
HAL Id: hal-00338984
https://hal.science/hal-00338984

Submitted on 14 Nov 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

LAR method: from algorithm to synthesis for an
embedded low complexity image coder

Olivier Déforges, Marie Babel

To cite this version:
Olivier Déforges, Marie Babel. LAR method: from algorithm to synthesis for an embedded low
complexity image coder. 3rd International Design and Test Workshop, IDT’08, Dec 2008, Monastir,
Tunisia. pp.1-4. �hal-00338984�

https://hal.science/hal-00338984
https://hal.archives-ouvertes.fr

LAR method : from algorithm to synthesis for an
embedded low complexity image coder

Olivier Déforges, Marie Babel
CNRS UMR 6164 IETR/INSA Rennes, 20 Av des Buttes de Cöesmes

35 043 Rennes Cedex, France
Email : odeforge@insa-rennes.fr

Abstract— Embedded image codecs have generally strong
constraints in terms of speed, latency and complexity. We
introduce in this paper a dedicated coder implementation of
the LAR coding technique, suitable for high image compression
rates. The general concepts of the LAR codec is firstly described.
Then, a low complexity architecture is detailed. This architecture
is composed of parallel and pipelined stages, and presents limited
requirements for both memory and computation power. Compa-
rative results with FPGA solutions for JPEG and JPEG2000 are
finally discussed.

I. INTRODUCTION

Despite many drawbacks and limitations, JPEG is still
the most commonly-used compression format in the world.
JPEG2000 overcomes this old technique, particularly at low
bit rates, but at the expense of a significant complexity ove-
rhead. Therefore, the JPEG normalization group has recently
proposed a call for proposals on JPEG-AIC (Advanced Image
Coding) in order to look for new solutions for still image
coding techniques [1]. Its requirements reflect the earlier ideas
of Amir Said [2] for a good image coder : compression
efficiency, scalability, good quality at low bit rates, flexibility
and adaptability, rate and quality control, algorithm unicity
(with/without losses), reduced complexity, error robustness
(for instance in a wireless transmission context) and region of
interest decoding at decoder level. Among them, the reduced
complexity is maybe the most important criteria for embedded
systems such as camera or mobile phone. The complexity of
a coding system does not only impact on the processing time,
which is a critical point for digital camera, but also on the
consumption of the embedded system and therefore on its self-
sufficiency time.

To reduce both consumption and execution time, some
dedicated circuits exist for JPEG and JPEG2000 coders, most
of the time relying on ASIC technology. However, these
solutions induce two major drawbacks :

– no system evolution,
– high design cost.
An alternative can be the use of reprogrammable compo-

nents such as FPGAs, but requirements significantly differ
between JPEG and JPEG2000. JPEG is characterized by a low
complexity, and relating IP blocks exist which can be integra-
ted in low capacity FPGAs (for instance an ALTERA FLEX
10K) [3]. JPEG2000 requirements both in terms of memory
and computation power are much more important : only large

FPGAs, and therefore expensive and power consuming, enable
its integration [4].

In [5], we proposed an original scheme call LAR (Locally
Adaptive Resolution) able to perform efficient lossy compres-
sion, enabling an unusual hierarchical region representation
(without any shape description). Then, in [6], we described an
extension of a more efficient scalable multi-resolution solution
in terms of both lossy and lossless compression. This paper
more focuses on the implementation aspect of the method. In
particular, we detail an FPGA implementation of part of the
LAR coder, well suited for high ratio compression.

This paper is organized as follows. Section 2 gives an
overview of the LAR coding method and more particularly
on the FLAT LAR. Efficient dedicated hardware solution and
synthesis results are presented in section 3, and compared to
FPGA solutions designed for JPEG and JPEG2000. Finally,
section 4 concludes the paper.

II. THE LAR CODER

A. General concepts

The LAR method relies on the idea that the resolution
can be locally adapted to activity : when local luminance
remains uniform, the resolution can be low, whereas for
high activity areas, good image representation requires a finer
resolution. The second principle in the LAR method relies on
the fact that an image can be seen as the superposition of two
complementary components :

I = Ī + (I − Ī︸ ︷︷ ︸
E

) (1)

Ī represents the image global information (local average value
for instance), estimated on a given support, and E is the local
variation around it (say local texture). The range of E is
dependant on two main factors :

1) the image local activity,
2) the support dimension of Ī .

