
HAL Id: hal-00339049
https://hal.science/hal-00339049v1

Preprint submitted on 15 Nov 2008 (v1), last revised 21 Jan 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Application of graph combinatorics to rational identities
of type A

Adrien Boussicault, Valentin Féray

To cite this version:
Adrien Boussicault, Valentin Féray. Application of graph combinatorics to rational identities of type
A. 2008. �hal-00339049v1�

https://hal.science/hal-00339049v1
https://hal.archives-ouvertes.fr


FPSAC 2009 DMTCS proc.(subm.), by the authors, 1–36

Application of graph combinatorics to rational
identities of type A

†

Adrien Boussicault1 and Valentin F́eray1

1 Université Paris-Est, Institut d’électronique et d’informatique Gaspard-Monge, 77454 Marne-la-Vallée Cedex 2

To a wordw, we associate the rational functionΨw =
∏

(xwi
− xwi+1)

−1. The main object, introduced by C.
Greene to generalize identities linked to Murnaghan-Nakayama rule, is a sum of its images by certain permutations
of the variables. The sets of permutations that we consider are the linear extensions of oriented graphs. We explain
how to compute this rational function, using the combinatorics of the graphG. We also establish a link between an
algebraic property of the rational function (the factorization of the numerator) and a combinatorial property of the
graph (the existence of a disconnecting chain).

Résuḿe : À un mot w, nous associons la fonction rationnelleΨw =
∏

(xwi
− xwi+1)−1. L’objet principal,

introduit par C. Greene pour généraliser des identités rationnelles liées à la règle de Murnaghan-Nakayama, estune
somme de ses images par certaines permutations des variables. Les ensembles de permutations considérés sont les
extensions linéaires des graphes orientés. Nous expliquons comment calculer cette fonction rationnelle à partir de la
combinatoire du grapheG. Nous établissons ensuite un lien entre une propriété algébrique de la fonction rationnelle
(la factorisation du numérateur) et une propriété combinatoire du graphe (l’existence d’une chaı̂ne le déconnectant).

Keywords: Rational functions, posets, maps

1 Introduction
A partially ordered set (poset)P is a finite setV endowed with a partial order. By definition, a word
w containing exactly once each element ofV is called a linear extension if the order of the letters is
compatible withP (if a ≤P b, thena must be beforeb in w). To a linear extensionw = v1v2 . . . vn, we
associate a rational function :

ψw =
1

(xv1 − xv2 ) · (xv2 − xv3) . . . (xvn−1 − xvn
)
.

We can now introduce the main object of the paper. If we denoteby L(P) the set of linear extensions
of P , then we defineΨP by:

ΨP =
∑

w∈L(P)

ψw.

†this paper is an extended abstract of the eponymous paper on arXiv ???, which contains all detailed proofs.

subm. to DMTCS c© by the authors Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France
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1.1 Background
The linear extensions of posets contain very interesting subsets of the symmetric group : for example,
the permutations smaller than a given one for the Bruhat order if the poset is the one considered in the
article (3). In this case, our construction is close to that of Demazure characters (4). S. Butler and M.
Bousquet-Mélou characterize the permutations corresponding to acyclic posets, which is exactly the cases
where the function we consider is the simplest.
Moreover linear extensions are hidden in a recent formula for irreducible character values of the sym-
metric group: if we use the notations of (7), the quantityNλ(G) can be seen as a sum over the linear
extensions of the bipartite graphG (bipartite graphs are a particular case of oriented graphs). This ex-
plains the similarity of the combinatorics in article (6) and in this one.

The functionΨP was considered considered by C. Greene (8), who wanted to generalize a rational
identity linked to Murnaghan-Nakayama rule for irreducible character values of the symmetric group. He
has given in his article a closed formula for planar posets (µP is the Möbius function ofP):

ΨP =

{

0 if P is not connected,
∏

y,z∈P
(xy − xz)

µP (y,z) if P is connected,

However, there is no such formula for general posets, only the denominator of the reduced form ofΨP is
known (2). In this article, the first author has investigatedthe effects of elementary transformations of the
Hasse diagram of a poset on the numerator of the associated rational function. He has also noticed, that in
some case, the numerator is linked with Schur functions (2, paragraph 4.2) (we can also find multiSchur
functions or Schubert polynomials).

In this paper, we obtain some new results on this numerator, thanks to a simple local transformation in
the graph algebra, preserving linear extensions.

1.2 Main results
An inductive algorithm The first main result of this paper is an induction relation onlinear extensions

(Theorem 4.1). When one appliesΨ on it, it gives an efficient algorithm to compute the numerator
of the reduced fraction ofΨP (the denominator is already known).

A combinatorial formula If we iterate our first main result in a clever way, we can describe combinato-
rially the final result. The consequence is our second main result : if we give to the graph of a poset
P a rooted map structure, we have a combinatorial non-inductive formula for the numerator ofΨP

(Theorem 6.5).

A condition for ΨP to factorize Green formula’s for the function associated to a planar poset is a quo-
tient of products of polynomials of degree1. In the non-planar case, the denominator is still a
product of degree 1 terms, but not the numerator. So we may wonder when the numeratorN(P)
can be factorized.
Our third main result is a partial answer (a sufficient but notnecessary condition) to this question
: the numeratorN(P) factorizes if there is a chain disconnecting the Hasse diagram of P (see
Theorem 7.1 for a precise statement). An example is drawn on figure 1 (the disconnecting chain is
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(2, 5)). Note that we use here and in the whole paper a unusual convention : we draw the posets
from left (minimal elements) to right (maximal elements).
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Fig. 1: Example of chain factorization

1.3 Open problems
Necessary condition for factorization The conclusion of the factorization Theorem 7.1 is sometimes

true, even when the separating path is not a chain : see for example Figure 2 (the path(5, 6, 3)
disconnects the Hasse diagram, but is not a chain).
This equality, and many more, can be easily proved using the same method as Theorem 7.1. Can we
give a necessary (and sufficient) condition for the numerator of a poset to factorize into a product
of numerators of subposets? Are all factorizations of this kind?

Characterisation of the numerator Let us consider a posetP , which has only minimal and maximal
elements (respectivelya1, . . . , al andb1, . . . , br). The numeratorN(P) of ΨP is a polynomial in
b1, . . . , br which degree in each variable can be easily bounded. Thanks Proposition 4.4, we see
immediately thatN(G) = 0 on some affine subspaces of the space of variables. Unfortunately,
these vanishing relations and its degree do not characterizeN(P) up to a multiplicative factor. Is
there a bigger family of vanishing relations, linked to the combinatorics of the Hasse diagram of the
poset, which characterizesN(P)?
This question comes from the following observation: for some particular posets, the numerator
is a Schubert polynomial and Schubert polynomials are knownto be easily defined by vanishing
conditions (9).

2 Graphs and posets
2.1 Conventions
In this paper, we deal with finitedirected graphs. So we will use the following definition of graphs :

N













1

2

3

4

5
6

7

8

9













= N





 1

2

3

5
6






.N















3

4

5
6

7

8

9















Fig. 2: An example of factorization, not contained in Theorem 7.1.



4 A. Boussicault and V. F́eray

• A finite set of verticesV .

• A subset of edgesE of V ×V (set of edges). Ife ∈ E, we will note byα(e) ∈ V the first component
of e (calledorigin of e) andω(e) ∈ V its second component (calledendof e). This means that each
edge has an orientation.

To make the figures easier to read,α(e) is always the left-most extremity ofe andω(e) its right-most
one (of course it is not possible if the graph contains a circuit, see definition lower, but this case will not
be very interesting for our purpose).

Let e = (v1, v2) be an element ofV × V . Then we denote bye the element(v2, v1).
With these definitions of graphs, we have four definitions of ¡¡paths¿¿

can not go
backwards

can go
backwards

closed circuit loop
non-closed chain path

Definition 2.1 More precisely,

chain A chain is a sequence of edgesp = (e1, . . . , ek) ofG such thatω(e1) = α(e2), ω(e2) = α(e3),
. . . andω(ek − 1) = α(ek).

circuit A circuit is a chainp = (e1, . . . , ek) ofG such thatω(ek) = α(e1).

path A path is a sequenceL = e1, . . . , eh of elements ofE∪E such thatω(e1) = α(e2), ω(e2) = α(e3),
. . . andω(ek − 1) = α(ek). If L is a path, then we denoteL ∩ E byE(L).

loop A loop is a path with the additional property thatω(ek) = α(e1).

