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Abstract 
We describe here the trainable trajectory formation model 
that will be used for the LIPS’2008 challenge organized at 
InterSpeech’2008. It predicts articulatory trajectories of a 
talking face from phonetic input. It basically uses HMM-
based synthesis but asynchrony between acoustic and gestural 
boundaries – taking for example into account non audible 
anticipatory gestures – is handled by a phasing model that 
predicts the delays between the acoustic boundaries of 
allophones to be synthesized and the gestural boundaries of 
HMM triphones. The HMM triphones and the phasing model 
are trained simultaneously using an iterative analysis-
synthesis loop. Convergence is obtained within a few 
iterations. Using different motion capture data, we 
demonstrate here that the phasing model improves 
significantly the prediction error and captures subtle context-
dependent anticipatory phenomena. 
Index Terms: facial animation audiovisual speech synthesis, 
HMM 

1. Introduction 
Embodied conversational agents – virtual characters as well 
as anthropoid robots – should be able to talk with their human 
interlocutors. They should compute facial movements from 
symbolic input. Given history of the conversation and thanks 
to a model of the target language, dialog managers compute a 
phonetic string with phoneme durations. This minimal 
information can be enriched with details of the underlying 
phonological and informational structure of the message, 
facial expressions, or paralinguistic information that has an 
impact on speech articulation (mental or emotional state). A 
trajectory formation model has thus to be built that computes 
articulatory parameters from such a symbolic specification of 
the speech task. These articulatory parameters will then drive 
the talking head (the shape and appearance models of a 
talking face or the control model of the robot). 
Human interlocutors are very sensitive to discrepancies 
between the visible and audible consequences of articulation 
[7, 16] and have strong expectations on articulatory 
variability [22] resulting from the under-specification of 
articulatory targets and planning. The effective modeling of 
coarticulation in speech is therefore a challenging issue for 
trajectory formation systems and still an unsolved problem. 
Audiovisual speech synthesizers should therefore cope not 
only with the modeling of adequate inter-articulatory 
coordination but also with the correct synchronization of 
audible and visible articulation [12]. Central to all speech 
synthesizers using rules, stored segments or trajectory 
formation models to generate speech from phonological input 
is the choice of speech landmarks. In most systems acoustic 

boundaries between phones are used as such landmarks for 
prosody characterization or generation. The TD-HMM system  
[10] proposes an original model for the re-estimation of 
phoneme-sized Hidden Markov Models (HMM). The HTS 
system [20] generate the final articulatory trajectory. 
 

2. State-of the art 
Numerous control models have been proposed for audiovisual 
text-to-speech synthesis [2]. The most popular solution 
consists in linking an animated head to an existing acoustic 
text-to-speech system. The trajectory formation model driving 
the head uses acoustic phoneme boundaries computed by the 
system to anchor the coarticulation model. Coarticulation is 
usually predicted using rules [5] or by exploiting an explicit 
coarticulation model [4, 6] that anchor the positions and spans 
of the phoneme-specific gestural targets. For predicting 
tongue movements captured by electromagnetic midsagittal 
articulography (EMMA), Kaburagi and Honda [14] add 
dynamic features in the specification of gestural targets of 
triphones in order to cope with inter-gestural phasing 
relations. 
Data-driven trajectory formation systems automatically 
capture regularities of the context-dependent gestural 
realization of phoneme-sized segments [21]. Concatenative 
audiovisual speech synthesis encapsulates short-term and 
long-term coarticulation effects by storing multimodal 
segments depending on the size of the segments. The problem 
of possible asynchronies is thus pushed in the segmentation 
and smoothing of boundaries and eventually in the 
compression/expansion of segments. HMM are now used for 
speech synthesis and particularly as trajectory formation 
systems [19, 23]. HMM can in fact capture inter-gestural 
phasing relations thanks to the state-dependent static and 
dynamic probability density functions characterizing the 
HMM states. 
A third possibility consists in computing articulation directly 
from speech signals. Proposals range from frame-based linear 
[15] or nonlinear models to GMM (Gaussian Mixture Model) 
-based or HMM-based mapping models that take as input a 
large speech window surrounding the current analysis frame 
[19]. The key problem is here to determine the span of 
coarticulation and hope that the mapping model will learn 
context-dependent phasing patterns from training data. 
A HMM-based trajectory formation system is here described. 
It includes a phasing model that predicts the delays between 
the acoustic boundaries of allophones to be synthesized and 
the gestural boundaries of HMM triphones that are proposed 
by unconstrained HMM alignment. We show that the 
modeling of audiovisual asynchrony has an impact on the 
performance of the whole system. 
 



