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Application of graph combinatorics to rational
identities of type AT

Adrien Boussicault and Valentin Eray

! Université Paris-Est, Institut d’électronique et darfnatique Gaspard-Monge, 77454 Marne-la-Vallée Cedex 2

To a wordw, we associate the rational functidn, = [](zw, — Zw,,,)”". The main object, introduced by C.
Greene to generalize identities linked to Murnaghan-Nakey rule, is a sum of its images by certain permutations
of the variables. The sets of permutations that we consideth@ linear extensions of oriented graphs. We explain
how to compute this rational function, using the combinatoof the graph=. We also establish a link between an
algebraic property of the rational function (the factotiaa of the numerator) and a combinatorial property of the
graph (the existence of a disconnecting chain).

Résune : A un motw, nous associons la fonction rationnelle, = [](zw, — Tw,.,) . Lobjet principal,
introduit par C. Greene pour généraliser des identa@smnelles liees a la regle de Murnaghan-Nakayamajrest
somme de ses images par certaines permutations des varidkle ensembles de permutations considérés sont les
extensions linéaires des graphes orientés. Nous explgggomment calculer cette fonction rationnelle a pasitad
combinatoire du graph€@. Nous établissons ensuite un lien entre une proprigibaique de la fonction rationnelle

(la factorisation du numeérateur) et une propriété comataire du graphe (I'existence d’'une chaine le décoamect

Keywords: Rational functions, posets, maps

1 Introduction

A partially ordered set (posef) is a finite setl” endowed with a partial order. By definition, a word
w containing exactly once each elementlofis called a linear extension if the order of the letters is
compatible withP (if a <p b, thena must be beforé in w). To a linear extensiow = vyvs . .. v,, We
associate a rational function :

1

(Toy — Twy) * (Toy — Twg) o (T, — T, )

’l/)w:

We can now introduce the main object of the paper. If we debpté(P) the set of linear extensions
of P, then we definérp by:
Up = Z Yoy

weL(P)

Tthis paper is an extended abstract of the eponymous papeXir?2?, which contains all detailed proofs.

subm. to DMTCS(© by the authors Discrete Mathematics and Theoretical Coenj8dience (DMTCS), Nancy, France



2 A. Boussicault and V. &ray

1.1 Background

The linear extensions of posets contain very interestitgets of the symmetric group : for example,
the permutations smaller than a given one for the Bruhatrafdiee poset is the one considered in the
article (3). In this case, our construction is close to tfdbemazure characters (4). S. Butler and M.
Bousquet-Mélou characterize the permutations corredipgrio acyclic posets, which is exactly the cases
where the function we consider is the simplest.

Moreover linear extensions are hidden in a recent formularfeducible character values of the sym-
metric group: if we use the notations of (7), the quanfity(G) can be seen as a sum over the linear
extensions of the bipartite gragh (bipartite graphs are a particular case of oriented graphis)s ex-
plains the similarity of the combinatorics in article (6)din this one.

The function¥p was considered considered by C. Greene (8), who wanted wergee a rational
identity linked to Murnaghan-Nakayama rule for irredueibharacter values of the symmetric group. He
has given in his article a closed formula for planar posetsié the Mobius function ofP):

[T (z, —z.,)**®2) if Pis connected,

0 if P is not connected,
Up =
y,z€P

However, there is no such formula for general posets, oyl#mominator of the reduced form o> is
known (2). In this article, the first author has investigatesleffects of elementary transformations of the
Hasse diagram of a poset on the numerator of the associgiealdunction. He has also noticed, that in
some case, the numerator is linked with Schur functionsgagraph 4.2) (we can also find multiSchur
functions or Schubert polynomials).

In this paper, we obtain some new results on this numeraiankis to a simple local transformation in
the graph algebra, preserving linear extensions.

1.2 Main results

An inductive algorithm The first main result of this paper is an induction relatiorlinear extensions
(Theorem 4.1). When one appligson it, it gives an efficient algorithm to compute the numerato
of the reduced fraction o¥ » (the denominator is already known).

A combinatorial formula If we iterate our first main result in a clever way, we can diégccombinato-
rially the final result. The consequence is our second maintreif we give to the graph of a poset
P arooted map structure, we have a combinatorial non-indeitirmula for the numerator off »
(Theorem 6.5).

A condition for Up to factorize Green formula’s for the function associated to a planar fisse quo-
tient of products of polynomials of degrde In the non-planar case, the denominator is still a
product of degree 1 terms, but not the numerator. So we mageromhen the numeratdy (P)
can be factorized.

Our third main result is a partial answer (a sufficient butmetessary condition) to this question
: the numeratotV (P) factorizes if there is a chain disconnecting the Hasse diagsf P (see
Theorem 7.1 for a precise statement). An example is drawrgonefil (the disconnecting chain is
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(2,5)). Note that we use here and in the whole paper a unusual cbonenve draw the posets
from left (minimal elements) to right (maximal elements).

(E)+(54)

Fig. 1: Example of chain factorization

1.3 Open problems

Necessary condition for factorization The conclusion of the factorization Theorem 7.1 is sometime
true, even when the separating path is not a chain : see fonggaFigure 2 (the patl®, 6, 3)
disconnects the Hasse diagram, but is not a chain).

This equality, and many more, can be easily proved usingaimesnethod as Theorem 7.1. Can we
give a necessary (and sufficient) condition for the nume@fta poset to factorize into a product
of numerators of subposets? Are all factorizations of tiislR

Characterisation of the numerator Let us consider a pos@, which has only minimal and maximal
elements (respectively, ..., a; andby,...,b.). The numeratolN (P) of ¥ is a polynomial in
b1, ...,b,. which degree in each variable can be easily bounded. Thawk®§ition 4.4, we see
immediately thatV(G) = 0 on some affine subspaces of the space of variables. Unfoetyna
these vanishing relations and its degree do not charaet®i{®?) up to a multiplicative factor. Is
there a bigger family of vanishing relations, linked to tlenbinatorics of the Hasse diagram of the
poset, which characterizég(P)?

This question comes from the following observation: for soparticular posets, the numerator
is a Schubert polynomial and Schubert polynomials are kntmnre easily defined by vanishing
conditions (9).

2 Graphs and posets

2.1 Conventions
In this paper, we deal with finitdirected graphsSo we will use the following definition of graphs :

Fig. 2: An example of factorization, not contained in Theorem 7.1.
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e Afinite set of verticed/.

e Asubsetof edgerk of V xV (set of edges). I € E, we will note bya(e) € V the first component
of e (calledorigin of ) andw(e) € V its second component (calleddof €). This means that each
edge has an orientation.

To make the figures easier to reade) is always the left-most extremity efandw(e) its right-most
one (of course it is not possible if the graph contains a direae definition lower, but this case will not
be very interesting for our purpose).

Lete = (v1,v2) be an element of x V. Then we denote by the elementuvs, vy ).
With these definitions of graphs, we have four definitionspéaths. ¢,

can not go can go
backwards | backwards
closed circuit loop
non-closed chain path
Definition 2.1 More precisely,
chain A chain is a sequence of edges= (e, ...,ex) of G such thatw(e;) = a(eq), w(ez) = ales),
..andw(er — 1) = aler).
circuit A circuitis a chainp = (eq, ..., ex) of G such thatw(er) = af(ey).

path A pathisasequende= ey, ..., e, of elements oF UFE such thatu(e;) = a(ez), w(ea) = a(es),
...andw(er, — 1) = a(ex). If Lis a path, then we denofen E by E(L).

loop A loop is a path with the additional property thatey) = «(e1).