In all these definitions, we add the condition that all edges and vertices are different (except of course, the
equalities in the definition).

Remark 1 Note that the difference between a loop and a circuit (respectively a path and a chain) is that,
in a loop (respectively in a path), an edge can appear in both directions (not only in the direction given
by the graph structure). The edges, for which both directions coincide, are exactly the elements ofE(L).

Example 1 An example of graph is drawn on figure 3 : the non-dotted edges form a loopL, such that
E(L) contains 3 edges, whose images byγ are (1, 6), (6, 8) and(5, 7).

The cycle number of a graphG is |E(G)| − |V (G)| + cG, wherecG is the number of connected
components ofG. It is the number of edges that we can remove fromG without increasingcG. A
connected graph with cycle number0 is called a tree. Beware that, with this definition, there areno rules
for the orientation of the edges of a tree (often, in the literature, an oriented tree is a tree which edges are
oriented from theroot to theleaves, but we do not consider such objects here).
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Fig. 3: Example of a chain and a loopL in a graphG (we recall that orientations are from left to right)

2.2 Operations on graphs

The main tool of this paper will consist in removing some edges of graphG.

Definition 2.2 If E′ is a subset of the setE of edges of a graphG, we will denote byG\E′ the graphG′

with

• the same set of vertices asG.

• the setEG′ := E\E′ as set of edges.

Definition 2.3 If G is a graph andV ′ a subset of its set of verticesV , V ′ has an induced graph structure
: its edges are exactly the edges ofG, which have both their extremities inV ′.

If V \V ′ = {v1, . . . , vl}, this graph will also be denotedG\{v1, . . . , vl} (the symbol is the same that
in definition 2.2, but it should not be confusing in what follows).

Definition 2.4 (Contraction) We denote byG/e the graph (here, the set of edges can be a multiset)
obtained by contracting the edgee (i.e. inG/e, there is only one vertexv instead ofv1 andv2, the edges
ofG different frome are edges ofG/e : if their origin and/or end inG is v1 or v2, it is v in G/e).

Then, ifα(e) 6= ω(e), G/e is a graph with the same number of connected components and the same
cycle number asG.

2.3 Poset, graphs, Hasse diagrams and linear extensions

Definition 2.5 A partially ordered set(poset) P is a set endowed with a binary relation≤ verifying:

1) for all x ∈ P , x ≤ x (reflexivity);

2) if x ≤ y andy ≤ x, thenx = y (antisymmetry);

3) if x ≤ y andy ≤ z, thenx ≤ z (transitivity).

Given a graphG, we can consider the binary relation :

x ≤1 y
def

⇐⇒

(

x = y or ∃ e ∈ E(G) s.t.

{

α(e) = x
ω(e) = y

)
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This binary relation can be completed by transitivity. If the graph has no circuit, the resulting relation≤
is antisymmetric and, hence, endows the setV (G) with a poset structure, which we will denoteposet(G).

The applicationposet is not injective. Among the pre-images of a given posetP , there is a minimum
one (for the inclusion of edge set), which is called Hasse diagram ofP .

The definition of linear extensions given in the introduction can be formulated in terms of graphs :

Definition 2.6 A linear extension of a graphG is a total order≤w on the set of verticesV such that : for
each edgee ofG, one hasα(e) ≤w ω(e).

The set of linear extension ofG is denotedL(G). Let us also define the formal sumϕ(G) =
∑

w∈L(G)

w.

We will often see a total order≤w defined byvi1 ≤w vi2 ≤w . . . ≤w vin
as a wordw = vi1vi2 . . . vin

.

Remark 2 If G contains a circuit, then it has no linear extensions. Else, its linear extensions are the
linear extensions ofposet(G). Thus considering graphs instead of posets give not more general results.
But we have chosen to formulate all our results in terms of graphs because they involve the combinatorics
of the graphs and, moreover, the set of Hasse diagrams is not closed by the operations of subsection 2.2.

The following lemma comes straight forward from the definition :

Lemma 2.1 LetG andG′ be two graphs with the same set of vertices.

E(G) ⊂ E(G′) andw ∈ L(G′) =⇒ w ∈ L(G)

w ∈ L(G) andw ∈ L(G′) ⇐⇒ w ∈ L(G ∨G′),

where
V (G ∨G′) = V (G) = V (G′)
E(G ∨G′) = E(G) ∪ E(G′)

.

3 Rational functions on graphs
3.1 Definition
Given a graphG with n verticesv1, . . . , vn, we are interested in the following rational functionΨ(G) in
the variables(xvi

)i=1...n :

Ψ(G) =
∑

w∈L(G)

1

(xw1 − xw2) . . . (xwn−2 − xwn−1)

We also consider the renormalization:

N(G) := Ψ(G) ·
∏

e∈EG

(xα(e) − xω(e)).

In fact, we will see later that it is a polynomial. Moreover, if G is the Hasse diagram of a poset,ϕ(G) =
N(G)

∏

e∈EG

(xα(e) − xω(e))
is a reduced fraction.
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v1 v2 vk−1 vk vl+1vn−2vn−1

v

v1 v2 vk−1 vk vl+1vn−2vn−1

v

Fig. 4: Graph of proof of Lemma 3.1

3.2 Value on forests

Thanks to the following lemma, it is easy to computeN on forests (note that this results are already
present in (2), but the demonstrations here are simpler and make this article self-contained).

Lemma 3.1 (Pruning-invariance) Let G be a graph with a vertexv of valence1 and e the edge of
extremity (origin or end)v. Then one has

N(G) = N
(

G\{v}
)

.

Proof: It is enough to prove it in the case whereG has the form of Figure 4. Indeed, the linear extensions
ofG are exactly the words obtained from a linear extension ofG\{v} by addingv after (resp. before) the
other extremity ofe. If the proposition is true ifG\{v} is the graph of a totally ordered set,i.e. a line, it
will be true for any graphG.

Suppose thatG is the left-hand graph of Figure 4 (it is similar for the right-hand one). Then

L(G) =
{

v1 . . . vivvi+1 . . . vn−1, i ≥ k
}

SoΨ(G) =

n−1
∑

i=k

1
[

(v1 − v2) . . . (vi−1 − vi)(vi − v)
·(v − vi+1)(vi+1 − vi+2) . . . (vn−2 − vn−1)

]

=
1

(v1 − v2) . . . (vi−1 − vi)(vi − vi+1)(vi+1 − vi+2) . . . (vn−2 − vn−1)

·

[

n−2
∑

i=k

(

1

v − vi+1
−

1

vi − v

)

+
1

vn−1 − v

]

=
1

(v1 − v2) . . . (vn−2 − vn−1)

1

v − vk

The computation givesN(G) = 1 = N
(

G\{v}
)

, so the proposition is proved. 2

Proposition 3.2 If T is a tree andF a disconnected forest, one has :

N(T ) = 1; (1)

N(F ) = 0. (2)
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Proof: Thanks to the pruning Lemma 3.1, we only have to prove it in thecase whereF is a disjoint union
of n points. Ifn = 1, it is obvious thatN(·) = Ψ(·) = 1. Else, if we denote byc the full cycle(1 . . . n),
one has :

Ψ(F ) =
∑

σ∈S(n)

1

(xσ(1) − xσ(2)) . . . (xσ(n−1) − xσ(n))

=
1

n

∑

σ∈S(n)

n−1
∑

i=0

1

(xσ◦ci(1) − xσ◦ci(2)) . . . (xσ◦ci(n−1) − xσ◦ci(n))

=
1

n

∑

σ∈S(n)

n−1
∑

i=0

xσ◦ci(n) − xσ◦ci(1)

(xσ(1) − xσ(2)) . . . (xσ(n−1) − xσ(n))(xσ(n) − xσ(1))

= 0.

2

4 The main transformation
In section 3, we have introduced a rational function associated to graphs and we have computed its value
on forests. In this section, we will see that the function associated to any graph with at least a cycle can be
written using functions associated to graphs with a strictly lower cycle number. So we can studyΨ using
only this induction relation and the value on forests.

4.1 Equality on linear extensions
If G is a finite graph andL a loop ofG, let us denote byTL(G) the following formal alternate sum of
subgraphs ofG :

TL(G) =
∑

E′⊂E(L)
E′ 6=∅

(−1)|E
′|−1G\E′.