 
Figure 1. 125 colored beads have been glued on the subject’s 
face along Langer’s lines so as to cue geometric deformations 
caused by main articulatory movements when speaking. 

3. Data and articulatory model 
In order to be able to compare up-to-date data-driven methods 
for audiovisual synthesis, a main corpus of 697 sentences 
pronounced by a female speaker was recorded. Using a 
greedy algorithm, the phonetic content of these sentences was 
designed in order to maximize statistical coverage of 
triphones (differentiated also with respect to syllabic and 
word boundaries). 
We used the motion capture technique developed at ICP [9, 
17] that consists in collecting precise 3D data on selected 
visemes. 3D movements of facial fleshpoints (see Figure 1) 
are acquired using photogrammetry and hand-fitted generic 
models. Visemes are selected by an analysis-by-synthesis 
technique [3] that combines robust automatic tracking with 
semi-automatic correction.  
Our shape models are built using a so-called guided Principal 
Component Analysis (PCA) where a priori knowledge is 
introduced during the linear decomposition. We in fact 
compute and iteratively subtract predictors using carefully 
chosen data subsets [1]. For speech movements, this 
methodology enables us to extract six components directly 
related to jaw, proper lip movements and clear movements of 
the throat linked with underlying movements of the larynx 
and hyoid bone. The resulting articulatory model also 
includes components for head movements and basic facial 
expressions but only components related to speech 
articulation are considered here. The average modeling error 
is less than 0.5mm for beads located on the lower part of the 
face. 

4. The trajectory formation system 
The principle of speech synthesis by HMM was first 
introduced by Donovan for acoustic speech synthesis [8] and 
extended to audiovisual speech by the HTS working group 
[18]. The HMM-trajectory synthesis technique comprises 
training and synthesis parts. 

4.1. Basic principles 

An HMM and a duration model for each state are first 
learned for each segment of the training set. The input data 
for the HMM training is a set of observation vectors. The 
observation vectors consist of static and dynamic parameters, 
i.e. the values of articulatory parameters and their temporal 
derivatives. The HMM parameter estimation is based on ML 
(Maximum-Likelihood) criterion [20]. Usually, for each 
phoneme in context, a 3-state left-to-right model is estimated 
with single Gaussian diagonal output distributions. The state 
durations of each HMM are usually modeled as single 

Gaussian distributions. A second training step can also be 
added to factor out similar output distributions among the 
entire set of states (state tying). This step is not used here. 
The synthesis is then performed as follows. A sequence of 
HMM states is built by concatenating the context-dependent 
phone-sized HMM corresponding to the input phonetic 
string. State durations for the HMM sequence are determined 
so that the output probabilities of the state durations are 
maximized (thus usually by z-scoring) Once the state 
durations have been assigned, a sequence of observation 
parameters is generated using a specific ML-based parameter 
generation algorithm [23]. 

4.2. Comments 

States capture parts of the inter-articulatory asynchrony since 
transient and stable parts of the trajectories of different 
parameters are not obligatory modeled by the same state (this 
surely explains why complex HMM structures aiming at 
explicitly coping with audiovisual asynchronies do not 
outperform the basic ergodic structure [13]). Within a state 
articulatory dynamics is captured and is then reflected in the 
synthesized trajectory.  By this way, this algorithm may 
capture implicitly part of short-term coarticulation patterns 
and inter-articulatory asynchrony. Larger coarticulation 
effects can also be captured since triphones intrinsically 
depend on adjacent phonetic context. 
These coarticulation effects are however anchored to 
acoustic boundaries that are imposed as synchronization 
events between the duration model and the HMM sequence. 
Intuitively we can suppose that context-dependent HMM can 
easily cope with this constraint but we will show that adding 
a context-dependent phasing model helps the trajectory 
formation system to better fit observed trajectories. 