In all these definitions, we add the condition that all edged @ertices are different (except of course, the
equalities in the definition).

Remark 1 Note that the difference between a loop and a circuit (reBpely a path and a chain) is that,
in a loop (respectively in a path), an edge can appear in batlctions (not only in the direction given
by the graph structure). The edges, for which both directionincide, are exactly the elements#(fL).

Example 1 An example of graph is drawn on figure 3 : the non-dotted edges & loop L, such that
E(L) contains 3 edges, whose imagesybare (1,6), (6,8) and (5, 7).

The cycle number of a grapli is |E(G)| — |[V(G)| + ca, Wherecg is the number of connected
components of7. It is the number of edges that we can remove fréhwithout increasingeg. A
connected graph with cycle numberis called a tree. Beware that, with this definition, thereraveules
for the orientation of the edges of a tree (often, in theditere, an oriented tree is a tree which edges are
oriented from theoot to theleaves but we do not consider such objects here).
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Fig. 3: Example of a chain and a lodpin a graphG (we recall that orientations are from left to right)

2.2 Operations on graphs
The main tool of this paper will consist in removing some edgegraphG.

Definition 2.2 If E' is a subset of the sét of edges of a grapty, we will denote by7\ E’ the graphG’
with

e the same set of vertices as
e the setE := FE\F’ as set of edges.

Definition 2.3 If G is a graph and/’’ a subset of its set of vertic&s V' has an induced graph structure
. its edges are exactly the edgeg@fwhich have both their extremities Wy.

If VAV’ = {wy,..., v}, this graph will also be denote@\{v1, ..., v;} (the symbol is the same that
in definition 2.2, but it should not be confusing in what fal&).

Definition 2.4 (Contraction) We denote by~ /e the graph (here, the set of edges can be a multiset)
obtained by contracting the edgei.e. in G/¢, there is only one vertexinstead ofv; andv,, the edges
of G different frome are edges of /e : if their origin and/or end inG is v1 Or ve, itisvin G/e).

Then, ifa(e) # w(e), G/e is a graph with the same number of connected components argithe
cycle number as&:.

2.3 Poset, graphs, Hasse diagrams and linear extensions
Definition 2.5 A partially ordered sefposet ) P is a set endowed with a binary relatich verifying:

1) forallz € P, z < z (reflexivity);
2) ifz <yandy < z, thenz = y (antisymmetry);
3) ifx < yandy < z, thenx < z (transitivity).

Given a grapltz, we can consider the binary relation :

def X
x <1y <= (x—yorﬂeeE(G)S.t.{ wle) = y )



6 A. Boussicault and V. &ray

This binary relation can be completed by transitivity. K traph has no circuit, the resulting relation
is antisymmetric and, hence, endows theldgt) with a poset structure, which we will dengteset(G).

The applicatiorposet is not injective. Among the pre-images of a given pd8ethere is a minimum
one (for the inclusion of edge set), which is called Hassgrdia of P.

The definition of linear extensions given in the introdunt@an be formulated in terms of graphs :

Definition 2.6 A linear extension of a grapfi' is a total order<,, on the set of verticeg such that : for
each edge of G, one hasx(e) <,, w(e).

The set of linear extension 6fis denoted”(G). Let us also define the formal sumG) = > w.
weL(G)
We will often see a total ordet.,, defined byv;, <., vi, <y ... <y vi,, 8S @WOrtw = v;, Vi, ... V;,, .
Remark 2 If G contains a circuit, then it has no linear extensions. El¢g linear extensions are the
linear extensions gfoset(G). Thus considering graphs instead of posets give not morergeresults.
But we have chosen to formulate all our results in terms oppssbecause they involve the combinatorics
of the graphs and, moreover, the set of Hasse diagrams isos¢d by the operations of subsection 2.2.

The following lemma comes straight forward from the defaniti
Lemma 2.1 LetG andG’ be two graphs with the same set of vertices.
E(G) C E(G") andw € L(G') = w € L(Q)

we L(G)andw € L(G) <= w e LGV G,

V(GVG) =V(G) = V(G

where piav @) = B(G) U E(GY)

3 Rational functions on graphs

3.1 Definition
Given a graphz with n verticesuy, . . ., v,, we are interested in the following rational functi@iG) in
the variablegx,, )i—1..» :
1
(@) =
w§G) (:rwl - wa) e (:I:wn72 - an—l)

We also consider the renormalization:

N(G) = \IJ(G) . H (ma(e) — mw(e)).

eeEqg

In fact, we will see later that it is a polynomial. Moreovérd is the Hasse diagram of a pose{G) =
N(G)

H (xa(e) - xw(e))
eeEq

is a reduced fraction.
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v v
U1 V2 Vk-1 vk:?l-‘rlvn—Qvn—l V1 Vg vk_1:vk V41 Up—2Un—1
o—eo - --o—e o—eo - --o—e

Fig. 4: Graph of proof of Lemma 3.1

3.2 Value on forests

Thanks to the following lemma, it is easy to compufeon forests (note that this results are already
presentin (2), but the demonstrations here are simpler aha this article self-contained).

Lemma 3.1 (Pruning-invariance) Let G be a graph with a vertex of valencel and e the edge of
extremity (origin or end). Then one has

N(G) = N(G\{v}).

Proof: It is enough to prove it in the case whe¥rehas the form of Figure 4. Indeed, the linear extensions
of G are exactly the words obtained from a linear extensioi'ofv} by addingv after (resp. before) the
other extremity ok. If the proposition is true if\{v} is the graph of a totally ordered sek. a line, it

will be true for any graplt:.

Suppose that is the left-hand graph of Figure 4 (it is similar for the righdnd one). Then

E(G) = {vl...vivvi+1...vn,1,i Z k}

Sou(@) = nf !
=T |

v — 122) e (Ui,1 — Ui)(l}i — 1})
'(U - Ui+1)(vi+1 - Ui+2) e (Un72 - Un71)
1

(Ul - Uz) cee (Uifl - Ui)(vi - Ui+1)(vi+1 - Ui+2) ce (Un72 - Unfl)

= 1 1 1
X (mm )
UV — Vi41 UV, — U Upn—1 — U

i=k
1 1

(v —v2) ... (Vp—2 — Vp_1) U — v

The computation gived/’(G) = 1 = N(G\{v}), so the proposition is proved. |

Proposition 3.2 If T'is a tree andF' a disconnected forest, one has :

N(T) = L 1
N(F) = o. )
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Proof: Thanks to the pruning Lemma 3.1, we only have to prove it irctee wheréd” is a disjoint union
of n points. Ifn = 1, itis obvious thatV(-) = ¥(-) = 1. Else, if we denote by the full cycle(1...n),
one has:

U(F) = Z( !

oeS(n) To(1) = To(2)) - - - (To(n—1) = To(n))
n—1

-y 1

(wo’oci(l) - xaoci(Q)) s (xaoci(n—l) - xo—oci(n))

o€S(n) i=0
n—1
Z Looci(n) — Looci(1)
- =
N &G Fo) ~ To@) - (To(n-1) = To) (To(n) — To())
S

4 The main transformation

In section 3, we have introduced a rational function ass$edito graphs and we have computed its value
on forests. In this section, we will see that the functioroaiged to any graph with at least a cycle can be
written using functions associated to graphs with a syricilver cycle number. So we can studyusing
only this induction relation and the value on forests.