The functionϕ(G) =
∑

w∈L(G)

w can be extended by linearity to the free abelian group spanned by

graphs, then one has the following theorem:

Theorem 4.1 LetG be a graph andL a loop ofG then,

ϕ(G) = ϕ(TL(G)). (3)

Note that all graphs appearing in the right-hand side of (3) have strictly less loops thanG. An example
is drawn on figure 5 (to make it easier to read, we did not write the operatorϕ in front of each graph).

Remark 3 In the case whereE(L) = ∅, this theorem says that graphs with oriented circuits have no
linear extensions (see remark 2).
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Fig. 5: Example of application of theorem 4.1
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If it is a singleton, it says that we do not change the set of linear extensions by erasing an edge if there
is a path going from its origin to its end (thanks to transitivity).

An other very interesting case of our relation is the following one. LetG be a graph andv1 andv2 two
vertices ofG which are not linked by an edge. We can write

ϕ(G) =
∑

w∈L(G)
v1≤wv2

w +
∑

w∈L(G)
v2≤wv1

w (4)

This is a special case of our relation on the graphG′ obtained fromG by adding two edgese1,2 = (v1, v2)
ande2,1 = (v2, v1). This graph contains a circuit soϕ(G′) = 0. But one also has :

ϕ(G′) = ϕ
(

G ∪ {e1,2}
)

+ ϕ
(

G ∪ {e2,1}
)

− ϕ
(

G
)

.

Soϕ
(

G
)

is the sum of two terms corresponding exactly to equation (4). By iterating this transformation,
deleting graph with circuits and erasing edges thanks to transitivity relation we obtain:

ϕ(G) =
∑

w∈L(G)

ϕ( w1 w2 wn−1 wn ).

An immediate consequence is that any relation between theϕ(G) can be deduced from Theorem 4.1.

To prove Theorem 4.1, we will need the two following lemma:

Lemma 4.2 Letw ∈ L(G\E(L)). There existsE′(w) such that

∀E′′ ⊂ E(L), w ∈ L(G\E′′) ⇐⇒ E′(w) ⊂ E′′ ⊂ E(L).

Proof: immediate consequence of lemma 2.1. 2

Lemma 4.3 Letw ∈ L(G\E(L)), there existsE′′ ( E(L) such that

w ∈ L(G\E′′).

Proof: Suppose that we can find a wordw for which the lemma is false. Sincew ∈ L(G\E(L)), the
wordw fulfills the relations of the edges ofL, which are not inE(L).
But, if e ∈ E(L), one hasw /∈ L(G\(E(L)\{e})). That means thatw does not fulfill the relation
corresponding to the edgee. Asw is a total order, it fulfills the opposite relation :

w ∈ L
[(

G\E(L)
)

∪ e
]

.

Doing the same argument for eache ∈ E(L), one has

w ∈ L
[

(

G\E(L)
)

∪ E(L)
]

.

But this graph contains an oriented cycle so the corresponding set of linear extension is empty. 2

Let us come back to the proof of Theorem 4.1.
Let w be a word containing exactly once each element ofV (G). We will compute his coefficient in
ϕ(G) − ϕ(TL(G)) =

∑

E′⊂E(L)(−1)|E
′|ϕ(G\E′) :
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• If w /∈ L(G\E(L)), his coefficient is zero in each summand.

• If w ∈ L(G\E(L)), thanks Lemma 4.2, we know that there existsE′(w) ⊂ E(L) such that

w ∈ L(G\E′′) ⇐⇒ E′(w) ⊂ E′′ ⊂ E(L).

So the coefficient ofw in ϕ(G) − ϕ(TL(G)) is
∑

E′(w)⊂E′′⊂E(L)

(−1)|E
′′| = 0 (becauseE′(w) 6= E(L), Lemma 4.3).

4.2 Consequences on Green functions
Proposition 4.4 LetG be the graph containing a loopL. Then,

N(G) =
∑

E′⊂E(L)
E′ 6=∅

[

(−1)|E
′|−1N(G\E′)

∏

e∈E′

(xα(e) − xω(e))

]

.

By proposition 3.2, one hasN(T ) = 1 if T is a tree andN(F ) = 0 if F is a disconnected forest. So
this Proposition gives us an algorithm to computeN(G) : we just have to iterate it with any loops until
all the graphs in the right hand side are forests. So, if afteriterating transformations of typeTL onG, we
obtain

∑

cFF , then:

N(G) =
∑

F subforest ofG

cF
∏

e∈EG\EF

(xalpha(e) − xω(e)).

In this formula,N(G) appears as a sum of polynomials. So the computation ofN(G), using this formula,
is easier than a direct application of the definition

N(G)
∑

w∈L(G)

(

Ψ(w) ·
∏

e∈EG

(xalpha(e) − xω(e))

)

,

where the summands may have poles.
We will use this algorithm in the next section on some examples. But it has also a theoretical interest :

some properties ofN on forests can be immediately extended to any graph.

Corollary 4.5 For any graphG, the rational functionN(G) is a polynomial. Moreover, ifG is discon-
nected,N(G) = 0.

Proof: We make an immediate induction with Proposition 4.4 over thenumber of loops ofG. Thanks
proposition 3.2, the result is true ifG has no loop.
2

In fact, if G is the Hasse diagram of a connected poset, the fractionΨ(G) = N(G)
∏

e∈EG

(xα(e)−xω(e))
is

irreducible (see (2) for a proof of this fact).
The following result can also be proved by induction on the cycle number:
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Proposition 4.6 LetG be a graph ande an edge ofG between two verticesv1 andv2. Then

N(G/e) = N(G)
∣

∣

xv1=xv2=xv
,

wherev is the contraction ofv1 andv2 in G/e.

Proof Proof (by induction on the cycle number ofG): If G is a tree, then the equality is obvious by
Proposition 3.2.

If G/e contains a loopLe, then we consider the following loopL in G:

• If Le does not go through the vertexv (contraction ofv1 andv2), thenLe can also be seen as a loop
L of G.

• Suppose thatv is the end ofei and the origin ofei+1 and that they are also the same vertex (v1 or
v2) in G. Then,Le can still be seen as a loopL ofG.

• Suppose thatv is the end ofei and the origin ofei+1 but that these two edges have different
extremities (v1 andv2) in G. Then we add the edgee or e to Le (betweenei andei+1) to obtain a
loopL of G.

Eventually by changing the orientations ofLe andL, we can assume thate /∈ E(L) and, as a conse-
quenceE(L) = E(Le). By theorem 4.4, one has :

N(G/e) =
∑

E′⊂E(Le)
E′ 6=∅

(−1)|E
′|−1N((G/e)\E′).

∏

e∈E′

(xα(e) − xω(e))

N(G) =
∑

E′⊂E(L)
E′ 6=∅

(−1)|E
′|−1N(G\E′).

∏

e∈E′

(xα(e) − xω(e)).

As e /∈ E(L),

(G\E′)/e = (G/e)\E′ and E(Le) = E(L).

This ends the proof by applying the induction hypothesis to the graphsG\E′. 2

An other immediate consequence of Proposition 4.4 is the vanishing relations ofN(G).

Corollary 4.7 LetG be a graph. LetL be a loop ofG withE(L) = {e1, . . . , er}. One has

N(G)|xα(ei)
=xω(ei)

,i=1...r = 0

Unfortunately, this corollary, written for every loop of a graphG, does not characterizeN(G) up to a
multiplicative factor (see paragraph 1.3).
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5 Some explicit computations of rational functions
5.1 Graphs of cycle number 1.
We will consider connected graphsG with only one loop. Using pruning Lemma 3.1, we can suppose that
each vertex ofG has valence2. We denote bymax(G) (resp.min(G)) the set of maximal (resp. minimal)
elements ofG. The following result was already proved in (2), but we present here a simpler proof using
our operation.

Proposition 5.1 If G is a connected graph with vertices of valence2, then

N(G) =
∑

v∈minG

xv −
∑

v′∈max(G)

xv′ .

Proof: G has only one loopL (we only have to choose the orientation). In the right-hand side of equation
(3), we have two kinds of terms :

• If |E′| = 1,G\E′ is a tree andN(G\E′) = 1.

• If |E′| > 1,G\E′ is a disconnected forest andN(G\E′) = 0.