Moreover, if we assume that an image can be roughly seen as
the composition of homogeneous areas and contours, then the
sole adaptation of the support leads to low dynamic range of
E in uniforms areas. On the other hand, E dynamic range will
be wide on contours as soon as the support of Ī is superior to
one pixel.

In connection with the previous remarks, the main concepts
of the LAR method relies on a two layers codec : the first layer
called FLAT LAR represents the global information, whereas
the second stage, called error spectral coder, provides the local
texture. By construction, the LAR method enables two layers
of scalability. Figure 1 shows the associated global scheme.

Original
Image Flat Coder

Spectral Coder

+
-

Flat decoder

Spectral decoder

Low resolution
image

Middle / high
resolution image

+-

Fig. 1. Global LAR scheme : codecs FLAT + spectral layers

This work is mainly focuses on the synthesis of the first
layer, which will be detailed in the following.

B. The flat coder

The expression “FLAR” means that the representation of Ī
in first layer is performed by local flat approximations. As the
objective of this FLAT codec is only to compress the global
image information, it clearly addresses high compression rates.
The relative image representation aims to distinguish between
contours and the remaining of the image, and to adapt the
support of Ī such as the rebuilt image remains visually
acceptable and presents reduced error E especially in uniforms
areas. The support takes here the shape of squared blocks.

The global scheme of the FLAT coder is given on figure 2.
It relies on a variable block size representation of the image,
in which blocks are filled by their mean graylevel value.
If the technique can seems to be well-known, our approach
presents particularities that are detailed in the following. All
data produced by the different processing steps (partitioning,
prediction errors, ...) are further losslessly compressed by a
low complexity entropy coder, which will be later presented.

DPCM
Adapt. Quant.

~

Partitioning

Post-processing

Size

Mean block
values

Coder
P [16,..2]

LR

LR

Image
Original

Flat Coder

Low resolution
image

Fig. 2. FLAT coder scheme

1) Partitioning: Every systems relying on a variable block
size representation of images induce an activity criterion (or
homogeneousness) and a particular partition topology. In the
following, we consider the Quadtree partition P [Nmax...Nmin],

in which Nmax and Nmin respectively represent the maximal
and minimal allowed block sizes, expressed as power of 2.
I(x, y) denotes a pixel in the image with coordinates (x, y),
and I(bN (i, j)) is the block bN (i, j) in I such as :

bN (i, j) = {(x, y) ∈ Nx ×Ny| N × i ≤ x < N × (i + 1),
N × j ≤ y < N × (j + 1)}.

(2)
Among all existing coding techniques, some of them also

consider an image partitioning. For instance, the intra mode
of MPEG4-AVC enables two sizes for blocks, i.e. 4 and 16.
It can be also seen as a P [16,4] Quadtree partition. The block
size in AVC is selected according to distortion/rate criteria,
from a PSNR point of view [7]. Other methods involve a finer
partitioning such as tree decomposition solutions : the decom-
position starts at the highest level of the tree (maximal size),
and a node is decomposed into four sons since the activity
threshold is exceeded. Several homogeneousness criteria have
been proposed [8], [9], but in most of cases they rely on the
estimation of L1 or L2 norms distance between a given block
and its sons.

In our approach, we have adopted a different criterion, as
the notion of activity is closely here associated to the presence
of contours or not. Thus, the activity estimation is performed
by a morphological gradient (difference between the maximal
and minimal values inside a block).

We consider the Quadtree partition P [Nmax...Nmin]. Let
min[I(bN (i, j))] and max[I(bN (i, j))] be respectively the
minimal and maximal values in block I(bN (i, j)).

The sizes image in all points is given by

Siz(x, y) =

N ∈ [Nmax . . . Nmin[

if |max[I(bN (b x
N
c, b y

N
c))]−min[I(bN (b x

N
c, b y

N
c))]| ≤ Th

and if ∃(k, m) ∈ {0, 1}2 /

|max[I(bN (bx+k
N/2
c, b y+m

N/2
c))]−min[I(bN (bx+k

N/2
c, b y+m

N/2
c))]|

> Th

Nmin otherwise,
(3)

with Th denoting the activity threshold.
The sizes image directly provides a coarse image segmenta-

tion map : blocks of size Nmin are mainly located upon edges
and highly textures areas of the image. We will show in the
following that this feature enables an adapted quantization in
the coding process.