4.1 Equality on linear extensions

If G is a finite graph and. a loop of G, let us denote by, (G) the following formal alternate sum of
subgraphs of5 :

TG = > (-DFITG\E
E'CE(L)
E'#0

The functionp(G) = Y. w can be extended by linearity to the free abelian group sphbye
weL(G)
graphs, then one has the following theorem:

Theorem 4.1 LetG be a graph and. a loop ofG then,

P(G) = o(TL(G)). ®3)

Note that all graphs appearing in the right-hand side of &lstrictly less loops thafi. An example
is drawn on figure 5 (to make it easier to read, we did not whitedperatory in front of each graph).

Remark 3 In the case wherd’(L) = (), this theorem says that graphs with oriented circuits have n
linear extensions (see remark 2).
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Fig. 5: Example of application of theorem 4.1
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If it is a singleton, it says that we do not change the set @dirextensions by erasing an edge if there
is a path going from its origin to its end (thanks to trangty.

An other very interesting case of our relation is the follogvbne. LetG be a graph and; andwv, two
vertices ofGG which are not linked by an edge. We can write

p@)= > wt+ Y w (4)

weL(G) weL(G)

v1 <o U2 v2 <oy V1

This is a special case of our relation on the gra@hobtained from= by adding two edges > = (v1, v2)
andes 1 = (v2,v1). This graph contains a circuit sp(G’) = 0. But one also has :

P(G") = p(GU{e12}) + (G U{ear}) — o(G).

So<p(G) is the sum of two terms corresponding exactly to equationB¢)terating this transformation,
deleting graph with circuits and erasing edges thanks tagitwvity relation we obtain:

PG = Y (e,
weL(G)
An immediate consequence is that any relation betweep (¢ can be deduced from Theorem 4.1.
To prove Theorem 4.1, we will need the two following lemma:
Lemma 4.2 Letw € L(G\E(L)). There exist€’(w) such that

VE" Cc E(L), we L(G\E") <+ FE'(w) C E" C E(L).
Proof: immediate consequence of lemma 2.1. O

Lemma 4.3 Letw € L(G\E(L)), there exist&”" C E(L) such that

w e L(G\E").
Proof: Suppose that we can find a woudfor which the lemma is false. Sinee € £L(G\E(L)), the
word w fulfills the relations of the edges @f, which are not inE(L).

But, if e € E(L), one hasw ¢ L(G\(E(L)\{e})). That means that does not fulfill the relation
corresponding to the edge As w is a total order, it fulfills the opposite relation :

we L[(G\E(L)) Ug].
Doing the same argument for eacke E(L), one has
we L [(G\E(L)) um} .

But this graph contains an oriented cycle so the correspgrsit of linear extension is empty. O

Let us come back to the proof of Theorem 4.1.
Let w be a word containing exactly once each elementV6z). We will compute his coefficient in

P(G) — e(TL(G)) = ZEch(L)(_l)‘Ew‘P(G\E/) :



Application of graph combinatorics to rational identitiebtype A 11

o If w¢ L(G\E(L)), his coefficient is zero in each summand.
o If we L(G\E(L)), thanks Lemma 4.2, we know that there exiBt$w) C E(L) such that
we L(G\E") < E'(w) C E" C E(L).
So the coefficient ofv in p(G) — p(TL(G)) is

> (—=1)'F"l = 0 (because’ (w) # E(L), Lemma 4.3)
E'(w)CE"CE(L)

4.2 Consequences on Green functions
Proposition 4.4 Let G be the graph containing a loop. Then,

NG = Y [EDPIINGE) [T (age) = 2ue)| -
E'CE(L) e€E’
E'#0
By proposition 3.2, one ha&¥ (T') = 1 if T is atree andV(F') = 0 if F is a disconnected forest. So
this Proposition gives us an algorithm to compditéa) : we just have to iterate it with any loops until
all the graphs in the right hand side are forests. So, if &feating transformations of tygg;, on G, we
obtain}_ cp F, then:

N(G) = Z CF H (Talpha(e) = Tw(e))-

F subforest of¢ e€Ec\EFr

In this formula,N (G) appears as a sum of polynomials. So the computatidn(f), using this formula,
is easier than a direct application of the definition

N(G) Z <\Il(w) ' H ('Talpha(e) - xw(e))) ;

weL(G) e€Ea

where the summands may have poles.
We will use this algorithm in the next section on some exaspBait it has also a theoretical interest :
some properties oW on forests can be immediately extended to any graph.

Corollary 4.5 For any graphG, the rational functionV(G) is a polynomial. Moreover, if7 is discon-
nected,N(G) = 0.

Proof: We make an immediate induction with Proposition 4.4 overrthmber of loops ofy. Thanks
proposition 3.2, the result is trued has no loop.

a

N(G)

[I (Tae)=Twie))
e€Bg

In fact, if G is the Hasse diagram of a connected poset, the fradi@s) = is

irreducible (see (2) for a proof of this fact).
The following result can also be proved by induction on theleypumber:
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Proposition 4.6 LetG be a graph and an edge of> between two verticas andwv,. Then

N(G/Je) = N(G)

Ty =Ty =Ty’

wherev is the contraction of; andvs in G/e.

Proof Proof (by induction on the cycle number of G): If G is a tree, then the equality is obvious by
Proposition 3.2.

If G/e contains a loof.., then we consider the following loapin G:

e If L. does not go through the verteXcontraction of; andvs), thenL. can also be seen as a loop
Lof G.

e Suppose that is the end of; and the origin ok;; and that they are also the same vertexdr
vz) in G. Then,L, can still be seen as a lodpof G.

e Suppose that is the end ofe; and the origin ofe;; but that these two edges have different
extremities ¢; andwvs) in G. Then we add the edgeor e to L. (betweere; ande; 1) to obtain a
loop L of G.

Eventually by changing the orientations bf and L, we can assume that¢ F(L) and, as a conse-
quenceE (L) = E(L.). By theorem 4.4, one has :

NGle)= > ()PIN(G/\E). [] @age) = o))

E'CE(L.) cEE’
E'#0D
NGy = > )FINGE). [] @ate) — Tue)-
E'CE(L) ecE’
E'#)

Ase ¢ E(L),

(G\E")/e = (G/e)\E" and E(L.) = E(L).
This ends the proof by applying the induction hypothesisitographg=\ E’. O

An other immediate consequence of Proposition 4.4 is thiskiarg relations ofV (G).

Corollary 4.7 LetG be a graph. Lef. be a loop ofG with E(L) = {e;,...,e,}. One has

N(G) —0

|Ia(ei):$u(ei),i:1...7'

Unfortunately, this corollary, written for every loop of aaph G, does not characteriz¥ (G) up to a
multiplicative factor (see paragraph 1.3).
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5 Some explicit computations of rational functions
5.1 Graphs of cycle number 1.

We will consider connected graptswith only one loop. Using pruning Lemma 3.1, we can suppoae th
each vertex of7 has valenc@. We denote bynax(G) (resp.min(G)) the set of maximal (resp. minimal)
elements of7. The following result was already proved in (2), but we preegeere a simpler proof using
our operation.