Then
N(G) =

∑

e∈E(L)

(xα(e) − xω(e))

The sum above can be simplified and is equal to
∑

v∈min G

xv −
∑

v′∈max(G)

xv′ . 2

Example 2

N





1

2

3

4

5



 = (x1 − x3)N





1

2

3

4

5



+ (x2 − x4)N





1

2

3

4

5



 (5)

+(x4 − x5)N





1

2

3

4

5



±N

(

disconnected
graphs

)

(6)

= (x1 − x3) + (x2 − x4) + (x4 − x5) (7)

= x1 + x2 − x3 − x5. (8)

5.2 Graphs with cycle number 2.
Let G be a connected graph with a cycle number equal to2. Thanks to pruning Lemma 3.1, we can
suppose thatG has no vertices of valence1. As |EG| = |VG|+ 1, the graph has, in addition of vertices of
valence2, either two verticesv andv′ of valence3 or one vertex of valence4. We will only look here of
the case where there are two vertices of valence3 and the edges can be partitioned into three pathsp0, p1

andp2 from v to v′ (the other cases are easier because the loops have no edges incommon).
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v

v′2

2

0
1
1
1

2

2
2

0

0

2

Fig. 6: Example of a graphG with cycle number2.

For i = 0, 1, 2, let us denote byEi (resp. byEi) the set of edges of the pathpi which appear in the
same (resp. opposite) orientation in the graph and in the path pi (see the figure 6 for an example, we have
written of each edge the index of the set it belongs to). IfI = {i1, . . . , il} ⊂ {0, 1, 2, 0, 1, 2}, we consider
the following alternate sum of graphs :

GI =
∑

∅6=E′
1⊂Ei1 ,...,∅6=E′

l
⊂Eil

(−1)|E
′
1|−1 . . . (−1)|E

′
l|−1G\

(

E′
1 ∪ . . . ∪ E

′
l

)

.

Applying Theorem 4.1 with the loopL = p1 · p2 (with E(L) = E1 ∪ E2) , we obtain :

ϕ(G) = ϕ(G1) + ϕ(G2) − ϕ(G2,1).

In each graph inG1, the pathp1 is cut but the two other paths still exist, so they all containthe loopp0 ·p2.
If we apply Theorem 4.1 with this loop, we obtain:

ϕ(G1) =
∑

E′⊂E1

(−1)|E
′|−1ϕ(G \E′)

=
∑

E′⊂E1

(−1)|E
′|−1





∑

E′′⊂E0

(−1)|E
′′|−1ϕ

(

(G \ E′) \ E′′
)

+
∑

E′′⊂E2

(−1)|E
′′|−1ϕ

(

(G \ E′) \ E′′
)

−
∑

E′′⊂E2

E′′′⊂E0

(−1)|E
′′|−1(−1)|E

′′′|−1ϕ
(

(G \ E′) \ (E′′ ∪ E′′′)
)









= ϕ(G0,1) + ϕ(G2,1) − ϕ(G2,0,1)

In a similar way, all graphs inG2 contains the loopp1 · p0 and one hasϕ(G2) = +ϕ(G2,0) + ϕ(G1,2)−
ϕ(G1,2,0). The graphs inG2,1 have no loops, so, finally:

ϕ(G) = ϕ(G0,1) + ϕ(G2,1) − ϕ(G2,0,1)

+ϕ(G2,0) + ϕ(G1,2) − ϕ(G1,2,0) − ϕ(G2,1);

= ϕ(G0,1) − ϕ(G2,0,1) + ϕ(G2,0) + ϕ(G1,2) − ϕ(G1,2,0).
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If we applyΨ to this equality, we keep only connected graphs and obtain :

Ψ(G) = Ψ(G′
0,1

) + Ψ(G′
2,0

) + Ψ(G′
1,2),

whereG′
I =

∑

e1∈Ei1 ,...,el∈Eil

G\
{

e1, . . . , el

}

. As all graphs in the expression ofG′
I are trees, we obtain

( by usingXe instead ofxα(e) − xω(e) ) :

N(G) =
∑

e0∈E0,e1∈E1

Xe0
·Xe1

+
∑

e0∈E0,e2∈E2

Xe0
·Xe2 +

∑

e1∈E1,e2∈E2

Xe1 ·Xe2

=





∑

e0∈E0

Xe0









∑

e1∈E1

Xe1



+





∑

e0∈E0

Xe0





(

∑

e2∈E2

Xe2

)

+

(

∑

e1∈E1

Xe1

)(

∑

e2∈E2

Xe2

)

.

One can notice that, ifE0 is empty (that is to say that there is a chain formv to v′), the polynomialN(G)
is the product of two polynomials on degree1. This is a particular case of our third main result (Theorem
7.1).

5.3 Simple bipartite graphs
Definition 5.1 A graph is said to be bipartite if its set of vertices can be partitioned in two setsV1 andV2

such thatE ⊂ V1 × V2.
Moreover, a bipartite graph is said complete ifE = V1 × V2.

In this section we will look at bipartite graphs such that|V1| = 2. Thanks to the pruning Lemma 3.1,
we can suppose that it is a complete bipartite graph. The complete bipartite graph with|V1| = 2 and
|V2| = n is unique up to isomorphism and will be denotedG2,n.

Proposition 5.2 Let us calla1, a2 (resp.b1, . . . , bn) the variables associated to the verticesv1
1 andv2

1 of
V1 (resp.(vi

2)1≤i≤n of V2), one has :

N(G2,n) =

n
∑

i=1





∏

j<i

(bj − a1) ·
∏

k>i

(bk − a2)



 .

Proof: For eachh = 1, 2 and i = 1, . . . , n, we denote byeh,i the edge(vh
1 , v

i
2). We will show, by

induction ofn, that, by applying several times theorem 4.1, we obtain the following equality (which is
drawn on figure 7 forn = 4 ; we omit theϕ for clearness) :

ϕ(G2,n) =
n
∑

i=1

ϕ
(

G2,n\
{

e2,1, . . . , e2,i−1, e1,i+1, . . . , e1,n

})

−
n−1
∑

i=1

ϕ
(

G2,n\{e2,1, . . . , e2,i, e1,i+1, . . . , e1,n

})

. (9)
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a1

a2

b1

b2

b3

b4

=

a1

a2

b1

b2

b3

b4

+

a1

a2

b1

b2

b3

b4

+

a1

a2

b1

b2

b3

b4

+

a1

a2

b1

b2

b3

b4

−

a1

a2

b1

b2

b3

b4

−

a1

a2

b1

b2

b3

b4

−

a1

a2

b1

b2

b3

b4

Fig. 7: Decomposition ofϕ(G2,4).

For n = 1, the statement is obvious. Let us suppose that our formula istrue forn and consider the
graphG2,n+1. As the equality at rankn is obtained by applying4.1 to the graphG2,n, we can apply it
with the same loops inG2,n+1 (which contains canonically inG2,n). We obtain :

ϕ(G2,n+1) =

n
∑

i=1

ϕ
(

G2,n+1\
{

e2,1, . . . , e2,i−1, e1,i+1, . . . , e1,n

})

−
n−1
∑

i=1

ϕ
(

G2,n+1\{e2,1, . . . , e2,i, e1,i+1, . . . , e1,n

})

(10)

The graphs of the first line have still number loop1. Applying theorem 4.1 with the cyclee2,i, e1,i, e1,n+1, e2,n+1

give the following equality :

ϕ(G2,n+1\{e2,1, . . . , e2,i−1, e1,i+1, . . . , e1,n}) =

ϕ
(

G2,n+1\{e2,1, . . . , e2,i−1, e2,i, e1,i+1, . . . , e1,n}
)

+ ϕ
(

G2,n+1\{e2,1, . . . , e2,i−1, e1,i+1, . . . , e1,n, e1,n+1}
)

− ϕ
(

G2,n+1\{e2,1, . . . , e2,i−1, e2,i, e1,i+1, . . . , e1,n, e1,n+1

)

.

Using this formula for eachi, the first summand balances with the negative term in (10) (except fori = n)
and the two other summands are exactly what we wanted. This ends the induction and Formula (10) is
true for anyn.

Note that the graphs of its right hand side have no loops and that only the ones of the first line are
connected. We just have to applyΨ to this equality, and use the value ofΨ on forests (Proposition 3.2) to
finish the proof of the proposition. 2

Note that this case is very interesting because the functionN can be expressed as a Schubert polynomial
(see (2, Proposition ?)).

Remark 4 Our algorithm allows us to writeϕ(G) as a sum of terms of the kind±ϕ(F ), withF subforests
of G. But, in the three examples of this section, all trees have0 or +1 as coefficients after iteration of
transformations of kindTL onG. We will see in the next section that this is possible for any graphG with
a clever choices of loops.
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6 A combinatorial formula for N
To compute the polynomialN of a graphG, we only have to find the coefficient of trees in a formal
linear combination of forests obtained by iterating transformationsTL onG. But there are many possible
choices in these iterations and these coefficients depend onthese choices.

