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Abstract 

The scope of this work was the determination of kinetic parameters of the thermal oxidative 

degradation of a Mediterranean scrub using a hybrid method developed at the laboratory. 

DSC and TGA were used in this study under air sweeping to record oxidative reactions. Two 

dominating and overlapped exothermic peaks were recorded in DSC and individualized using 

a experimental and numerical separation. This first stage allowed obtaining the enthalpy 

variation of each exothermic phenomenon. In a second time, a Model Free Method was 

applied on each isolated curve to determine the apparent activation energies. A reactional 

kinetic scheme was proposed for the global exotherm composed of two independent and 

consecutive reactions. In fine mean values of enthalpy variation and apparent activation 

energy previously determined were injected in a Model Fitting Method to obtain the reaction 

order and the preexponential factor of each oxidative reaction. We plan to use these data in a 

sub-model to be integrated in a wildland fire spread model.  

Keywords: wildland fire; thermal degradation; oxidation; ligno-cellulosic fuels; kinetics. 
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Abbreviations:  

Ea: activation energy (kJ/mol) 

K0: preexponential factor (1/s) 

n: reaction order 

T: temperature (K) 

β: heating rate (K/min) 

a0, a1, a2, a3: numerical parameters of the interpolation function 

x, y, z: interpolation coefficients 

I: interpolation function 

r: correlation coefficient  

α: conversion degree  

t: time (min) 

R: gas constant 8.314 kJ/mol 

f(α): kinetic model reaction  

RSS: residual sum of squares 

ΔH: enthalpy of the reaction (endo up) (kJ/g) 

Δm: variation of mass loss (%) 

A: virgin fuel 

KL: reaction rate of char and volatiles formation 

B: evolved gases 

K1: reaction rate of reaction one 

B’: oxidation products 

C: chars 

K2: reaction rate of reaction two 

D: ashes. 
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Subscripts: 

melt: melting point 

Cur: Curie point 

exo: exothermic 

1: refers to exotherm 1 

2: refers to exotherm 2 

exp: experimental value 

sim: simulated data. 

offset: end of phenomena  

deduct: deducted from experiment by substraction 

iso: experimentally isolated 

inter: interpolated  

 

1. Introduction 

The effect of fire on Mediterranean ecosystems has been a research priority in ecological 

studies for several years. Nevertheless, in spite of considerable efforts in fire research, our 

ability to predict the impact of a fire is still limited, and this is partly due to the great 

variability of fire behaviour in different plant communities [1,2]. Flaming combustion of 

ligno-cellulosic fuels occurs when the volatile gaseous products from the thermal degradation 

ignite in the surrounding air. The heat released from combustion causes the ignition of 

adjacent unburned fuel. Therefore, the analysis of the thermal degradation of ligno-cellulosic 

fuels is decisive for wildland fire modelling and fuel hazard studies [3-5]. Physical fire spread 

models are based on a detailed description of physical and chemical mechanisms involved in 

fires. Since the pioneering work of Grishin [6] these models incorporate chemical kinetics for 

the thermal degradation of fuels. However, kinetic models need to be improved.  

Thermal degradation of ligno-cellulosic fuels can be considered according to Figure 1: 
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We present hereafter the results obtained on Erica arborea, one of the most inflammable 

species in Mediterrannean area. DSC curves showing two overlapped exothermic peaks 

(Exotherm 1 and Exotherm 2) were recorded at different heating rates under air. The fuel 

mass loss was recorded using TGA as an additional technique in order to get some 

information about the reactionnal mechanism. There are only a few DSC studies in the 

literature concerning the thermal decomposition of ligno-cellulosic materials which is 

preferably followed by TGA [7-9]. We adapted the DSC in order to measure the heat flow 

released by natural fuels undergoing thermal decomposition and in this paper we present a 

method to separate the thermal events from the global recorded exotherm. The two 

overlapped peaks observed on the DSC curves were experimentally and numerically isolated 

prior to the kinetic study. 