Proposition 5.1 If G is a connected graph with vertices of valerzgéhen

N(G) = Z Ty — Z Ty

vEmin G v’ €max(G)

Proof: G has only one loog. (we only have to choose the orientation). In the right-hade ef equation
(3), we have two kinds of terms :

o If |[E'|=1,G\E isatree andV(G\E') = 1.
e If |[E'| > 1, G\E' is a disconnected forest addi(G\ E’) = 0.

Then
N(G) = Z (xa(e) - xw(e))
ecE(L)
The sum above can be simplified and isequal t®, x, — >, . O
vEmin G v’ €max(G)
Example 2
2 4 2 4 2 4
N( . ) = (IE1$3)N( s )+(IE2$4)N( 5N ) (5)
1 1 1
2 4
3 5 disconnecte
+(.T4 — .I'5)N ( ) ) + N ( graphs (6)
(:171 — xg) + ($2 — :174) + (:174 — :175) (7)
= X1+ X2 — T3 — Ts. (8)

5.2 Graphs with cycle number 2.

Let G be a connected graph with a cycle number equal.tdrhanks to pruning Lemma 3.1, we can
suppose that! has no vertices of valende As |E¢| = |V | + 1, the graph has, in addition of vertices of
valence2, either two vertices andv’ of valence3 or one vertex of valencé. We will only look here of
the case where there are two vertices of valehard the edges can be partitioned into three paghs;
andp, from v to v’ (the other cases are easier because the loops have no edgemion).
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Fig. 6: Example of a grapld: with cycle numbeg.

Fori = 0,1, 2, let us denote by; (resp. byEr) the set of edges of the path which appear in the
same (resp. opposite) orientation in the graph and in theypdtsee the figure 6 for an example, we have
written of each edge the index of the set it belongs to}. #f {i1,...,4,} C {0,1,2,0, 1,2}, we consider
the following alternate sum of graphs :

G = Z (—DlE=t (—)IEIFLG\ (B U .. U E]).
0#E{CE;,,....0#E/CE;,
Applying Theorem 4.1 with the loop = p7 - p2 (with E(L) = E; U E») , we obtain :
0(G) = ¢(G1) + p(G2) — 9(Gy 7).

In each graph id73, the pathp; is cut but the two other paths still exist, so they all conth&looppg - ps.
If we apply Theorem 4.1 with this loop, we obtain:

p(G) = Y ()G E)

E'CEr

_ Z (71)\]3’\71 ( Z (*1)‘E”‘71§0((G\E/)\EN)

E'CEy E"CEg

+ > (D)E (G E)\ E”)

E'"CE>

_ Z (,1)|E”|71(71)\E’”|71¢((G \ E/) \ (E// U E///))
E'"CE>

= ¢(Gg1) +9(Gy1) — 0(Gap1)
In a similar way, all graphs i, contains the loop; - by and one hag(Ga) = +¢(Gy5) + ¢(G1,2) —
¢(G, 55)- The graphs G, 1 have no loops, so, finally:
e(G) = ¢(Gg1)+9(Ga1) —(Gap)
+¢(Ga5) + 9(G12) — 0(Gy 25) — 0(Ga7);
¢(G51) — p(Ga51) + 9(Gag) + 0(Gr12) — (G 25)-
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If we apply ¥ to this equality, we keep only connected graphs and obtain :

U(G) = W(G57) + ¥(Gyp) + ¥(G ),

whereG’, = ZeleEil,_ €, G\{el, e ,el}. As all graphsin the expression@f; are trees, we obtain
(by usingX. instead ofr,(c) — Ty (e) )
NG = > XeXat Y XgXet 3 XX
eg€Eg,er€Ey eg€Eg,ea€Fa e1€E,e2€E;

(=) (g ) () (5 )

oz ) (2 )

One can notice that, i is empty (that is to say that there is a chain farto +'), the polynomialV (G)
is the product of two polynomials on degreeThis is a particular case of our third main result (Theorem
7.1).

5.3 Simple bipartite graphs

Definition 5.1 A graph is said to be bipartite if its set of vertices can betjpianed in two set$; and
such thate' C V4 x Va.
Moreover, a bipartite graph is said completelif= V; x V5.

In this section we will look at bipartite graphs such tHét| = 2. Thanks to the pruning Lemma 3.1,
we can suppose that it is a complete bipartite graph. The Egenpipartite graph withV;| = 2 and
|V2| = n is unique up to isomorphism and will be denot&gl,,.

Proposition 5.2 Let us callay, as (resp.bs, . . ., b,) the variables associated to the vertiagsandv? of
Vi (resp.(v})1<i<n 0f V), One has :

n

N(Gan) Z Hb —ay) H(bk—GQ)

i=1 \j<i k>i

Proof: For eachh = 1,2 andi = 1,...,n, we denote by, ; the edge(v?, vi). We will show, by
induction ofn, that, by applying several times theorem 4.1, we obtain @leviing equality (which is
drawn on figure 7 for = 4 ; we omit they for clearness) :

n
G2 n Z 2 GQ,n\{e2,17 ce ey €25-15,€1 054154, 61,n})
=1

n—1

- Z @(Gzn\{ezl, ce €24, €141y - 61,n})-

=1



16 A. Boussicault and V. &ray

by by by by by by by by
ay ay ay ay ay ay ay ay
2 2 by by n e -<:@ by
by = by T by T by T by T by T by T bs

az

O\b.4

S
S
1=
=)
IS
1=
=)
IS
1=
V]
=)
IS
o
n
S
o
o
S
o
n
A
W~

Fig. 7: Decomposition ofp(G2,4).

Forn = 1, the statement is obvious. Let us suppose that our formufaésfor n and consider the
graphGs ,,+1. As the equality at rank is obtained by applying.1 to the graphG, ,,, we can apply it
with the same loops ifi¥2 ,,+1 (which contains canonically i¥; ,,). We obtain :

n
<P(G2,n+1) = Z QD(GQ,n+1\{€2,17 s €2—15,€1 5415 -+ el,n})
i=1
n—1

- Z @(Gz,nﬂ\{ez,l, sy €24, L1y ey 61,n}) (10)

i=1

The graphs of the first line have still number lobpApplying theorem 4.1 with the cycle ;, €15, e1,n+1, €20+ 1
give the following equality :

O(Gons1\{€2,1, - 1€2i-1,€1,i41,---,€1n}) =
<P(G2,n+1\{€2,1, ce ey €24-1,€24, €141, - - ,61,n})
+ <,0(G27n+1\{6271, ey €201, €1 i1y s Clin, 617n+1})
- @(Gz,nﬂ\{ez,l, ce 3 €24-1,€24,€10415--+,€1 n, 61,n+1)-

Using this formula for each the first summand balances with the negative term in (1@gfebfor: = n)
and the two other summands are exactly what we wanted. THs tee induction and Formula (10) is
true for anyn.

Note that the graphs of its right hand side have no loops aatdahly the ones of the first line are
connected. We just have to applyto this equality, and use the valuefon forests (Proposition 3.2) to
finish the proof of the proposition. O

Note that this case is very interesting because the funéfican be expressed as a Schubert polynomial
(see (2, Proposition ?)).