A way to avoid this problem is to give toG a rooted map structure and to look at the particular decom-
position introduced in the paper (6, section 3). With these particular choices, we have a combinatorial
description of the trees with coefficient+1, all other trees having0 as coefficient.

6.1 Rooted maps
Definition 6.1 A (combinatorial oriented) map is a connected graph with, for each vertexv, a cyclic or-
der on the edges whose origin or end isv. This definition is natural when the graph is drawn on a two
dimensional surface (for example the planar posets of Section 7).

It is more convenient when we deal with maps, to consider edges as couples of two half-edges(h1, h2),
the first one of extremityα(e) and the second one of extremityω(e). Then the map structure is given by
a permutationσ of all the half-edges, whose orbits correspond to the sets ofhalf-edges with the same
extremity.

A rooted map is a map with an external half-edgeh0, that is to say an half-edge which do not belong to
any edge, but has an extremity (which will be denoted by⋆) and a place in the cyclic order given by this
extremity.

Remark 5 In this section, as cyclic orders of edges around vertices matter, we can not use the convention
that the extremity of an edge is always on its origin’s right (we did not assume any condition on compat-
ibility between the orientations of the edges and the map structure, see open problem??). So, when the
orientation is important, we will use arrows.

Recall that, to computeN(G), a naive algorithm is to choose any loop of the graph, apply proposition
4.4. If the graph has a rooted map structure, it is interesting to choose loops with additional properties. Our
choices will not involve the orientation of the edges of the map. So we will define a notion of admissible
loop in a (not necessary oriented) rooted map.

By definition, a loopL of a rooted map is admissible of type1 (see figure 8) if:

• The vertex⋆ is a vertex of the loop, that is to say that⋆ is the extremity of a half-edgehi of ei and
of a half-edgehi+1 of ei+1 for somei ;

• The cyclic order at⋆ restricted to the set
{

h0, hi, hi+1

}

is the cyclic order
(

h0, hi+1, hi

)

.

If L satisfies the first condition, exactly one loop amongL andL is admissible (whereL is L with the
opposite orientation).

If a rooted map has no admissible loops of type1, it is of the form of the figure 9. In this case, we
call admissible loops of type2 the admissible loops of its ”legs”M1, . . . ,Mh (of type1 or 2, this defines
the admissible loops by induction). Note that this definition has a sense because the legs have a canonical
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⋆hi

hi+1 h0

Fig. 8: Example of a mapM with an admissible loop of type 1.

Fig. 9: A generic mapM without admissible loops of type1

external half-edge and are rooted maps. An example of an admissible loop of type2 is drawn on Figure 10

A rooted map without admissible loops has no loops at all, hence it is a tree.

Remark 6 The second condition in the definition of admissible of type1 says that the root must be at the
left of the loop. The first condition is only technical, because if the loop does not go through⋆, we can not
define“to be on the left of the loop”.

For a planar map this can be avoided because any loop split theplan into two regions, so the left side
of an oriented loop is well-defined. In this case, we can call admissible any loop such that the root is at
the left of the loop even if the the loop does not go through⋆ and the confluence of the algorithm in the
next paragraph will still be true.

⋆
hi

hi+1

Fig. 10: Example of a mapM ′ with an admissible loop of type 2.
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6.2 Decomposition of rooted maps
Consider the following algorithm :

Input a rooted mapM .

Variable S is a formal linear combination of submap ofM .

Initialization S = M.

Iterated step Choose a mapM0 with a non-zero coefficientcM0 in S which is not a forest andL an
admissible loop ofM0. Apply TL toM0 in S and keep only the connected graphs in the right-hand
side, (they have a natural induced rooted map structure). Formally,

S := S − cM0M0 + cM0δ(TL(M0)),

whereδ is the linear operator defined by :

δ(M ′) =

{

M ′ if M ′ connected
0 else

.

End We iterate this untilS is a linear combination of subtrees ofM .

Output S.

Definition-Theorem 6.1 This algorithm always terminates and is confluent. LetD(M) be its output.

Proof Idea of the proof: The termination is obvious : all maps inTL(M0) have a lower cycle number
thanM0.

For the confluence, the maps with a cycle number equal to2 and such that different loops have edge in
common play a similar role to critical peaks in rewriting theory. We just have to check our result on these
maps. There are infinitely many maps of this kind, but, as in paragraph 5.2, one computation is enough to
deal with the general case.2 For a complete proof, see (6, definition-theorem 3.1.1 and 3.2.1, together

with remark 2).

Proposition 6.2 LetM be a rooted map.

Ψ(D(M)) = Ψ(M)

Proof: We have to check thatΨ(S) is an invariant of our algorithm. This is trivial because operatorsTL

andδ let Ψ invariant (see Theorem 4.1 and Proposition 4.5). 2

Example 3 Let M be the complete bipartite graphG2,3 (V1 = {a1, a2}, V2 = {b1, b2, b3}) with the
following rooted map structure :

• If we denote bye1,i (respe2,i) the edge betweena1 (resp. a2) andbi, the cyclic order around the
vertexa1 (resp.a2) is (e1,1, e1,2, e1,3) (resp.(e2,1, e2,2, e2,3)).
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• The root has extremityb2 and is located beforee2,2.

The loopL = (e2,2, e2,1, e1,1, e1,2) with E(L) = {e2,1, e1,2} (drawn on Figure 8) is admissible (of type
1). So, with this choice, after the first iteration of step1 of our decomposition algorithm, we have :

S =

a1

a2

b1

b2

b3

=

a1

a2

b1

b2

b3

+

a1

a2

b1

b2

b3

−

a1

a2

b1

b2

b3

The two firsts graph have each an admissible loop : the first oneof type 1 (L = (e2,2, e2,3, e1,3, e1,2) with
E(L) = {e2,3, e1,2}), the second one of type 2 (L = (e2,3, e1,3, e1,1, e2,1) andE(L) = {e2,3, e1,1}, see
figure 10). So the algorithm ends after two other iterations and we obtain :

D(M) =

a1

a2

b1

b2

b3

+

a1

a2

b1

b2

b3

+

a1

a2

b1

b2

b3

+

a1

a2

b1

b2

b3

−

a1

a2

b1

b2

b3

(11)

=

a1

a2

b1

b2

b3

+

a1

a2

b1

b2

b3

+

a1

a2

b1

b2

b3

(12)

Note that, after cancellation, the coefficient of trees are0 or +1. In the next paragraph we will show a
general result (the sign is a particular case of (6, Proposition 3.3.1)) and characterize combinatorially
the trees with a coefficient+1.

6.3 Coefficients in D(M)

To compute the polynomialN , we only have to compute the coefficient of spanning trees inD(M). In
this section, we will link this coefficient with a combinatorial property of the treeT .

Definition 6.2 If T is a spanning subtree of a rooted mapM , the tour of the treeT beginning ath0 defines
an order on the half-edges which do not belong toT . The definition is easy to understand on a figure : for
example, on Figure 11, the tour is (h1

1, h
1
2, h

2
1, h

2
2, h

3
1, h

4
1, h

3
2, h

4
2). (see (1) for a precise definition).

We recall thatD(M) does not depend on the admissible loop chosen at step1 of the decomposition
algorithm. A good choice to compute the coefficient of a givenspanning treeT ( M is given by lemma
6.3. Given an edgee of M\T , it is well-known that there exists a unique loop (up to the orientation)
denotedLM (e) (orL(e) if there is no confusion) such thatL(e) ⊂ (ET ∪ {e}).

Lemma 6.3 There exists an edgee0 ∈ M\T such that, with the good orientation,L(e0) is admissible.
Moreover,

e0 ∈ E(L(e0)) ⇐⇒
The first half-edge ofe0 appears in
the tour ofT before the second one.



Application of graph combinatorics to rational identitiesof typeA 21

Fig. 11: Tour of a spanning tree of a map.
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Proof: The proof of the lemma, by induction on the size ofM , can be divided in three cases :

1. If there is an edge ofM\T whose origin or end is⋆ (the extremity of the external half-edge), then
⋆ is a vertex of the loopL(e) and eitherL(e) orL(e) is admissible of type1.

2. Else, letT1, . . . , Tl be the connected component ofT \{⋆}. If there is an edgee whose extremities
are in two differentTi, theL(e) is going through⋆ ande suits in the lemma.