The knowledge of the kinetic triplet (Ea, K0 and n) and the kinetic scheme could help us in 

predicting the rate of thermal degradation when the collection of experimental is impossible in 

classical thermal analysis (high heating rates encountered in fire conditions). The thermal 

degradation kinetics of Erica arborea was studied using a combination of two kinds of 

methods: free model methods and model-fitting method. A free model method was applied in 

a first time to calculate the apparent activation energy and in a second time we used this result 

as initial data in a model fitting method to obtain preexponential factor, reaction order for our 

defined kinetic scheme. Our hybrid kinetic method is based on 4 stages (A – D) presented in 

this paper. 

 

2. Experimental and methods of calculation 

2.1. Experimental 
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Plant material was collected from a natural mediterranean ecosystem situated far away from 

urban areas in order to prevent any pollution on the samples. Cistus monspeliensis (CM), 

Erica arborea (EA), Arbutus unedo (AU) and Pinus pinaster (PP) are representative species 

of the Corsican vegetation concerned by wildland fires. In the present work we chose to focus 

on the results obtained from EA samples. Naturally, the methodology developed hereafter is 

applicable to every ligno-cellulosic fuel. 

Only small particles (< 5 mm) are considered in fire spread [10]. Also, leaves and twigs were 

mixed, sampled and oven-dried for 24 hours at 60°C [11]. Dry samples were grounded and 

sieved to pass through a 1 mm mesh, then kept to the desiccator. The moisture content coming 

from self-rehydration was about 4 percent for all the samples. 

We recorded the Heat Flow vs. temperature (emitted or absorbed) thanks to a power 

compensated DSC ( Perkin Elmer®, Pyris® 1)  and the mass loss vs. temperature thanks to a 

TGA 6 (Perkin Elmer®).  

The DSC calibration was performed out using the melting point reference temperature and 

enthalpy reference of pure indium and zinc (Tmelt (In) = 429.8 K, ΔHmelt(In) =  28.5 J/g, Tmelt 

(Zn) = 692.8, ΔHmelt(Zn) = 107.5 J/g).  Thermal degradation was investigated in the range 

400-900 K under dry air or nitrogen with a gas flow of 20 mL/min. Samples around 5.0 mg ± 

0.1 mg were placed in an open aluminium crucible and an empty crucible was used as a 

reference. The error caused by weighting gives an error of 1.9 % to 3 % on ΔHexp. 

We adapted the DSC for thermal degradation studies by adding an exhaust cover disposed on 

the measuring cell (degradation gases escape and pressure do not increase in the furnaces). 

Several experiments were performed with different high  heating rates (β = 10-40 K/min) in 

order to be closer to the wildland fires conditions. A significant variation between the heating 

rates (Δβ=10 K/min) was very important for kinetics purpose.  
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The TGA calibration was performed using the Curie point of magnetic standards: perkalloy® 

and alumel (TCur (alumel) = 427.4 K, TCur (perkalloy®) = 669.2 K). Samples around 10.000 

mg ± 0.005 mg were placed in an open platinum crucible and the degradation was monitored 

in the same range of temperature and heating rates as in DSC experiments. 

 

2.2. Thermal separation 

An experimental separation is very useful to indicate the way for a numerical treatment. 

Thanks to the switching of the surrounding atmosphere in the DSC furnaces we were able to 

define two independent and successive reactional schemes. The experimental conditions have 

been modified in order to hide the first exothermic phenomenon. Figure 2 present the 

schematic procedure we used to isolate the two phenomena with two experimental steps. The 

samples were thermally degraded under nitrogen atmosphere (step 1) at different heating rates 

from 400 K to 900 K. Then the residual charcoal formed during the step 1 was used as a 

sample to be analyzed by DSC under air sweeping (step 2) with the same temperature range 

and heating rates as in step 1. Step 1 allowed to pyrolyze the fuels generating a char residue 

and volatiles which escaped in the surrounding non-oxidizing atmosphere.  

GRAPHIC2.eps 

2.3. Numerical separation 

The mathematical interpolation performed with Mathematica® [12] gave equations 

describing the DSC curves. We fitted the global curve obtained under air with Eq. 1 and Eq. 