Remark 4 Our algorithm allows us to write(G) as a sum of terms of the kiagp(F'), with F' subforests
of G. But, in the three examples of this section, all trees Hage +1 as coefficients after iteration of
transformations of kind,, on G. We will see in the next section that this is possible for aaplyG with

a clever choices of loops.
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6 A combinatorial formula for N

To compute the polynomiaV of a graphG, we only have to find the coefficient of trees in a formal
linear combination of forests obtained by iterating transfationsi’;, on G. But there are many possible
choices in these iterations and these coefficients depetitesa choices.

A way to avoid this problem is to give @ a rooted map structure and to look at the particular decom-
position introduced in the paper (6, section 3). With theadigular choices, we have a combinatorial
description of the trees with coefficientl, all other trees having as coefficient.

6.1 Rooted maps

Definition 6.1 A (combinatorial oriented) map is a connected graph with gfach vertex, a cyclic or-
der on the edges whose origin or endvis This definition is natural when the graph is drawn on a two
dimensional surface (for example the planar posets of &ea.

It is more convenient when we deal with maps, to considersdgeouples of two half-edgés , h2),
the first one of extremity(e) and the second one of extremitye). Then the map structure is given by
a permutations of all the half-edges, whose orbits correspond to the setwmatifedges with the same
extremity.

A rooted map is a map with an external half-edgethat is to say an half-edge which do not belong to
any edge, but has an extremity (which will be denoted)mnd a place in the cyclic order given by this
extremity.

Remark 5 In this section, as cyclic orders of edges around verticeanave can not use the convention
that the extremity of an edge is always on its origin’s righie(did not assume any condition on compat-
ibility between the orientations of the edges and the magsire, see open proble?). So, when the
orientation is important, we will use arrows.

Recall that, to comput®/(G), a naive algorithm is to choose any loop of the graph, appp@sition
4.4. If the graph has a rooted map structure, it is intergstithoose loops with additional properties. Our
choices will not involve the orientation of the edges of thepmSo we will define a notion of admissible
loop in a (not necessary oriented) rooted map.

By definition, a loopl of a rooted map is admissible of typdsee figure 8) if:

e The vertexx is a vertex of the loop, that is to say thais the extremity of a half-edgl; of ¢; and
of a half-edgéh; 11 of e;;1 for somei ;

e The cyclic order ak restricted to the seftho, s, hit1 } is the cyclic ordeho, hiy1, ;).

If L satisfies the first condition, exactly one loop amdnand L is admissible (wheré is L with the
opposite orientation).

If a rooted map has no admissible loops of tyipet is of the form of the figure 9. In this case, we
call admissible loops of typ2the admissible loops of its "legsV/y, . . ., M}, (of type1 or 2, this defines
the admissible loops by induction). Note that this defimiti@s a sense because the legs have a canonical
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Fig. 8: Example of a mapg/ with an admissible loop of type 1.

root of M

root of M]

!
1 ] IR Ll 1
1

:‘%': :<%': :‘%"

M, M M,

Fig. 9: A generic mapV without admissible loops of type

external half-edge and are rooted maps. An example of ansadbt@ loop of type is drawn on Figure 10
A rooted map without admissible loops has no loops at allckétis a tree.

Remark 6 The second condition in the definition of admissible of typays that the root must be at the
left of the loop. The first condition is only technical, besaif the loop does not go throughwe can not
define'to be on the left of the loop”

For a planar map this can be avoided because any loop spliptae into two regions, so the left side
of an oriented loop is well-defined. In this case, we can cathisible any loop such that the root is at
the left of the loop even if the the loop does not go througind the confluence of the algorithm in the
next paragraph will still be true.

Fig. 10: Example of a mag/’ with an admissible loop of type 2.
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6.2 Decomposition of rooted maps

Consider the following algorithm :

Input a rooted map\/.

Variable S'is a formal linear combination of submap &f.

Initialization S = M.

Iterated step Choose a map/, with a non-zero coefficient,;, in S which is not a forest and. an
admissible loop ofVly. Apply 17, to M, in S and keep only the connected graphs in the right-hand
side, (they have a natural induced rooted map structurendity,

S =5 CMOMO + C]\,joé(TL(MO))7
whered is the linear operator defined by :
i H I
(M) = M’ if M’ connected -
0 else
End We iterate this untilS is a linear combination of subtrees &f.
Output S.

Definition-Theorem 6.1 This algorithm always terminates and is confluent. Dgf\/) be its output.

Proof Idea of the proof: The termination is obvious : all maps #,(A,) have a lower cycle number
thanM.

For the confluence, the maps with a cycle number equabied such that different loops have edge in
common play a similar role to critical peaks in rewritingding We just have to check our result on these
maps. There are infinitely many maps of this kind, but, as nagiaph 5.2, one computation is enough to
deal with the general case.O For a complete proof, see (6, definition-theorem 3.1.1 ad 3together

with remark 2).

Proposition 6.2 Let M be a rooted map.

Proof: We have to check thak(5) is an invariant of our algorithm. This is trivial because giers7’,
and¢ let ¥ invariant (see Theorem 4.1 and Proposition 4.5). O

Example 3 Let M be the complete bipartite grapfiz 3 (V1 = {a1, a2}, Vo = {b1, b2, b3}) with the
following rooted map structure :

o If we denote by, ; (respesz ;) the edge betweem (resp. az) andb;, the cyclic order around the
vertexa, (resp.as) is (e1,1,€1,2,€1,3) (resp.(ez,1, €22, €2,3)).
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e The root has extremity, and is located before; .

The loopL = (ez,2, €21, €11, e1,2) With E(L) = {e21,e1,2} (drawn on Figure 8) is admissible (of type
1). So, with this choice, after the first iteration of stiepf our decomposition algorithm, we have :

R

The two firsts graph have each an admissible loop : the firstodiype 1 L = (€23, €23, €1.3, €1,2) With
E(L) = {e2,3,€e1,2}), the second one of type 2 & (ea,3,€13,€1,1,€21) andE(L) = {e273,e171} see
figure 10). So the algorithm ends after two other iterationd e obtain :

by by by by by

D(M) NSk o+ \ 4+ Lo+ e - O\ % (11)

b3 3 3 b3 b3

by

(12)

Note that, after cancellation, the coefficient of trees @@ +1. In the next paragraph we will show a
general result (the sign is a particular case of (6, Propiosit3.3.1)) and characterize combinatorially
the trees with a coefficientl.

6.3 Coefficients in D(M)

To compute the polynomiaV, we only have to compute the coefficient of spanning tree3(n/). In
this section, we will link this coefficient with a combinai@rproperty of the tred".

Definition 6.2 If T'is a spanning subtree of a rooted m&p, the tour of the tre€” beginning ath, defines
an order on the half-edges which do not belong@torhe definition is easy to understand on a figure : for
example, on Figure 11, the tour i8{, hi, h2, h3, h$, hi, h3, h3). (see (1) for a precise definition).

We recall thatD (M) does not depend on the admissible loop chosen atlstéghe decomposition
algorithm. A good choice to compute the coefficient of a gispanning tred” C M is given by lemma
6.3. Given an edge of M\T, it is well-known that there exists a unique loop (up to theemtation)
denotedZ™ (e) (or L(e) if there is no confusion) such thate) C (Er U {e}).

Lemma 6.3 There exists an edgg € M\T such that, with the good orientatiofi,(ey) is admissible.
Moreover,
The first half-edge of, appears in

co € E(L(e0)) <= e tour of " before the second one.
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Fig. 11: Tour of a spanning tree of a map.