3. Else,M\{⋆} has as many connected components asT \{⋆}. Let us denote them byMi ⊃ Ti(1 ≤
i ≤ l). There exists anj, such thatMj ) Tj. In this caseM has no admissible loop of type1, but
by induction there existse ∈Mj\Tj such thatLMj (e) is admissible inMi. By definition, this loop
is admissible of type2 in M . ButLMj (e) = LM (e), so the proof of the lemma is over.

The second part of the proof is easy in the two first case (see figure 11). For the third one, it is again an
immediate induction. 2

This helps us to compute all coefficients of trees inD(M) :

Proposition 6.4 LetM be a rooted map andT a spanning tree ofM .

• If there is an edgee = (h1, h2) ∈ M\T such thath2 appears beforeh1 in the tour ofT , then the
coefficient ofT in D(M) is 0.

• Else, the coefficient ofT in D(M) is +1 (T will be saidgood).

For example, the spanning tree of figure 11 is good. Note that the property of being a good spanning tree
does not depend on the orientation of the edges of the tree, but only on the orientation of those which do
not belong to it.

Proof: We will prove this proposition by induction over the number of edges inM\T . If M = T , T is
good and the result is obvious.

LetT be a covering tree of rooted mapM such thatM\T contains at least one element. We use lemma
6.3 and divide the proof in two cases :

Casee0 /∈ E(L(e0)) : In this case the spanning treeT can not be good. Moreover,E(L(e0)) ⊂ T ,
so every map appearing inTL(e0)(M) does not containT . But this remains true when we apply
operators of kindTL. No graph appearing inD(M) containsT . In particular, the coefficient ofT
is 0.

Casee0 ∈ E(L(e0)) : In this case, one has :

TL(e0)(M) = M\{e0} + maps which do not containT.

SoD(M) = D(M\{e0}) +
∑

M ′+T

D(M ′).
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As in the previous case, the second summand has a contribution 0 to the coefficient ofT in D(M).
By induction hypothesis, the first one has contribution+1 if T is a good spanning tree ofM\{e0}
and0 else. But, by definition of good spanning trees, it is immediate that :

T is a good spanning tree ofM . ⇐⇒
T is a good spanning tree ofM\{e0}
and the first half-edge ofe0 appears
before its second in the tour ofT .

But ase0 ∈ E(L(e0)), the second condition of the right hand side is true by lemma 6.3. Finally,
the coefficient ofT is +1 if T is a good spanning subtree ofM and0 else.

2

6.4 Combinatorial formula and an application

We are now ready to state our second main result : for this , we have to give a rooted map structure to our
G. This is possible in multiple ways (choice of the map structure and of the place of the root).

Theorem 6.5 The polynomialN associated to the underlying graphG of a rooted mapM is given by the
following combinatorial formula :

N(G) =
∑

T good spanning
tree ofM









∏

e∈E(G)
e/∈T

(

xα(e) − xω(e)

)









. (13)

Proof:

N(G) =
∏

e∈E(G)

(

xα(e) − xω(e)

)

· Ψ(G)

=
∏

e∈E(G)

(

xα(e) − xω(e)

)

· Ψ







∑

T good spanning
tree ofM

T







=
∏

e∈E(G)

(

xα(e) − xω(e)

)

·







∑

T good spanning
tree ofM

1
∏

e∈E(T )

(

xα(e) − xω(e)

)







=
∑

T good spanning
tree ofM









∏

e∈E(G)
e/∈T

(

xα(e) − xω(e)

)









.

2
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Of course, the good spanning trees depend on the map structure chosen on the graphG. So the theorem
implies that the right member does not depend on it, which is quite surprising.

Here is a little example of an application of Theorem 6.5 (seeopen problem 1.3 for a motivation of this
corollary). The choice of a good map structure makes the proof quite easy.

Corollary 6.6 Let v be a vertex of a graphG. The functionN(G) is a polynomial inxv of degree lower
thanval(v), whereval(v) is the number of edges whose origin or end isv. Moreover the coefficient of

x
val(v)−1
v is :







N(G\{v}) if v is a minimal element ofposet(G) ;
(−1)val(v)−1N(G\{v}) if v is a maximal element ofposet(G) ;
0 else.

Proof: Eventually by consideringGop (obtained fromG by changing the direction of its edges), we can
suppose thatv is the origin of an edgee. We will give toG an rooted map structureM which fulfills the
following conditions (it is always possible, but not necessarily in a unique way):

• The root has extremityv and is located just aftere.

• If v is the end of another edge, then the edge just beforee (denoted bye′) hasv as end and not as
origin.

An immediate consequence of the first condition is thate belongs to every good spanning tree ofM .
If v is not a minimum, the second condition must be fulfilled ande′ is also in every good spanning tree.
Each summand in (6.5) has a degree lower or equal toval(v) − 2, since, ifT is a good spanning tree,
M\T has at mostval(v) − 2 edges of extremityv. The proof is finished in this case.

In the case wherev is a minimum, recall that every good spanning treeT of M containse. If T
contributes in formula (6.5) to the term of degreeval(v)− 1 (in xv) ofN(G), then it does not contain any
other edge of extremityv. SoT \{v} is a spanning tree ofG\{v}. But if T ′ is a spanning tree ofG\{v},
the definition of good spanning trees implies the following equivalence :

T ∪ {e} good spanning
tree ofM

⇐⇒
T good spanning
tree ofM\{v},

whereM\{e} has the following rooted map structure : the map structure isinduced by the one ofM and
the root is at the former place of the second half-edge ofe. But, for such trees,

M\(ET ∪ {e}) =
((

M\{v}
)

\ET

)

∪
{

val(v) − 1 edges of originv
}

∏

e′′∈M\
(

ET ∪{e}
)

(

xα(e) − xω(e)

)

=
∏

e′′∈
(

M\{v}
)

\ET

(

xα(e) − xω(e)

)

·
(

xval(v)−1
v + . . .

)

.

Using formula (6.5) forM andM\{v}, the corollary is proved. 2



Application of graph combinatorics to rational identitiesof typeA 25

7 A condition of factorization
In the previous section, we have given an additive formula for the numerator of the reduced fractionΨP .
Green formula for planar posets (see subsection 1.1) and theexample of Figure 1 show that, in some cases,
it can also be written under a factorized form. In this section we give a simple graphical condition on a
graphG, which implies the factorization ofN(G).

7.1 Chain factorization

Remark 7 In this section, we will assume that all the graphs are connected, have no circuits and no
transitivity relation (an edge going from the beginning to the end of a chain). This is always the case for
Hasse diagrams of posets so we do not lose in generality. Withthis assumption, if we consider a chainc,
there is no edges between the vertices of the chain except of course the edges of the chain itself.

Let G be a graph,c a chain ofG, Vc the set of vertices ofc (including the origin and the end of the
chain) andG1, . . . ,Gk be all the connected component ofG \Vc. The complete subgraphsGi = Gi ∪ Vc

(for 1 ≤ i ≤ k) will be called region ofG Consider, for example, the graph of Figure 12 and the chain
c = (1, 2, 13, 3, 4, 5, 6, 14). The graphG \ Vc has four connected component drawn on Figure 13.

G = 1 2 3 4 5 613 14

7 8

9 10 11 12 15

16

17

18 19

Fig. 12: Example of a graphG with a chainc = (1, 2, 13, 3, 4, 5, 6, 14).

G1 = 9 10 G2 = 7 818 19 G3 = 11 12

G4 =

15

16

17

Fig. 13: The connected componentsG1, G2, G3, G4 of G \ Vc.

Finally, the graphG, respectively to the chainc, has four regions presented on Figure 14.

G1 = 1 5 6 142 3 4

9 10

13

G2 =

1 2 3 4 5 613 14

7 818 19

G3 = 1 2 3 413 145 6

11 12

G4 = 1 2 3 4 5 613 14

15

16

17

Fig. 14: Regions ofG, with respect to the chainc.
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We can now state our third main result:

Theorem 7.1 LetG be a graph,c a chain ofG andG1, G2, . . . , Gk be the corresponding regions ofG.
Then one has :

N(G) =

k
∏

j=1

N(Gj).

For example, the numerator of the rational function associated to the graph 12 can be factorized into
four non-trivial factors.

Proof. The central idea is to apply Theorem 4.1 on loopsL contained in a region and such that
E(L) ∩ c = ∅. This means that the edges ofc can appear inL, but only in thewrong direction: so,
when we apply Proposition 4.4, we do nottouchto the chainc.