2. In a previous work [11] we used an empirical equation, with five adjustable parameters for 

each peak of each fuel, allowing the description of miscellaneous peaks and improved on 

temperature programmed desorption [13]. The following functions allowed a better fitting 

with only one parameters a0 for Eq. 1 and three parameters a1, a2, a3 for Eq. 2. These 

parameters were constant for all the species and heating rates. Mathematica® determined 
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interpolation coefficient x, y and z in Eq. 1 and Eq. 2. Texo1, Texo2 are the temperatures of 

exotherms 1 and 2, Tshoulder is the temperature of a shoulder observed in exotherm 2 for all the 

species, Texo1, Texo2 and Tshoulder were deducted using the derivative of the experimental plot.  

The function which interpolates the set of experimental points is sought on the basis of the Eq. 

(1) equation model [14] for exotherm 1: 
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with: a0 = a1 = 0.001; a2 = 50 and a3 = 0.04 for all the experiments. We chose these 

functions because they are more robust than traditional function and avoids long compilation 

times. Values of parameters ao , a3 and n are arbitrary, a1 is correlated to the peak top 

temperature and a3 is correlated to the peak width.  

In order to fit to a list of an experimental data, we use a Mathematica® function: 

“Fit[fun,data,var]”. The data use have the form {{T1, I1},{T2, I2}, … }. This function finds 

a least-squares fit to a list of this data as a linear combination of the functions fun of variable 

var (T). So, the solutions have the form: I(T)=Co+C1 fun+C2 fun2+……+Cn funn where the 

interpolation coefficients: Co……Cn are given by Fit. In our case, Fit provides the solution: 

Ci=xi with xo=0  for Eq. 1. and Ci={yi, zi} with yo=zo=0 for Eq. 2. 
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In order to quantify the performance of the modelling procedure, for each experimental curve 

and the corresponding calculated one, Pearson’s correlation (r) was measured and constrained 

to lie between -1 and 1. Variables are said to be negatively correlated, uncorrelated or 

positively correlated at temperature coordinates given by the experimental points. 

 

2.4. Kinetic study 

We have combined two kind of kinetic methods: model free kinetics and model fitting 

kinetics. 

Both are based on Eq. 3: 

 ( )αα fRT
EK

dt
d a ⋅⎟
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Model free kinetics is based on an isoconversional method where the activation energy is a 

function of the conversion degree of a chemical reaction. For this work we chose the method 

of Kissinger-Akahira-Sunose (KAS) applied without any assumption concerning the kinetic 

model (f(α)). The KAS method [15] simply consists of extending the Kissinger’s method [16] 

to the conversion range 0.1-0.9, it is based on Eq. (4): 
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where Eaα and K0α are respectively the apparent activation energy and the pre-exponential 

factor at a given conversion degree αk, and the temperatures Tjk are those which the 

conversion αk is reached at a heating rate βj. During a series of measurements the heating rate 

are β = β1…βj… The apparent activation energy was obtained from the slope of the linear plot 
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1  performed thanks to a Microsoft® Excel® spreadsheet developed for 

this purpose. Four heating rates (10, 20, 30, 40 K/min) were used.  

Model fitting kinetics is based on the fitting of Eq. 3 to the experimental values of dα/dt. We 

used Fork® (CISP Ltd.) software which is provided for model fitting in isothermal or non-

isothermal conditions. The resolution of ordinary differential equations was automatically 

performed by Fork® according to a powerful solver (Runge Kutta order 4 or Livermore 

Solver of Ordinary Differential Equation). The reaction model f(α) was determined among six 

models specified in the literature [17]. Four heating rates (10, 20, 30, 40 K/min) were used at 

the same time; the software fit one kinetic triplet and one reaction model valid for all the 

heating rates. Once the determination of the best kinetic models and optimization of the 

parameters were achieved, the Residual Sum of Squares between experimental and calculated 

values (RSS) indicated the acceptable “goodness of fit” from a statistical point of view. The 

results presented in section 3 concern only the optimum parameters (best RSS value).  