2) Block mean value: A low resolution image LR is
reconstructed by representing each block by its mean value.
Consequently, for each pixel p(x, y) we get :

LR(x, y) = 1
N2

∑N−1
k=0

∑N−1
m=0 I(b x

N
c ×N + k, b y

N
c ×N + m),

with N = Siz(x, y)
(4)

3) Block mean value encoding by DPCM approach:
a) Block mean value quantization: Compression tech-

niques relying on distortion/rate optimization try to find the
best compromise between the coding cost and global errors,
but only from a PSNR or MSE point of view, without any
consideration about the human vision. Nevertheless, experi-

mentations have demonstrated that this human eye is much
less sensitive to luminance and chrominance variations in areas
such as edges (high visual frequencies) than in uniform areas
(low visual frequencies) [10], [11]). This principle is simply
used in our coding scheme by performing a quantization
adapted to the block size. Let qN be the quantization step
for blocks of size N . Then using a set of values, such as
qN = qN/2

2 , leads to a similar visual quality in the image.
b) Block graylevel mean value prediction: The block

mean value encoding is directly realized in the spatial domain,
by a DPCM (Differential Pulse Coding Modulation) approach.
This choice has been firstly motivated by the simplicity of
the coding process, requiring only one regular image scan.
Secondly, the block representation provides an interesting a
priori about activity areas, which can be useful to adapt
prediction.

We have implemented a simple Graham predictor [12]
adapted to our context : a linear prediction is performed
in homogeneous areas, and a non linear one near contours.
The prediction is driven by the local gradient and enables to
optimize the predictor according to the context. The predictor
is given by :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

For all vertex pixel p(x, y) of block bN (x, y), we define the predicted value
of block L̆R(x, y)
from already reconstructed values

L̃R(x− k, y −m), (k, m) ∈ {0, 1}
L̆R(x, y) =

L̃R(x− 1, y) if |L̃R(x− 1, y − 1)− L̃R(x, y − 1)|
< |L̃R(x− 1, y − 1)− L̃R(x− 1, y)|

et if AN < |L̃R(x− 1, y − 1)− L̃R(x− 1, y)|
L̃R(x, y − 1) if |L̃R(x− 1, y − 1)− L̃R(x− 1, y)|

< |L̃R(x− 1, y − 1)− L̃R(x, y − 1)|
and if AN < |L̃R(x− 1, y − 1)− L̃R(x, y − 1)|

(L̃R(x− 1, y) + L̃R(x, y − 1))/2 otherwise.
AN is an increasing parameter of N
with : A1 = 0; A2 = 10; A4 = 20; A8 = 40; A16 = 80;

(5)

Prediction errors quantization process follows the principle
mentioned before, with a quantization adapted to the block
size. Let ELR(x, y) br the prediction error, ÊLR(x, y) and
ẼLR(x, y) respectively the quantized and dequantized values.
Then the associated relationships are defined by :

∣∣∣∣∣∣∣∣∣∣
ELR(x, y) = LR(x, y)− L̆R(x, y)

ÊLR(x, y) = Q (ELR(x, y)) = round
[

ELR(x,y)
qN

]
ẼLR(x, y) = Q−1

(
ÊLR(x, y)

)
= qN .ÊLR(x, y)

L̃R(x, y) = L̆R(x, y) + ẼLR(x, y)

(6)

The quantization steps qN given in table I correspond to
possible usable values without major visible degradations on
the rebuild image.

Actually, to avoid an accumulation of quantization noise du-
ring block mean value normalization (4) and quantization (6),
both are performed simultaneously. As values can be expressed
as power of 2, the normalization+quantization processes can
been implemented as a simple shifting operator. Then, the
block mean value estimation step has to provides the sum of

Taille 16× 16 8× 8 4× 4 2× 2 1× 1
qN 2 4 8 16 32

TABLE I
QUANTIZATION STEPS ACCORDING TO THE BLOCK SIZE

pixel values inside the block.

4) Postprocessing: By construction, the rebuilt LR images
present “blocks effects”. Nevertheless they significantly differ
from perceptible artifacts induced by common coding methods
(JPEG, MPEG2 or MPEG4) at low bit rates. Techniques
relying on an uniform block decomposition generate high
distortions upon contours, which are hardly removable. In our
approach, blocks effects appear in uniform areas as a flat
information representation, and upon contours as a lack of
resolution since Nmin > 1. We have designed a software
postprocessing solution able to smooth homogeneous areas
while maintaining sharp edges.

Postprocessing is not necessary embedded in the coder.
It can be performed off-line or on-line during the decoding
process only. It means that the proposed coder is well adapted
to applications with hard ressources requirements.