21



22 A. Boussicault and V. &ray
Proof: The proof of the lemma, by induction on the size\df can be divided in three cases :

1. If there is an edge a¥/\T whose origin or end ig (the extremity of the external half-edge), then
* is a vertex of the loof.(e) and eitherL(e) or L(e) is admissible of typé.

2. Else, letly, ..., T; be the connected component®f{+}. If there is an edge whose extremities
are in two differentl;, the L(e) is going throughx ande suits in the lemma.

3. Else,M\{x} has as many connected component¥'as«}. Let us denote them by/; D T;(1 <
i <1). There exists afj, such that\/; D T;. In this casel/ has no admissible loop of tyde but

by induction there exists € M;\T; such that,Ms (e) is admissible inV;. By definition, this loop
is admissible of type in M. But LMi(e) = L*(e), so the proof of the lemma is over.

The second part of the proof is easy in the two first case (saeefifl). For the third one, it is again an
immediate induction. O

This helps us to compute all coefficients of tree€il/) :
Proposition 6.4 Let M be a rooted map and@ a spanning tree oM.

e If there is an edge = (h1, hs) € M\T such thath, appears beforé; in the tour ofT’, then the
coefficientofl” in D(M) is 0.

e Else, the coefficient @ in D(M) is +1 (T will be saidgood.

For example, the spanning tree of figure 11 is good. Note kteaptoperty of being a good spanning tree
does not depend on the orientation of the edges of the tréenhuon the orientation of those which do
not belong to it.

Proof: We will prove this proposition by induction over the numbéedges inM\T. If M =T, T is
good and the result is obvious.

LetT be a covering tree of rooted map such that\/\ T contains at least one element. We use lemma
6.3 and divide the proof in two cases :

Caseeg ¢ E(L(ep)) : In this case the spanning trdecan not be good. MoreoveF(L(ey)) C T,
so every map appearing ifi, (., (M) does not contaifi’. But this remains true when we apply
operators of kind';,. No graph appearing i(M) containsT'. In particular, the coefficient df
is0.

Caseeg € E(L(ep)) : Inthis case, one has :

Tr(eq) (M) = M\{eo} + maps which do not contaifi.

SoD(M) D(M\{eo}) + Y D(M).
M' 2T
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As in the previous case, the second summand has a contriliuticthe coefficient off” in D(M).
By induction hypothesis, the first one has contributiohif 7" is a good spanning tree af\ {eo}
ando else. But, by definition of good spanning trees, it is immtihat :

T is a good spanning tree af \{eg}
T is a good spanning tree 8f . <= and the first half-edge ef, appears
before its second in the tour @f.

But asey € E(L(eyp)), the second condition of the right hand side is true by lemrBa Binally,
the coefficient ofl" is +1 if T is a good spanning subtree bf and0 else.

6.4 Combinatorial formula and an application

We are now ready to state our second main result : for this ,awve to give a rooted map structure to our
G. This is possible in multiple ways (choice of the map stree@nd of the place of the root).

Theorem 6.5 The polynomialV associated to the underlying graghof a rooted map\/ is given by the
following combinatorial formula :

N(G) = Z H (wa(e) - ww(e)) . (13)

T good spanning| ec E(G)

tree of M e¢T
Proof:
N(G) = H (ma(e) — mw(e)) . \I/(G)
e€E(Q)
= ]I @@ —2ue) ¥ > T
ecE(G) T good spanning
tree of M

1
= JI (zaw —2ue)- >
ecE(G) T good spanningl_[fiEE(T) (xa(e) o x“’(e))
tree of M

= > I (e —2ue)

T good spanning| e E(G)
tree of M e¢T
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Of course, the good spanning trees depend on the map st wettosen on the gragh. So the theorem
implies that the right member does not depend on it, whicluigecsurprising.

Here is a little example of an application of Theorem 6.5 (g&en problem 1.3 for a motivation of this
corollary). The choice of a good map structure makes thefpaite easy.

Corollary 6.6 Letwv be a vertex of a grapli. The functionV(G) is a polynomial inx,, of degree lower
thanval(v), whereval(v) is the number of edges whose origin or end.isMoreover the coefficient of

I(v)—1
wza (v)

is
N(G\{v}) if v is a minimal element gfoset(G) ;
(=)= IN(G\{v}) if vis a maximal element gloset(G) ;
0 else.

Proof: Eventually by consideringr, (obtained fromG by changing the direction of its edges), we can
suppose that is the origin of an edge. We will give to G an rooted map structutel which fulfills the
following conditions (it is always possible, but not necedy in a unique way):

e The root has extremity and is located just after.

e If v is the end of another edge, then the edge just bef¢denoted by’) hasv as end and not as
origin.

An immediate consequence of the first condition is thaelongs to every good spanning treeidt
If v is not a minimum, the second condition must be fulfilled aht$ also in every good spanning tree.
Each summand in (6.5) has a degree lower or equahli@) — 2, since, ifT is a good spanning tree,
M\T has at mostal(v) — 2 edges of extremity. The proof is finished in this case.

In the case where is a minimum, recall that every good spanning tiieef M containse. If T
contributes in formula (6.5) to the term of degreé(v) — 1 (in x,,) of N(G), then it does not contain any
other edge of extremity. So7T\{v} is a spanning tree @\ {v}. Butif 7" is a spanning tree a¥\{v},
the definition of good spanning trees implies the followingiealence :

T U{e} good spanning@ T good spanning
tree of M tree of M\ {v},

whereM \{e} has the following rooted map structure : the map structuiredisced by the one af/ and
the root is at the former place of the second half-edge &ut, for such trees,

M\(Er U {e}) = ((M\{v})\Er) U {val(v) — 1 edges of origirn }

H (za(e) - zw(e)) = H (xa(e) — 33w(e)) : (J?Zal(v)_l + ... )

ereM\(Brufe}) ee(M\{v})\Er

Using formula (6.5) fodM and M\ {v}, the corollary is proved. O
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7 A condition of factorization

In the previous section, we have given an additive formutdatfe numerator of the reduced fractign.
Green formula for planar posets (see subsection 1.1) arektivaple of Figure 1 show that, in some cases,
it can also be written under a factorized form. In this secti@ give a simple graphical condition on a
graphG, which implies the factorization oV (G).

7.1 Chain factorization

Remark 7 In this section, we will assume that all the graphs are cotedchave no circuits and no
transitivity relation (an edge going from the beginning e tend of a chain). This is always the case for
Hasse diagrams of posets so we do not lose in generality. tiiglassumption, if we consider a chain
there is no edges between the vertices of the chain excepticfecthe edges of the chain itself.

Let G be a graphg¢ a chain ofG, V. the set of vertices of (including the origin and the end of the
chain) and74, ...,G}, be all the connected component®f, V.. The complete subgraplis = G, UV,
(for 1 < ¢ < k) will be called region ofG Consider, for example, the graph of Figure 12 and the chain
c=(1,2,13,3,4,5,6,14). The graphG \ V. has four connected component drawn on Figure 13.

9 10 11 12 15

9 10 18 7 8 19 11 12 15
G1: *—o G2: Ggi *—eo
1
Gy = y
16

Fig. 13: The connected componers , G2, G3, G4 of G \ V..

Finally, the graph, respectively to the chain has four regions presented on Figure 14.