 

2.4. Hybrid Kinetic Method 

Our hybrid kinetic method was built on four successive stages (A – B) from experimental data 

to simulated data. In stage A we individualized the exothermic phenomena. With stage B we 

obtained initiation data thanks to a Model free method applied on each phenomenon. The 

model free results were used as an initialization of the model fitting method. In stage C we 

proposed a kinetic scheme with two oxidative reactions and a Model Fitting Method gave the 

reaction model and the kinetic parameters of each phenomenon. Stage D was devoted to the 

simulation compared to experimental data in order to validate the method.   

The application of our method to the thermal decomposition of Erica arborea gave the 

following results presented stage by stage in the next section.   
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3. Results and discussion  

Figure 3 shows the experimental DSC/TGA thermograms for an experiment performed at β = 

30 K/min. In this section, figures present only plot obtained for one heating rate to but two 

exotherms are clearly visualized and associated with two mass loss for all the heating rates. 

We chose to present in this paper only the results obtained on Erica Arborea fuel but the 

shape of thermograms from others fuels are very similar.    

GRAPHIC3.eps 

Table 1 presents the experimental results on the global exotherm in the range 400 – 900 K, 

values of enthalpy variation were obtained by numeric integration on the whole time domain 

and peak top temperatures were determined thanks to the values of the derivative 

experimental curve.  

Table 2 presents the results from TGA measurement for the considered heating rates. The first 

mass loss is clearly higher (around 70%) than the second (around 27%). The maximum 

temperatures of mass loss were determined thanks to the derivative experimental plot.   

During the first exothermic process the plant is pyrolysed in the temperature range 400 K-600 

K, contributing to the formation of char. Gases emission are visualized in TGA by a mass loss 

around 70%. An oxidation of these gases is possible when the surrounding atmosphere 

selected is air, this phenomenon is represented in DSC by the first exothermic peak. The 

second exothermic process can be considered like a burning process and it is known as 

glowing combustion. The char forms ashes in the temperature range of 600 K-900 K , TGA 

plots show a mass loss around 27% and the second exothermic peak is recorded in DSC. 

Other authors gave the same ascription for exotherm 1 and exotherm 2 [18-20].  

We present hereafter the results obtained with the application of our original approach, the 

scope is the reduction a multi-step process in several independent steps.  
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3.1 Thermal and Numerical separation: -Stage A- 

Thermal separation 

As shown in Fig.4, in the range 400-900 K, only the second exotherm is visualized in step 2 

for all the species because only the remaining char was oxidized. Thus this experimental 

separation of exotherm 1 and exotherm 2 was very helpful to isolate the oxidation of char but 

the heat released by the oxidation of evolved gases could not been recorded. 

GRAPHIC4.eps 

We can deduct the variation of enthalpy for the first process by subtraction:  

 isodeduct HHH 2exp1 Δ−Δ=Δ  (5) 

Table 4 shows the results of numeric integration of isolated curves for the second oxidation 

and the deduction of the enthalpy variation for the first one from Eq. 5. 

The values of enthalpy variation are constant for each reaction of each plant. We were able to 

give a mean value for the enthalpy variation of the gases oxidation (exotherm 1) and for the 

oxidation of char (exotherm 2) for each species. The obtained values are close whatever the 

heating rate is. 

Numerical separation 

Thanks to the interpolation functions Eq. 1 and Eq. 2 experimental DSC curves were 

reconstructed (exotherm 1 and exotherm 2) for all the heating rates considered. 

Once the exotherms were plotted, enthalpy variation of each reaction was calculated by 

numerical integration of the signal and the results are shown in Table 4. 

It is important to notice that the values obtained from the numerical treatment were found to 

be very close to those obtained by the thermal separation (cf. Tab. 3 and Tab 4.). The thermal 

i.e. experimental separation can be considered as a validation of the numerical separation. 
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We can say that the energy released by the reaction referred to exotherm 2 is more important 

than the energy released by the reaction referred to exotherm 1. Actually, we found a mean 

value of 4.74 ± 0.14 kJ/g for the enthalpy variation of reaction referred to exotherm 1 with the 

associated mean value of mass loss of  70 ± 7 % whereas we found a mean value of 7.45 ± 

0.25 kJ/g for the enthalpy variation of reaction referred to exotherm 2 with an associated 

mean value of mass loss of  27 ±1 %. 

