic: resource modalities, etc. but to work on games and continuations instead.
And linear logic coincides then with tensorial logic with the additional axiom that the
continuation monad is commutative. In that sense, tensorial logic is more primitive than
linear logic, in the same way that groups are more primitive than abelian groups.
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