Fig. 14: Regions of¢, with respect to the chain
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We can now state our third main result:

Theorem 7.1 Let G be a graph¢ a chain ofG andG1, G, . .., G}, be the corresponding regions 6f.
Then one has :

.
NG = [[ N @),

For example, the numerator of the rational function assedito the graph 12 can be factorized into
four non-trivial factors.

Proof. The central idea is to apply Theorem 4.1 on lodpgontained in a region and such that
E(L) nc¢ = (. This means that the edges @tan appear i, but only in thewrong direction: so,
when we apply Proposition 4.4, we do riotichto the chairr.

The first step is to prove the existence of such loops. Thisigdn Lemma 7.2 (see Figure 15 for an
illustration).

Fig. 15: Goodchoice of loop

Lemma 7.2 Let G be a graph and a chain ofGG. Denote byG, ..., Gy the corresponding regions. If
(i1 is not a tree, there exists a lodpin G; such thatF'/(L) N ¢ = ().

Proof: Choose any loog,, of G;. Two cases have to be examined:
1) The loopL, has no vertices in common with Nothing has to be done.

2) TheloopLy = (ey,...,e;) has at least one vertex in common withAs a loop is not transformed if
one makes a cyclic permutation of its edges, one can asswat@ ts ext;(e1) is a vertex ofe. Let
us denote by: the smallest index such that = exta(ey,) is also a vertex of (it necessarily exists
becausexts(e;) = exti(eq) is a vertex ok). But there is a subchain (eventually emptydf ¢ going
from ¢y to ¢y (resp. fromes to 1) if ¢1 < ¢o (resp. ifece < ¢1). Now, we just have to defing as:

L_{(ela"'ael)'/ if61§62

(ery...,e1)-¢ ifdy<d_, ’

wherec’ denotes the chai in the other direction (this implies that all the edges’adre in thewrong
directioninL, soE(L) U c = ().
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For example, the loop = ((2,4), (4,10), (10,9), (9, 12), (12, 2)) from the figure 16 have an edge in
the regionP; = {2,4,5,8,9,10}. Using the previous algorithm, we can chose a new loop

L' =((2,5),(5,8),(8,9),(9,10), (10,4), (4,2))

verifying all the properties of the Lemma 7.2.

Fig. 16: Loop choice when a cycle have edges in common with the chain.

We make a proof by induction dr if k£ = 1, then the result is trivial.

Suppose now that our proposition is true for= n — 1. Let G be a graph and a chain ofG, such that
there aren associated regions, ..., G,,.

If G, is atree, one can prune it (remove successively verticadtpflaand the edge having it as extrem-
ity) to obtain the chair. We can remove the same vertices and edges from the wholk grapcause
the removed vertices are not linked with an otligr(as theG; are different connected components of
G \ V.). Thanks to the pruning-invariance Lemma 3.1, one has :

n k
N(G) =N @) = ][N @),

where the second equality is due to the induction hypoth&kis theorem is proved in this case.

Let us come back to the general casei|fis not a tree, we will use Proposition 4.4 with loopsin
and apply the previous case:

Lemma 7.2 gives us a loap; of G such that?(L;) N ¢ = (. Applying Proposition 4.4 oif, one has

NG = > iN(G\E1)<Hx6>.

E1CE(L1) ecFy
E1#0
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For the set(sf; such thabarG, \ Ey has a cycle, we can iterate the previous operation by chgasin
new loop inG; \ E;. We obtain recursively that

NG = > | Y

E1CE(Ly) EpCE(Lyp)
B #0 Ep#0

EN(G\(E1U---UE) ]  (wa@ — %(@))) ,

ecE1U---UE,

whereL; is a loop ofG; \ {F; U--- U E;_1} and the graph&; \ (E; U --- U E,) have no cycle. Of
course,L; depends on the;, j < i and even the integerdepends on the/;.

Some of the graph€ \ (E; U - -- U E,,) are disconnected (if and only @, \ (F; U--- U E,). The
value of N on these graphs i& So they do not not appear in the formulas 14 and 15.

Each connected graggh\ (£, U- - -U E,) contains the chain(thanks to the assumptidii( ;) Ne = ().
The associated regions ai, . . ., G, and some regions which unionds, \ (E; U --- U E,). We can
do as if the last regions were only one reg@n\ (E; U --- U E,,) and use the case whetg is a tree:

N(G\ (F1U...E,))=N(G3)-...- N(G,).

Finally,

NG =| > - Y £ [ @ae—2we) | N@G2)-...-N@Gn), (14
E1CE(Ly) EpCE(Lp) ecE1U---UE,
E1#0 Bp#£0

where the sum is restricted to the sequenggd < i < p such thatz \ (£, U--- U E,) is connected.
But we can computé&/ (G1) by choosing exactly the same loops and iterating proposid :

N(G_l) = Z e Z +. H (za(e) - zw(e))a (15)

By CE(Ly) BpCE(Lp)  e€B1U---UE,
Eq#0 Ep#0

where the sum is restricted to the sequenggd < i < p such thaiG; \ (E; U--- U E,) is connected,
or equivalently such tha¥ \ (E; U --- U E,,) is connected.

This ends the proof of Theorem 7.1.
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7.2 Complete factorization of planar posets

In his paper (8), C. Greene has given a closed expressiohdaum¥ (G) whend is the minimal graph
(Hasse diagram) of planar poset. In this caséy(G) is a product of terms of degrde(Theorem 7.3).
We will see that this factorization property is a conseqeenicTheorem 7.1 and give a new proof of
Greene’s Theorem.

Let us begin by defining precisely planar posets:
Definition 7.1 We will say that the drawing of an oriented graph (withoutuit) is ordered-embedded
inR x R if
e the origin of an edge is always at the left of its end.
e the edges are straight lines.

A graphdG is said planar if it can be ordered embeddediin R without edge-crossings. @ is a graph,
we denote by . the graph obtained frony by adding :

e A vertex0 (called minimal vertex) and, for each vertexof G which is not the end of any edge of
G, an edge going fror to v.

e A vertexco (called maximalvertex) and, for each vertexof G which is not the origin of any edge
of G, an edge going from to cc.

A graphdG is said super-planar if the grapf¥y . is planar.
A posetP is planarif its minimal graphG is super-planar.

Almost all drawings of this paper (except in section 6 areeced-embedded iR x R. See Figure 17
and 18 for examples of super-planar and non super-planphgra

Note that the complete subgraph on a subset of vertices gber-glanar graph is super-planar (note
that, however, if we erase some edges, we can obtain a nongiapar graph). In particular, the regions
of a super-planar graph with respect to a chain are the griaglper-planar graphs.
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1 4 Addltlon of
0 andoo

Fig. 17: The graphG is super-planar.

4
2 4 1
1%%3 -

3

Addition of 0 andool Addltlon of 0 andoo

s —

Fig. 18: The graph’ is planar, but not super-planar.

Moreover, a graph with one cycle and without vertices wittyar is super-planar if and only if it has
a unigue maximal and a unigue minimal element. In this casewilN call it a diamond (an example is
drawn on Figure 19).