Fig. 5 is an example of experimental data compared to interpolated curves. For this 

experiment we obtained a value of r = 0.9946. For all the species investigated and heating 

rates used the Pearson’s correlation coefficient was about this value which indicates a very 

good fit. In the paper we present only results on experiments driven at β = 30 K/min in order 

to focus on the method we applied. 

GRAPHIC5.eps 

3.2 Initiation and Prediction: -Stage B- 

In this stage, we used an isoconversionnal method in order to get initiation parameters (mean 

value of Ea) and also to have an idea of the mechanistic behaviour. Actually, the shapes of the 

dependence of Ea on α have been identified from simulated data for competing [21], 

independent [22], consecutive [23], reversible [24] reactions and as well as for reactions 

complicated by diffusion [25]. 

Figures 6 and 7 show the results of KAS method applied on exotherm 1 and exotherm 2. In 

the range 0.1 - 0.9, the global appearance of Ea confirms the fact that these two mechanisms 

are different. 

Figure 6 shows that the values of Ea increase from 90 to 110 kJ/mol in the range 0.1-0.4, 

while they are relatively constant (about 110 kJ/mol) in the range 0.4-0.9. We did not take into 

account this low variation and only the global shape of the dependence of Ea on α has been 

identified. Nevertheless, for the first process the Ea values are nearly constant (≅ 100 kJ/mol) 
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in the range 0.1-0.9. Thus, this exothermic reaction could be considered as a single step 

process.  

GRAPHIC6.eps 

For the totality of second process Ea values decrease from 140 to 90 kJ/mol with an 

exponential shape. This relatively important variation shows that the second exothermic 

process is probably a multi-step process. The convex shape visualized on Fig. 7 is indexed in 

the literature [26] like a typical oxidation in solid state. Such processes occur frequently in the 

degradation of charcoal that decomposes as chars ashes + gas. 

GRAPHIC7.eps 

 

3.3 Modelisation: -Stage C- 

Let’s consider the following kinetics scheme developed according to the results obtained in 

stage A and B. 
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We selected several reaction models [17] but the best results were obtained with a classical n-

th order reaction:  ( )na
RT

EKdt
d αα −⋅⎟

⎠
⎞

⎜
⎝
⎛−⋅= 1exp0  for both exothermic processes and 

considering two independent reactions. 

The first process is modelled as: A(s) C(s)+B’(g) . The measured heat flow correspond to the 

oxidation of evolved volatiles (exothermic) in gaseous state (B(g)  B’(g) ). Thus we studied 

indirectly the kinetics of A(s) C(s)+B’(g)  by the kinetics of  B(g)  B’(g)  considering A(s) B(g)  

as the rate limiting reaction of gas production. The second exothermic process concerns the 

oxidation of chars formed during the first process: C(s) D(s)+E(g) . 

The two processes can be traduced in the following differential equations considering a n-th 

order model:   
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Data (mean values) obtained in previous stage A and stage B are taken as initiation entries for 

the model fitting method in Fork® software (cf. Tab. 5) for a conversion degree varying from 

0.1 to 0.9. 

The correlation coefficient and the RSS value helped us in identifying the “best” (statistically) 

set of parameters for a reaction model. 

Table 6 presents the results obtained with the Model Fitting method, the parameters were 

calculated thanks to Fork® software and we present the best set of parameters for four heating 

rates (10, 20, 30 and 40 K/min). The first process of degradation has a coefficient of 

correlation rexo1 = 0.9972.  In comparison the coefficient of correlation for the second process 

rexo2=0,9941, although satisfactory, indicates a lower value than rexo1, it means that the n-th 

order model, would not correspond exactly to reality. 

These results show that the mean values of Ea and ΔH determined in the previous stages were 

very close to the values presented in Table 6. To calculate the parameters with Fork® the 

previous stages were absolutely necessary in  order to avoid erroneous values and strong 

compensation effects in the set of parameters and f(α). 