The first step is to prove the existence of such loops. This is done in Lemma 7.2 (see Figure 15 for an
illustration).

LG1

c Loop choice
−−−−−−→

L′ G1

c

Fig. 15: Goodchoice of loop

Lemma 7.2 LetG be a graph andc a chain ofG. Denote byG1, . . . , Gk the corresponding regions. If
G1 is not a tree, there exists a loopL in G1 such thatE(L) ∩ c = ∅.

Proof: Choose any loopL0 of G1. Two cases have to be examined:

1) The loopL0 has no vertices in common withc. Nothing has to be done.

2) The loopL0 = (e1, . . . , el) has at least one vertex in common withc. As a loop is not transformed if
one makes a cyclic permutation of its edges, one can assume that c1 = ext1(e1) is a vertex ofc. Let
us denote byh the smallest index such thatc2 = ext2(eh) is also a vertex ofc (it necessarily exists
becauseext2(el) = ext1(e1) is a vertex ofc). But there is a subchain (eventually empty)c′ of c going
from c1 to c2 (resp. fromc2 to c1) if c1 ≤ c2 (resp. ifc2 ≤ c1). Now, we just have to defineL as:

L =

{

(e1, . . . , el) · c′ if c1 ≤ c2
(el, . . . , e1) · c′ if dm ≤ d−m

,

wherec′ denotes the chainc′ in the other direction (this implies that all the edges ofc′ are in thewrong
direction inL, soE(L) ∪ c = ∅).
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For example, the loopL = ((2, 4), (4, 10), (10, 9), (9, 12), (12, 2)) from the figure 16 have an edge in
the regionP1 = {2, 4, 5, 8, 9, 10}. Using the previous algorithm, we can chose a new loop

L′ = ((2, 5), (5, 8), (8, 9), (9, 10), (10, 4), (4, 2))

verifying all the properties of the Lemma 7.2.

1 2

4

5 8 9

10

11

3

7

e

12

1 2

4

5 8 9

10

11

3

7

e

12

1 2

4

5 8 9

10

11

3

7

e

12

Fig. 16: Loop choice when a cycle have edges in common with the chain.

2

We make a proof by induction onk: if k = 1, then the result is trivial.

Suppose now that our proposition is true fork = n− 1. LetG be a graph andc a chain ofG, such that
there aren associated regionsG1, . . . , Gn.

If G1 is a tree, one can prune it (remove successively vertices of arity 1 and the edge having it as extrem-
ity) to obtain the chainc. We can remove the same vertices and edges from the whole graphG because
the removed vertices are not linked with an otherGi (as theGi are different connected components of
G \ Vc). Thanks to the pruning-invariance Lemma 3.1, one has :

N(G) = N(
n
⋃

i=2

Gi) =
k
∏

i=2

N(Gi),

where the second equality is due to the induction hypothesis. The theorem is proved in this case.

Let us come back to the general case. IfG1 is not a tree, we will use Proposition 4.4 with loops inG1

and apply the previous case:

Lemma 7.2 gives us a loopL1 of G1 such thatE(L1)∩ c = ∅. Applying Proposition 4.4 onL, one has

N(G) =
∑

E1⊂E(L1)

E1 6=∅

±N(G \ E1)

(

∏

e∈E1

xe

)

.
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For the set(s)E1 such thatbarG1 \E1 has a cycle, we can iterate the previous operation by choosing a
new loop inG1 \ E1. We obtain recursively that

N(G) =
∑

E1⊂E(L1)

E1 6=∅






. . .







∑

Ep⊂E(Lp)

Ep 6=∅

±N(G \ (E1 ∪ · · · ∪Ep))
∏

e∈E1∪···∪Ep

(xα(e) − xω(e))







 ,

whereLi is a loop ofG1 \ {E1 ∪ · · · ∪ Ei−1} and the graphsG1 \ (E1 ∪ · · · ∪ Ep) have no cycle. Of
course,Li depends on theEj , j < i and even the integerp depends on theEj .

Some of the graphsG \ (E1 ∪ · · · ∪ Ep) are disconnected (if and only ifG1 \ (E1 ∪ · · · ∪ Ep). The
value ofN on these graphs is0. So they do not not appear in the formulas 14 and 15.

Each connected graphG\(E1∪· · ·∪Ep) contains the chainc (thanks to the assumptionE(Li)∩c = ∅).
The associated regions areG2, . . . , Gn and some regions which union isG1 \ (E1 ∪ · · · ∪ Ep). We can
do as if the last regions were only one regionG1 \ (E1 ∪ · · · ∪ Ep) and use the case whereG1 is a tree:

N(G \ (E1 ∪ . . . Ep)) = N(G2) · . . . ·N(Gn).

Finally,

N(G) =







∑

E1⊂E(L1)

E1 6=∅

· · ·
∑

Ep⊂E(Lp)

Ep 6=∅

±.
∏

e∈E1∪···∪Ep

(xα(e) − xω(e))






·N(G2) · . . . ·N(Gn), (14)

where the sum is restricted to the sequencesEi, 1 ≤ i ≤ p such thatG \ (E1 ∪ · · · ∪ Ep) is connected.
But we can computeN(G1) by choosing exactly the same loops and iterating proposition 4.4 :

N(G1) =
∑

E1⊂E(L1)

E1 6=∅

· · ·
∑

Ep⊂E(Lp)

Ep 6=∅

±.
∏

e∈E1∪···∪Ep

(xα(e) − xω(e)), (15)

where the sum is restricted to the sequencesEi, 1 ≤ i ≤ p such thatG1 \ (E1 ∪ · · · ∪ Ep) is connected,
or equivalently such thatG \ (E1 ∪ · · · ∪ Ep) is connected.

This ends the proof of Theorem 7.1.
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7
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4

5 8 9
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7.2 Complete factorization of planar posets
In his paper (8), C. Greene has given a closed expression for the sumΨ(G) whenG is the minimal graph
(Hasse diagram) of aplanar poset. In this case,N(G) is a product of terms of degree1 (Theorem 7.3).
We will see that this factorization property is a consequence of Theorem 7.1 and give a new proof of
Greene’s Theorem.

Let us begin by defining precisely planar posets:

Definition 7.1 We will say that the drawing of an oriented graph (without circuit) is ordered-embedded
in R × R if

• the origin of an edge is always at the left of its end.

• the edges are straight lines.

A graphG is said planar if it can be ordered embedded inR×R without edge-crossings. IfG is a graph,
we denote byG0,∞ the graph obtained fromG by adding :

• A vertex0 (calledminimal vertex) and, for each vertexv ofG which is not the end of any edge of
G, an edge going from0 to v.

• A vertex∞ (calledmaximalvertex) and, for each vertexv ofG which is not the origin of any edge
ofG, an edge going fromv to∞.

A graphG is said super-planar if the graphG0,∞ is planar.
A posetP is planarif its minimal graphG is super-planar.

Almost all drawings of this paper (except in section 6 are ordered-embedded inR × R. See Figure 17
and 18 for examples of super-planar and non super-planar graphs.

Note that the complete subgraph on a subset of vertices of a super-planar graph is super-planar (note
that, however, if we erase some edges, we can obtain a non super-planar graph). In particular, the regions
of a super-planar graph with respect to a chain are the graph of super-planar graphs.
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1

2

3

4 Addition of
−−−−−−→

0 and∞

1

2

3

40 ∞

Fig. 17: The graphG is super-planar.
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y
Addition of 0 and∞

1

2

3

4
0 ∞

1
2

3

4

0 ∞

Fig. 18: The graphG is planar, but not super-planar.

Moreover, a graph with one cycle and without vertices with arity 1 is super-planar if and only if it has
a unique maximal and a unique minimal element. In this case, we will call it a diamond (an example is
drawn on Figure 19).

Fig. 19: A diamond

These definitions are relevant because there is a closed formula forΨP for planar posets:

Theorem 7.3 (Greene (8))LetP be a planar poset, then

ΨP =

{

0 if P is not connected,
∏

y,z∈P (xy − xz)
µP (y,z) if P is connected.

,

whereµ(x, y) denotes the M̈obius function of the posetP .
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We will show that we can find disconnecting chains in any super-planar graphs, explaining the fact that
the functionN(G) can be factorized into factors of degree1.

Proposition 7.4 LetG be a super-planar oriented graph with a number of cycle greater than1, then there
is a chain ofG, separatingG in two non-trivial regions (with at least one cycle).