Fig. 19: A diamond
These definitions are relevant because there is a closedf@for U5 for planar posets:
Theorem 7.3 (Greene (8))Let P be a planar poset, then

Uy — 0 if P is not connected,
P, ep(@y — )7 @2) if Pis connected.

wherepu(z, y) denotes the Kbius function of the posét.
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We will show that we can find disconnecting chains in any sygi@nar graphs, explaining the fact that
the functionV(G) can be factorized into factors of degree

Proposition 7.4 LetG be a super-planar oriented graph with a number of cycle ge#tani, then there
is a chain ofG, separating in two non-trivial regions (with at least one cycle).

Proof: Eventually by pruning it, one can assume ttdhas no vertices with arity. As it has at least two
cycles, it has one vertex of arity 3 or more. So, up to a left-right symmetry, we are in one of the tw
following cases (in the second case, we assumethiatthe end okexactly2 edges).

Co Co

In the first case, let us label the vertices as below:

a
C1 \C2

b

In the second case, we define by inductipfor ; > 3: we choose for; any vertex such that there is an
edge of originc;_; and of end:;. For ak > 3, one can not define, . if ¢i is not the origin of any edge.
Then, as:;11 is not a free vertex, it is the end of an edge coming from a xérté ;. Finally, we call
c1 anda the origins of the two edges whose ends @rewhich one isc; and which one is depends of
whetherb is above or below;,_; (see the figure below).

In every case, the; are the vertices of a chainof G, which can be extended to a maximal chajjx.
Recall that with Greene’s definition of a planar graph, thephiGy o, i.€. can still be ordered-embedded
in the plan. Then there is a chain @y .. containinguy, cmax anduvs. It splits Gy  into at least two
regions, one containing and one containing. The same is true for the chaifax in G. But, asG has
no vertices, the corresponding regions have at least ofe.cyc O

Corollary 7.5 Let G be a connected super-planar poset. By iterating chain fadtion, one can write
N(G) as a product of numerators of rational functions associatediamonds.
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Proof: Proposition 7.4 and Theorem 7.1 imply tHé{G) can be factorized as the product of numerators
of subgraphs with one loop. As these subgraphs are supeaspéeter pruning, they are diamonds, which
ends the proof. O

Note that for a diamond
N(D) = Tmin(D) — Tmaz(D)s

or equivalently,
¥(D) = H (zy — xZ)MD(y7Z)a

y,2€P

whereyup is the Mobius function of the poset associated to the diaivion

The last property can be extended to any planar poset thartke tfollowing compatibility between
disconnecting chain and Mobius function :

Proposition 7.6 Let P be a posetg a chain of the Hasse diagram #f(i.e. the minimal graph represent-
ing P), P, ..., P, then region associated with, andi, j two different elements d@?, then

[ -1 ifi <7,
pij (P) = { >on_i iij(Py) otherwise

We assume that; ;(Q) =0ifi ¢ Qorj & Q.
The proof is postponed to paragraph 7.3.

This proposition together with corollary 7.5 proves Grebaorem. In fact, it can be generalised.
Indeed, the poset of the figure 20 is not planar but can berfaetband the numerator can be expressed
with the Mobius function : this is the case of any gluing adiionds along chains.

7 8

vleEheas ] (L) (et
Nisoad

= (.I'l — 1'4).(1'2 — $5).($3 — 136)
Fig. 20: Chain factorisationd = (2, 3,4, 5)).

7.3 Chain and Mobius function

This paragraph is the proof of the technical Proposition 7.6

Proof:
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Wheni < j (there is an edge fromto j in the Hasse diagram of the poset), one alwaysha$P) =
—1.

Wheni < j, buti £ j, four cases have to be examined:
first case i, 7 do not belong td/. and in different regions of the poset ;
second casei, 7 do not belong td/., but are in the same region of the poset ;
third case i is an element o¥/, butj is not ;
fourth case ¢ andj are two elements df..

Figure 21, 22, 23 and 24 summarize the four cases. Note thatite wheré does not belong td’,,
butj does, can be obtained from the third one by considering thesife poset.

Let P, ..., P, be then regions associated with.

We denote bya, b] p the set
[avb]P = {k|a <p k <p b}7

and by[a, b[p the set
[a,b[p: {k|a <pk<p b}

Note that[i, j]p, = [i,j]p N Pi. This property is not true for any poset associated to a cetagiub-
graph ofG, the fact thatP, is a region defined by a disconnecting chain is here very itaptr

If [¢, /] p has a non-empty intersection with, we denote by the maximal element of this intersection.

1) Suppose thate P, \ V. andj € P, \ V.. We want to prove thatp (¢, j) = 0 and we assume (proof
by induction) that it is true for any’ € P, \ V.. such thay’ < j.

Fig. 21: Case 1i ¢ c andj is not in the same region thgn

As i < j, there is a chain in the Hasse diagramibo§oing fromi to j. As c is a chain separating;
and P, any chain from to j intersectc. ThusL exists and any element betweeand;j which is not
in Py, is lower or equal td.. So

[i,75]p N (P U---UPy) C[i,Llp C[i,j]p-
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By definition of the Mobius function we obtain,

pij(P)=— > pix(P)- > i (P)
keli,L]p keli,jlpNPi\[i,L]p
As
> mig(P)=0
k‘e[i,L]p
one has:
pi i (P) = — > i (P) (16)

keli,jlpNPi\[i,L]p

By induction hypothesigy; ;(P) = 0.

2) Suppose nowthatj € P; \ V.. We want to prove that, ;(P) = p; ;(P1)

=0

A\\\‘s\\‘

Fig. 22: Case 2:i ¢ c andj is in the same region than

By definition of the Mobius function, we have,

wii(P)=— Z i i (P) — Z i, (P).

kei,jlpN(P2U---UP, \Ve) keli,jlp,
The casd gives: ), ., i(.n(pu-up,\v.) Mij (F) = 0. Therefore,
pig(P)= Y pij(P). 17)
keliglp
and an immediate induction proves that; (P) = p; ;j (P1).
3) Supposethate candj € Py \ V.. Asi € V. N [i, j]p, the set is not empty anbl exists.

We will prove now thaj; ; (P) = u, ;(P1) by induction onj. As

Z Wik (P) = 0;1

keli,Llp
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4)

Fig. 23: Case 317 € candj ¢ c.

one has:
i 5 (P) = - Z Mi,k(P) - 5i,L
kelijlp\[i,L]p
Similarly,
pij(Pr) = — Z ik (P1) — 0i1
ke€li,ilp \[4,L]p

But [z, j[p\[i, L] p = [i, j[p, \[i, L] p (see the proof of cash, so an immediate induction gifinishes
the proofin this case.

Suppose thate ¢ andj € c. We want to prove by induction on(i # j) thatu; ;(P) = > wi;(P).
=1

Fig. 24: Case 4: andj belong toV..

By definition of the Mobius function, we have
pij(P)=— > pir(P)
k€li,jlp

Using case 3 of this poof and the induction hypothesis, wenktihat 1; . (P) = >, pie(D)) if
k € [i, j|p except for:

k =i Inthis CaSE}Li,i(P) = Ml,l(Pl) =1, thUS/Li,i(P) = /’LZ,I(PZ) — (7’L — 1)
=1

k =iy wherei; is defined byi; € candi < 4;. In this case, one has ;(P) = u; ;(P) = —1, thus
pigi, (P) = ZZ pii (1) + (n = 1).
=1
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Finally, one has:
Mm’(P):Z - Z wik(P) | —(n—=1)+ (n—1).
=1 kelijlp\c

Using the definition of the Mobius function for th&, this ends the proof of the proposition.
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