Comparative results are given figure 3 for low bit rates
compression. IRCCYN laboratory (Nantes, FRance) has run
subjective quality tests between JPEG, JPEG2000 and LAR.
Their conclusions reveal that LAR outperforms JPEG at all bit
rates, and also JPEG2000 for advanced LAR modes involving
chromatic images encoding at a region-level representation ??.

Source JPEG

jpeg2000 LAR

Fig. 3. Comparative results, compression rate =30

5) Entropy coding: In coding systems, symbols are finally
losslessly encoded by entropy coders. The principle of these
coders consists of using variable length codes according to
symbols probability. Entropy coding has an important impact
on the performance of the global coding scheme. Many
techniques exist, most efficient ones rely on arithmetic coding
[13]. An advanced arithmetic coding solution has been inte-
grated in JPEG2000 which actually achieves high compression
performances. However, it is also the main limitation for the
design of low complexity JPEG2000 codecs.

To decrease global symbols entropy, one has generally to
separate symbols with different probability laws. The use of
quadtree decomposition enables the approach to act as an
“objective context modeling”, separating the error prediction
laws characterized by high entropy for small blocks, and low
entropy for large ones.

We have chosen a Golomb-Rice entropy coding for the
low complexity version of the LAR coder. The first reason is
that it requires limited computation. The second reason is that
Golomb-Rice encoding enables a minimal cost initialization,
and therefore is well adapted to small streams of symbols.

Golomb codes Gm with parameter m ≥ 0 encode an integer
number n ≥ 0 in two parts such as[14] :

– the lowest part n mod m as a direct binary format,
– the highest part bn/mc as an unitary code format.

Rice [15] has presented the particular case when m =
2k, for which coding and decoding operations become very
simple. Indeed, on one hand the operation inmodm consists
only of keeping the k lowest bits of n, and on the other hand,
the integer division

⌊
n/2k

⌋
can be performed by k right shifts

of n. The code is then composed of series of 1 with a length
of
⌊
n/2k

⌋
, a 0 as separator, and the lowest k bits. Thus codes

present a global length of
⌊
n/2k

⌋
+ 1 + k.

The key factor for Golomb-Rice codes efficiency relies
in the optimal choice of the k parameter, which has to be
transmitted to the decoder. For symbols initially encoded with
a maximum of 8 bits, as many possible values exist for k. The
very low computation complexity of the method enables to test
all configurations, and to retain at the end the best k value.
In practice, a training involving only the 200 first values is
enough to select appropriate k value. As Golomb-Rice codes
can handle only positive values, sign bits of prediction errors
are separately encoded.

Applying Golomb-Rice codes technique to prediction errors
streams introduced a cost overhead of about 5% comparing to
entropy values. This result remains satisfactory considering the
approach simplicity.

III. LAR CODER IMPLEMENTATION

A. DSP implementation

The LAR coder has been firstly implemented into a DSP.
Part of research carried out in the laboratory concerns the
design of fast prototyping methodologies, under SynDEx
development tool [16]. This application is described as a data
flow graph and the target architecture is also modelized as a

graph. Then the tool can perform the best partitioning and
allocation of the application onto the architecture. Without
any advanced code and memory optimization, the FLAT LAR
coder has then been implemented in a TI TMSC6416 DSP,
running at 400 MHz and with 1 Mo internal memory. In this
way, a CIF image (352×288 pixels) can be processed in 10
ms (4 times real-time), with a memory use of 800 Ko for both
code and data, and a latency time of 9 ms.

B. FPGA implementation
1) Specifications: The objective was to design a dedicated

architecture for the LAR coder with limited latency and
memory requirements. We imposed a synchronous system
with a data flow rate of one pixel incoming and outcoming
per each clock cycle. Block sizes has been set (Nmax = 8
and Nmin = 2), as well as quantization values. Image size
(X size, Y size) and gradient threshold Th are defined as
parameters. The integration of the Golomb-Rice coding is
currently in progress.

2) General concepts: The first design has consisted of
duplicating the initial data flow graph description of the
application, rewriting elementary functions into VHDL, and
finally performs the synthesis. The major drawback of this
approach is that it implies the use of several large buffers to
store intermediate images, and increases latency.

A more suitable approach suggests to take advantage of
a same image scan for each function (line by line), by
performing processing at block level and by pipelining the
different stages. The computation process operates on slices
of Nmax lines height, and can be decomposed into two main
stages.

– One values estimation stage (min, max, and sum) for
blocks of size Nmax ×Nmax, which induces a fix delay
of (Nmax− 1)×X size+Nmax for outcoming data, as
illustrates the figure 4.