The results testify the coherent choice of the model and the reaction pathway selected.  An 

unsuited model would have generated a divergence in the parameter determination. Fork® 

software allowed us to verify the validity  of initial data (Ea and ΔH) calculated previously 

since the calculated parameters of Table 6 were in the ranges defined in Table 5. 

 

3.4 Simulation and Prediction: -Stage D- 
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In this stage we used a formal resolution of Eq. 6 and Eq. 7 with Mathematica® software. The 

ordinary differential equation system was solved with the parameters calculated in stage C 

(Tab. 6). The resulting conversion degree was simulated on the whole temperature domain 

and allowed to plot the simulated heat flow. Figure 9 and 10 show the comparison between 

simulated plot and interpolated plot for exotherm 1 and exotherm 2. Figure 11 shows the 

comparison between the total simulated plot (sum of Eq. 6 and Eq. 7) and the global 

experimental plot.   
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The correlation coefficient shows the good fit of the simulated data to experimental ones. Of 

course we only present here the results obtained at one heating rate but simulations have been 

performed at different heating rates with similar correlation coefficients. We tested the 

validity of calculated parameters and n-th order models, simulations matched all our 

experimental data, we can simulate the thermal behaviour outside this range of temperature 

and heating rates, this will be presented in a future work. 

 

4. Conclusion 

As a general rule, reactions of thermal degradation show multi-step characteristics. They can 

involve several processes with different activation energies and mechanisms. On one hand, 

Model Free Kinetics considering only one kinetic parameter, namely Ea is an over 

simplification of reality but they eliminate errors caused by an inappropriate kinetic model 

f(α). The validity of approaches, considering exclusively the activation energy values for the 

determination of the kinetics of solid state reactions, can be hardly accepted [17]. On the other 

hand, even if Model Fitting Methods give the kinetic triplet, they must be used carefully. 
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Without an initiation step, results tend to produce highly ambiguous kinetic descriptions [17]. 

We have developed an original method combining the previous ones to study the kinetics of 

thermal degradation reactions. We applied this hybrid kinetic method to the thermal 

degradation of ligno-cellulosic fuels encountered in wildland fires. DSC experiments on such 

fuels showed two superposed exothermic phenomena. In a first step, we individualized 

(numerically and experimentally) these phenomena in two oxidative sub-reactions. Enthalpy 

variations of each sub-reaction were calculated. After this simplification the activation 

energies for exotherm1 and exotherm2 were determined using a Model Free Method. Values 

of enthalpy variations and activation energies were used as initial data for the Model Fitting 

Method. In this way only two parameters of the kinetic triplet have to be determinate. We 

proposed a kinetic scheme for the thermal degradation of ligno-cellulosic fuels under air with 

nth-order model for the oxidative subreactions observed in DSC. Solid state kinetics 

computations should be carried out with experimental data obtained at several heating rates 

(not less than three) to ensure reliable results so, we performed this study with four heating 

rates (10, 20, 30, 40 K/min)  The application of these techniques is widely recognized for the 

characterization of the degradation of solids [17]. Simulations obtained with the calculated 

parameters and considering two n-th order reactions showed good fits to the experimental 

data. Such a method is promising to simulate heat flows at very high heating rates (outside the 

technical limits of classical TA). 

In the field of wildland fires researches this approach could be useful since the step of thermal 

degradation of ligno-cellulosic fuels is still unknown. A sub-model of thermal degradation 

will be developed from this study and incorporated in a global physico-chemical fire spread 

model.   
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The following figures show the results of  peak separation for experiments driven at 10, 20 

and 40 K/min. One can also visualize the good fit of simulated data to experimental data for 

all the heating rates with the same set of parameters defined in Table 6. 
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FIGURES LEGENDS  

Figure 1: Oxidative thermal decomposition of a ligno-cellulosic fuel. 

Figure 2: Schematic representation of the experimental separation in two steps. 

Figure 3: DSC/TGA curves for EA fuel at 30 K/min under air sweeping. 