Proof: Eventually by pruning it, one can assume thatG has no vertices with arity1. As it has at least two
cycles, it has one vertexc2 of arity 3 or more. So, up to a left-right symmetry, we are in one of the two
following cases (in the second case, we assume thatc2 is the end ofexactly2 edges).

c2 c2

In the first case, let us label the vertices as below:

b

c1

a

c2

In the second case, we define by inductionci for i ≥ 3: we choose forci any vertex such that there is an
edge of originci−1 and of endci. For ak ≥ 3, one can not defineck+1 if ck is not the origin of any edge.
Then, asck+1 is not a free vertex, it is the end of an edge coming from a vertex b 6= ck−1. Finally, we call
c1 anda the origins of the two edges whose ends arec2: which one isc1 and which one isa depends of
whetherb is above or belowck−1 (see the figure below).

c1

a

c2 ck

b a

c1

c2 ck

b

In every case, theci are the vertices of a chainc of G, which can be extended to a maximal chaincmax.
Recall that with Greene’s definition of a planar graph, the graphG0,∞, i.e. can still be ordered-embedded
in the plan. Then there is a chain inG0,∞ containingv0, cmax andv∞. It splitsG0,∞ into at least two
regions, one containinga and one containingb. The same is true for the chaincmax in G. But, asG has
no vertices, the corresponding regions have at least one cycle. 2

Corollary 7.5 LetG be a connected super-planar poset. By iterating chain factorization, one can write
N(G) as a product of numerators of rational functions associatedto diamonds.
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Proof: Proposition 7.4 and Theorem 7.1 imply thatN(G) can be factorized as the product of numerators
of subgraphs with one loop. As these subgraphs are super-planar, after pruning, they are diamonds, which
ends the proof. 2

Note that for a diamond
N(D) = xmin(D) − xmax(D),

or equivalently,

Ψ(D) =
∏

y,z∈P

(xy − xz)
µD(y,z),

whereµD is the Möbius function of the poset associated to the diamondD.

The last property can be extended to any planar poset thanks to the following compatibility between
disconnecting chain and Möbius function :

Proposition 7.6 LetP be a poset,c a chain of the Hasse diagram ofP (i.e. the minimal graph represent-
ingP ), P1, . . . , Pn then region associated withc, andi, j two different elements ofP , then

µi,j(P ) =

{

−1 if i � j,
∑n

k=1 µi,j(Pk) otherwise.

We assume thatµi,j(Q) = 0 if i 6∈ Q or j 6∈ Q.

The proof is postponed to paragraph 7.3.

This proposition together with corollary 7.5 proves Green theorem. In fact, it can be generalised.
Indeed, the poset of the figure 20 is not planar but can be factorised and the numerator can be expressed
with the Möbius function : this is the case of any gluing of diamonds along chains.

N









1 2 3 4 5 6

7 8

9









= N

(

1 2 3 4

7
)

·N

(

2 3 4 5

8
)

· N

(

3 4 5 6

9

)

= (x1 − x4).(x2 − x5).(x3 − x6)

Fig. 20: Chain factorisation (c = (2, 3, 4, 5)).

7.3 Chain and Möbius function

This paragraph is the proof of the technical Proposition 7.6

Proof:
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Wheni � j (there is an edge fromi to j in the Hasse diagram of the poset), one always hasµi,j(P ) =
−1.

Wheni ≤ j, buti 6� j, four cases have to be examined:

first case i, j do not belong toVc and in different regions of the poset ;

second casei, j do not belong toVc, but are in the same region of the poset ;

third case i is an element ofVc, butj is not ;

fourth case i andj are two elements ofVc.

Figure 21, 22, 23 and 24 summarize the four cases. Note that the case wherei does not belong toVc,
but j does, can be obtained from the third one by considering the opposite poset.

LetP1, . . . , Pn be then regions associated withP .

We denote by[a, b]P the set
[a, b]P = {k|a ≤P k ≤P b},

and by[a, b[P the set
[a, b[P = {k|a ≤P k <P b}.

Note that[i, j]P1 = [i, j]P ∩ P1. This property is not true for any poset associated to a complete sub-
graph ofG, the fact thatP1 is a region defined by a disconnecting chain is here very important.

If [i, j]P has a non-empty intersection withVc, we denote byL the maximal element of this intersection.

1) Suppose thati ∈ P2 \ Vc andj ∈ P1 \ Vc. We want to prove thatµP (i, j) = 0 and we assume (proof
by induction) that it is true for anyj′ ∈ P1 \ Vc such thatj′ < j.

i L

j
P1

∑

= 0

= 0

Fig. 21: Case 1:i 6∈ c andj is not in the same region thanj.

As i ≤ j, there is a chain in the Hasse diagram ofP going fromi to j. As c is a chain separatingP1

andP2, any chain fromi to j intersectc. ThusL exists and any element betweeni andj which is not
in P1, is lower or equal toL. So

[i, j]P ∩ (P2 ∪ · · · ∪ Pm) ⊆ [i, L]P ⊆ [i, j]P .
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By definition of the Möbius function we obtain,

µi,j(P ) = −
∑

k∈[i,L]P

µi,k(P ) −
∑

k∈[i,j[P ∩P1\[i,L]P

µi,j(P )

As
∑

k∈[i,L]P

µi,j(P ) = 0

one has :
µi,j(P ) = −

∑

k∈[i,j[P ∩P1\[i,L]P

µi,j(P ) (16)

By induction hypothesis,µi,j(P ) = 0.

2) Suppose now thati, j ∈ P1 \ Vc. We want to prove thatµi,j(P ) = µi,j(P1)

i jL

P1

= 0

Fig. 22: Case 2:i 6∈ c andj is in the same region thani.

By definition of the Möbius function, we have,

µi,j(P ) = −
∑

k∈[i,j[P ∩(P2∪···∪Pm\Vc)

µi,j(P ) −
∑

k∈[i,j[P1

µi,j(P ).

The case1 gives:
∑

k∈[i,j[P ∩(P2∪···∪Pm\Vc)
µi,j(P ) = 0. Therefore,

µi,j(P ) =
∑

k∈[i,j[P1

µi,j(P ). (17)

and an immediate induction proves thatµi,j(P ) = µi,j(P1).

3) Suppose thati ∈ c andj ∈ P1 \ Vc. As i ∈ Vc ∩ [i, j]P , the set is not empty andL exists.

We will prove now thatµi,j(P ) = µi,j(P1) by induction onj. As

∑

k∈[i,L]P

µi,k(P ) = δi,L
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i

L

jP1

∑

= δi,L

Fig. 23: Case 3:i ∈ c andj 6∈ c.

one has:
µi,j(P ) = −

∑

k∈[i,j[P \[i,L]P

µi,k(P ) − δi,L

Similarly,
µi,j(P1) = −

∑

k∈[i,j[P1\[i,L]P

µi,k(P1) − δi,L

But [i, j[P \[i, L]P = [i, j[P1\[i, L]P (see the proof of case1), so an immediate induction onj finishes
the proof in this case.

4) Suppose thati ∈ c andj ∈ c. We want to prove by induction onj (i 6� j) thatµi,j(P ) =
n
∑

l=1

µi,j(Pl).

i

j

Fig. 24: Case 4:i andj belong toVc.

By definition of the Möbius function, we have

µi,j(P ) = −
∑

k∈[i,j[P

µi,k(P )

Using case 3 of this poof and the induction hypothesis, we know thatµi,k(P ) =
∑n

l=1 µi,k(Pl) if
k ∈ [i, j[P except for:

k = i In this case,µi,i(P ) = µi,i(Pl) = 1, thusµi,i(P ) =
n
∑

l=1

µi,i(Pl) − (n− 1).

k = i1 wherei1 is defined byi1 ∈ c andi � i1. In this case, one hasµi,i(P ) = µi,i(Pl) = −1, thus

µi,i1 (P ) =
n
∑

l=1

µi,i1(Pl) + (n− 1).



36 A. Boussicault and V. F́eray

Finally, one has:

µi,j(P ) =

n
∑

l=1



−
∑

k∈[i,j[P \c

µi,k(Pl)



− (n− 1) + (n− 1).

Using the definition of the Möbius function for thePl, this ends the proof of the proposition.

2
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[6] V. Féray,Combinatorial interpretation and positivity of Kerov’s character polynomials, Journal of
Algebraic Combinatorics, (2008) to appear.
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