– One values rebuilding stage (DPCM) for variable size
blocks, which can directly follow on the previous stage.

Nmax=8

Nmax/2=4

Nmin=2

Current pixel

Last usefull pixel

Fig. 4. Blocks processing by raster scans

3) Stages implementation: The global architecture of the
system has been redesigned in order to enable a pipeline
processing of slices (see figure 5). Between the two mentioned
before stages, another one has been integrated, in order to
perform current data selection according to the block size.
Main stages are pipelined or parallelized in order to increase
temporal performances.

2x2
Sums

2x2, 4x4, 8x8
sums

Min value
computation

Quantized
Image

Prédiction
Errors

Generics : X_size, Y_size, ThG: X_size, Y_size, Th

Current
sum

selection

DPCM

Size image
and

vertex image
generation

Error
estimation

Blocks
filling

Stage 1

Partitioning

Mean block values

Stage 2 Stage 3

Original
image Max value

computation

Value
prediction

Fig. 5. Proposed parallel and pipeline architecture

a) Stage 1: The estimation of the minimal, maximal
values and the sum, for the different possible sizes of blocks,
is realized in a recursive and parallel manner. Minimal and
maximal values are used only to estimate the local activity by
comparing local gradient to the threshold Th. Assuming that
all block sizes are initialized to 2×2, only gradients have to be
estimated from 4×4 block size according to (3). Thus, for each
8× 8 block, it is necessary to store intermediate minimal and
maximal values for the four 4× 4 blocks inside the block and
for the 8× 8 block itself (5 values to store). The computation
of the sum of blocks follows the same principle, but has also
to consider the sixteen 2 × 2 blocks inside the 8 × 8 block,
which leads to 5 + 16 values to store. To sum up, the total
number of required stored data is equal 26 per block, which
has to be multiplied by the number of blocks in an image slice
(X size/8).

The size image results from the morphological computation
and contains for each pixel the selected block size. The vertex
image is generated to indicate to latter stages the beginning
of a block. A vertex is located at the upper left corner of a
block.

b) Stage 2: It is simply a multiplexing stage selecting
sum value among the 3 possible ones according to the local
block size.

c) Stage 3: The objective of this stage is to perform
the DPCM coding. Quantization is adapted to the block size
(values are expressed as power of two and stored in buffers).
The coding is actually realized for the first pixel of the block
(vertex), and for the remaining positions, the vertex quantized
value is simply diffused. The stage generates two outputs : the
low resolution block image L̃R and the prediction errors ÊLR.
Then, the DPCM stage itself is divided into three successive
pipelined elementary steps : value prediction, error estimation
and quantization, and filling of the block.

C. Implementation results
The proposed architecture has been described in VHDL, and

synthesized into a medium FPGA : a xcv600 (Xilinx) inclu-
ding 15000 equivalent gates, and 12 Ko of embedded block
memory. The development process was relying on Modelsim
for VHDL simulation, Leonardo Spectrum for the logical
synthesis, Xilinx Foundation for place and route operations.

Table II summarizes main architecture features in terms
of memory requirements, maximal running frequency, latency
and processing times for different image sizes.

As mentioned before, the required memory space depends
on the image length. Performance results show that this dimen-
sion has also an impact on the achievable maximal frequency.
The explanation is that the input code is fully generic, and then
the synthesis tool has chosen to distribute required memory
into small LUTs of logical cells. In these conditions, a memory
is made of a set of LUTs, and address decoding time is
dependant on the number of LUTs. To avoid such limitations
for the maximal running frequency, the solution can be to
directly instantiate large blocks of memory in the VHDL code,
but it would be at the expanse of its generecity.

Image size
64x64 352x288

Internal memory(octets) 684 3 470
4 inputs LUTs for logical
operations

1 166 2 463

Frequency(MHz) 45,8 33
Processing time (ms) 0,09 3,1
Latency time(µs) 18,6 75

TABLE II
SYNTHESIS RESULTS AFTER FINAL PLACE AND ROUTE

An image of size 100 Ko requires less than 4 Ko of internal
memory to be compressed. Moreover, this image is totally

processed in 3 ms,which largely fulfils real-time constraints.
The global latency time is 75 µs, and then can be considered
extremely low for an image coder.