Figure 4: DSC curve of residual char formed in step 1 at 30 K/min under air sweeping. 
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Figure 5: Comparison between experimental and interpolated curves at 30 K/min. 

Figure 6: KAS method for exotherm 1. 

Figure 7: KAS method for exotherm 2. 

Figure 8: Global reaction scheme. 

Figure 9: Interpolated and fitted curves, exotherm1 at 30 K/min, r: 0.9972. 

Figure 10: Interpolated and fitted curves, exotherm 2 at 30 K/min, r: 0.9941. 

Figure 11: EA fuel: Experimental and fitted curves at 30 K/min, r: 0.9924. 

Figure A.1: Comparison between experimental and interpolated curves at 10 K/min. 

Figure A.2: Interpolated and fitted curves, exotherm1 at 10 K/min. 

Figure A.3: Interpolated and fitted curves, exotherm 2 at 10 K/min. 

Figure A.4: EA fuel: Experimental and fitted curves at 10 K/min. 

Figure A.5: Comparison between experimental and interpolated curves at 20 K/min. 

Figure A.6: Interpolated and fitted curves, exotherm1 at 20 K/min. 

Figure A.7: Interpolated and fitted curves, exotherm 2 at 20 K/min. 

Figure A.8: EA fuel: Experimental and fitted curves at 20 K/min. 

Figure A.9: Comparison between experimental and interpolated curves at 40 K/min. 

Figure A.10: Interpolated and fitted curves, exotherm1 at 40 K/min. 

Figure A.11: Interpolated and fitted curves, exotherm 2 at 40 K/min. 

Figure A.12: EA fuel: Experimental and fitted curves at 40 K/min. 
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TABLES 
 
 

Table 1: Peaks temperature at different heating rates for EA fuel by DSC. 

β (K/min) aΔHexp (kJ/g) bTexo1 (K) bTexo2 (K) 

10 12.11 624 769 

20 12.61 649 789 

30 12.13 666 805 

40 12.16 678 820 

a  Total enthalpy of combustion calculated by numerical integration of the experimental signal on the whole temperature range. 

b  Texo1 and Texo2 are the temperature of maximum value of heat flow obtained by DSC measurements. 

 

Table 2: Offset temperature and mass lost at different heating rates for EA fuel by TGA. 

β (K/min) Δm1 (%) Toffset1
a (K) Δm2 (%) Toffset2

a (K) 

10 68.3 644 27.4 796 

20 69.4 660 28 808 

30 77 676 26.6 819 

40 66.2 693 28.6 832 

aToffset1 and Toffset2 are the temperature of maximum value of mass loss obtained by TGA measurements. 
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Table 3: Enthalpies variations of reaction 1 deducted and reaction 2 isolated. 

β (K/min) ΔH 1deduct (kJ/g) ΔH 2 iso (kJ/g) 

10 4.59 7.52 

20 5.14 7.47 

30 4.70 7.43 

40 4.71 7.45 

 

Table 4: Enthalpies variations of reaction 1 interpolated and reaction 2 interpolated. 

β (K/min) ΔH1 inter (kJ/g) ΔH2 inter (kJ/g) 

10 4.62 7.35 

20 4.88 7.70 

30 4.73 7.38 

40 4.74 7.39 

 
 

Table 5: Initiation data obtained in stage A and stage B. 

Initial data  

Exotherm 1 4.62 ≤ |ΔH1| (kJ/g) ≤ 5.38 80 ≤ Ea1 (kJ/mol) ≤ 120 

Exotherm 2 7.35 ≤ |ΔH2| (kJ/g) ≤ 8.20 80 ≤ Ea2 (kJ/mol) ≤ 150 
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Table 6: Summary of kinetics results (Model Fitting) obtained for exotherm 1 and exotherm 2. 

Parameters Results1 inter Results2 inter 

oKln  13.2 12.9 

Ea 95.3 kJ/mol 116.3 kJ/mol 

n 1.68 0.49 

|ΔH| 4.98 kJ/g 7.56 kJ/g 

rexo 0.9972  0.9941  

 
 