4.3. Adding and learning a phasing model 

We propose to add a phasing model to the standard HMM-
based trajectory formation system (see Figure 2) that learns 
the time lag between acoustic and gestural units i.e. between 
acoustic boundaries delimiting allophones and gestural 
boundaries delimiting pieces of the articulatory score 
observed by the context-dependent HMM sequence. 
We use here a very simple phasing model: a unique time lag 
is associated with each context-dependent HMM. This lag is 
computed as the mean delay between acoustic boundaries 
and unconstrained alignment of triphones with articulatory 
trajectories of training utterances. 
This delay is learnt by an iterative process consisting of an 
analysis-synthesis loop: 

1. Standard context-dependent HMM are learnt using 
acoustic boundaries as delimiters for gestural 
parameters 

2. Once trained, forced alignment of training 
trajectories is performed (Viterbi alignment in 
Figure 2). 

3. Deviations of the resulting segmentation with 
acoustic boundaries are collected. The average 
deviation of the right boundary of each context-
dependent HMM is then computed and stored. The 
set of such mean deviations constitutes the phasing 
model. 

4. New gestural boundaries are computed applying 
the current phasing model to the initial acoustic 
boundaries. Additional constraints are added to 
avoid collapsing: a minimal duration of 30 ms is 
guaranteed for each phone. 



5. Experiments and results 
All sentences are used for training. A leave-one-out process 
for TD-HMM has not been performed since a context-
dependent HMM is built only if at least 10 samples are 
available in the training data; otherwise context-independent 
phone HMM are trained and used. TD-HMM is compared 
with concatenative synthesis using multi-represented 
diphones: synthesis of each utterance is performed simply by 
using all diphones of other utterances. 
Figure 3 compares mean correlations obtained by the 
concatenative synthesis with the TD-HMM at each iteration. 
Convergence is obtained after typically 2 or 3 iterations. 
Figure 4 compares the articulatory trajectories obtained: the 
most important gain is obtained for silent articulations 
typically at the beginning (prephonatory gestures) and end of 
utterances. 
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Figure 2. Training consists in iteratively refining the context-
dependent phasing model and HMMs (plain lines and dark 
blocks). The phasing model computes the average delay 
between acoustic boundaries and HMM boundaries obtained 
by aligning current context-dependent HMMs with training 
utterances. Synthesis simply consists in forced alignment of 
selected HMMs with boundaries predicted by the phasing 
model (dotted lines and light blocks). 
 

 
Figure 3: Mean correlations (together with standard 
deviations) between original and predicted 
trajectories for the main five articulatory parameters 

(jaw rotation, lip rounding, lower and upper lip 
opening, jaw retraction).  First data are predicted by 
concatenative synthesis using multi-represented 
diphones [4]. Second data are predicted by HMM 
using acoustic boundaries. The rest of the data give 
results obtained after the successive iteration of the 
estimations of the phasing model. 

 
Figure 4: Comparing natural and synthetic 
trajectories for the first 3 main articulatory 
parameters (jaw opening, lip spreading and lower lip 
opening). Vertical dashed lines at the bottom of each 
caption are acoustic boundaries while gestural 
boundaries are given by the top plain lines.  Note the 
large delay of the non audible closure at the end of 
the utterance. 

6. Conclusions 
We have demonstrated here that the prediction accuracy of an 
HMM-based trajectory formation system is improved by 
modeling the phasing relations between acoustic and gestural 
boundaries. The phasing model is learned using an analysis-
synthesis loop that iterates HMM estimations and forced 
alignments with the original data. We have shown that this 
scheme improves significantly the prediction error and 
captures both strong (prephonatory gestures) and subtle 
(rounding) context-dependent anticipatory phenomena. 
The interest of such an HMM-based trajectory formation 
system is double: (a) it provides accurate and smooth 
articulatory trajectories that can be used straightforwardly to 
control the articulation of a talking face or used as a skeleton 
to anchor multimodal concatenative synthesis [see notably the 
TDA proposal in 11]; (b) it also provides gestural 
segmentation as a by-product of the phasing model. These 
gestural boundaries can be used to segment original data for 
multimodal concatenative synthesis.  
A more complex phasing model can also be build – using for 
example CART trees - by identifying phonetic or 
phonological factors influencing the observed lag between 
visible and audible traces of articulatory gestures. 
We will use this trainable trajectory formation model TD-
HMM for the LIPS’08 lipsync challenge and drive the 
articulated 3D clone (cf. Figure 5) with the articulatory scores 
computed using 3D data from one English female speaker 
under analysis at our laboratory. 
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Figure 5: The articulated 3D clone textured with the 
front image of Figure 1.  
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