Coder
JPEG JPEG2000

Internal memoiry (octets) 3 100 82 000
4 inputs LUTs for logical
operations

9 690 9 400

Frequency(MHz) 61 11

TABLE III
COMPARATIVE SYNTHESIS RESULTS FOR JPEG AND JPEG2000

Main architecture features for JPEG and JPEG2000 given
in table III have been found respectively in [3] and [4], for
minimal surface solutions. Comparative results clearly show
that the LAR coder requirements for logical cells are much
less than JPEG2000 and even than JPEG. From a memory
point of view, LAR complexity is similar to JPEG one. The
forthcoming integration of the Golomb-Rice entropy coder
should have a limited impact on the logical resources. Only
memory increase can become significant if we choose to
realize k parameters learning on a larger range of values.

IV. CONCLUSION

We have presented in this paper a dedicated FPGA im-
plementation of the FLAT LAR image coder. This coding
technique is particularly well adapted for low bit rate com-
pressions. From an image quality point of view, the FLAT
LAR presents better results than JPEG, while implementation
resources requirements are similar.

Internal architecture has been designed as a set of parallel
and pipelined stages, enabling a full image processing during
an unique regular scan. The architecture latency is extremely
low as it is determined by the data acquisition for one slice
of 8 lines.

Next developments will concern synthesis of Golomb-Rice
codes as ultimate stage, as well as the design of the second
LAR layer to encode local texture. This layer can be compared
to JPEG technique adding variable block sizes representation,
but in the same time substituting an integer transform (Hada-
mard) to DCT one.

REFERENCES

[1] “Jpeg-aic : scope and evaluation,” International Standards Organization
working document, ISO/IEC SC29/WG 1/N4326, 2007.

[2] A. Said and W. Pearlman, “Reversible image compression via multire-
solution representation and predictive coding,” in Visual Communication
and Image Processing. SPIE, November 1993, vol. 209, pp. 664–674.

[3] Alma Technology, “Jpeg fast encoder,” www.alma-tech.com, October
2002.

[4] O. Cantineau, “Real-time ip cores for jpeg2000 compression accelela-
tion,” Bits and Chips Conference, Eidhoven, April 2004.

[5] O. Déforges, M. Babel, L. Bédat, and J. Ronsin, “Color LAR codec :
a color image representation and compression scheme based on local
resolution adjustment and self-extraction region representation,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 17, no.
8, pp. 974–987, August 2007.

[6] M. Babel, O. Deforges, and J. Ronsin, “Interleaved S+P Pyramidal
Decomposition with Refined Prediction Model,” in ICIP, October 2005,
vol. 2, pp. 750–753.

[7] H264 MPEG-4 10 AVC, “Joint committee draft (cd),” Joint Video Team
(JVT) of ISO/IEC MPEG and ITU-T VCEGn 3rd Meeting : Fairfax,
Virginia, USA, May 2002.

[8] C.A. Shaffer and H. Samet, “Optimal quadtree construction algorithms,”
Computer Vision, Graphics, Image processing, vol. 37, October 1987.

[9] P. Strobac, “Tree-structured scene adaptive coder,” IEEE Trans. on
Communication, vol. 38, no. 4, April 1990.

[10] M. A. Losada and K. T. Mullen, “The spatial tuning of chromatic
mechanisms identified by simultaneous masking,” Vision Res., vol. 34,
no. 3, pp. 331–341, 1994.

[11] K. K. De Valois M. A. Webster and E. Switkes, “Orientation and spatial-
frequency discrimination for luminance and chromatic gratings,” JOSA.,
vol. 7, no. 6, pp. 1034–1049, 1990.

[12] R. E. Graham, “Predictive quantizing of television signals,” IREWES-
CON Conv. Rec., vol. 22, no. 4, pp. 147–157, 1958.

[13] P.G. Howard and J.S. Vitter, “New methods for lossless image compres-
sion using arithmetic coding,” Proc. of Data Compression Conference,
IEEE, pp. 257–266, 1991.

[14] G. Golomb, “Run-length encodings,” IEEE Trans. on Information
Theory, vol. IT-12, pp. 399–401, July 1966.

[15] R.F. Rice, “Some practical universal noiseless coding techniques,” Tech.
Rep. JPL-79-22, JET Propulsion Laboratory, Pasadena, CA, March
1979.

[16] T. Grandpierre, C. Lavarenne, and Y. Sorel, “Optimized rapid prototy-
ping for real-time embedded heterogeneous multiprocessors,” in Pro-
ceedings of 7th International Workshop on Hardware-Software Codesign
(CODES 99), Rome, Italy, May 1999, pp. 74–78.

