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Medium-modified average multiplicity and multiplicity fluc tuations in jets
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Abstract: The energy evolution of average multiplicities and multiplicity fluctuations in jets produced in
heavy-ion collisions is investigated from a toy QCD-inspired model. In this model, we use modified split-
ting functions accounting for medium-enhanced radiation of gluons by a fast parton which propagates
through the quark gluon plasma. The leading contribution ofthe standard production of soft hadrons
is enhanced by a factor

√
Ns while next-to-leading order (NLO) corrections are suppressed by1/

√
Ns,

where the parameterNs > 1 accounts for the induced-soft gluons in the medium. Our results for such
global observables are cross-checked and compared with their limits in the vacuum.
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Recent experiments at the Relativistic Heavy Ion Collider (RHIC) have established a phenomenon of

strong high-transverse momentum hadron suppression [1], which supports the picture that hard partons

going through dense matter suffer a significant energy loss prior to hadronization in the vacuum (for

recent review see [2]).

Predictions concerning multi-particle production in nucleus-nucleus collisions can be carried out by us-

ing a toy QCD-inspired model introduced by Borghini and Wiedemann in [3]; it allows for analyti-

cal computations and may capture some important features ofa more complete QCD description. In

this model, the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting functionsq → gq̄ and

g → gg [4] of the QCD evolution equations were distorted so that therole of soft emissions was en-

hanced by multiplying the infra-red singular terms by the medium factorNs. The model [3] was further

discussed and used on the description of final states hadronsproduced in heavy-ion collisions [5].

Within the model, we make predictions for the medium-modified average multiplicityNA in quark and

gluon jets (A = q, g) produced in such reactions, for the ratior = Ng/Nq and finally for the second

multiplicity correlators〈NA(NA − 1)〉/N2
A, which determines the width of the multiplicity distribution.

The starting point of our analysis is the NLO or Modified-Leading-Logarithmic-Approximation (MLLA)

master evolution equation for the generating functional [4] which determine the jet properties at all

energies together with the initial conditions at thresholdat smallx, wherex is the fraction of the outgoing

jet energy carried away by a single gluon. Their solutions with medium-modified splitting functions can

be resummed in powers of
√

αs/Ns and the leading contribution can be represented as an exponential

of the medium-modified anomalous dimension which takes intoaccount theNs-dependence:

NA ≃ exp

{
∫ Y

γmed(αs(Y )) dY

}

, (1)

whereγmed(αs) can be expressed as a power series of
√

αs/Ns in the symbolic form:

γmed(αs) ≃
√

Ns ×
√

αs

(

1 +

√

αs

Ns
+ O

(

αs

Ns

))

.

Within this logic, the leading double logarithmic approximation (DLA,O(
√

Nsαs)), which resums both

soft and collinear gluons, and NLO (MLLA,O(αs)), which resums hard collinear partons and accounts

for the running of the coupling constantαs, are complete. The choicedY = dΘ/Θ, whereΘ ≪ 1 is

the angle between outgoing couples of partons in independent partonic emissions, follows from Angular

Ordering (AO) in intra-jet cascades [4]. In order to obtain the hadronic spectra, we advocate for the

Local Parton Hadron Duality (LPHD) hypothesis [6]: global and differential partonic observables can be

normalized to the corresponding hadronic observables via acertain constantK that can be fitted to the

data, i.e.Nh
g,q = K × Ng,q.

The evolution of a jet of energyE and half-opening angleΘ involves the DLA anomalous dimensionγ0

related to the coupling constantαs throughγ2
0 = 2Ncαs/π, with αs = 2π/4Ncβ0(Y + λ), whereY =

ln(Q/Q0) (Q = EΘ is the hardness or maximum transverse momentum of the jet),λ = ln(Q0/Λ
QCD

)

is a parameter associated with hadronization (Q0 is the collinear cut-off parameter,kT > Q0, andΛ
QCD

is the intrinsic QCD scale) andβ0 = 1
4Nc

(

11
3 Nc − 4

3TR

)

, whereTR = nf/2, nf being the number

of active flavors. At MLLA, as a consequence of angular ordering in parton cascading, the average

multiplicity inside a gluon and a quark jet,Ng,q, obey the system of two-coupled evolution equations [7]
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(the subscriptY denotesd/dY )

NgY
=

∫ 1

0
dx γ2

0

[

Φg
g (Ng(x) + Ng(1 − x) − Ng) + nfΦq

g (Nq(x) + Nq(1 − x) − Ng)
]

, (2)

NqY
=

∫ 1

0
dx γ2

0

[

Φg
q (Ng(x) + Nq(1 − x) − Ng)

]

, (3)

which follow from the MLLA master evolution equation for thegenerating functional;Ng,q ≡ Ng,q(Y ),

Ng,q(x) ≡ Ng,q(Y + ln x), Ng,q(1 − x) ≡ Ng,q(Y + ln(1 − x)), ΦB
A denotes the medium-modified

DGLAP splitting functions:

Φg
g(x) =

Ns

x
− (1 − x)[2 − x(1 − x)],

Φq
g(x) =

1

4Nc
[x2 + (1 − x)2],

Φg
q(x) =

CF

Nc

(

Ns

x
− 1 +

x

2

)

, (4)

which accounts for parton energy loss in the medium by enhancing the singular terms likeΦ ≈ Ns/x as

x ≪ 1 as proposed in the Borghini-Wiedemann model [3]. Thus, whenNs increases the DLA becomes

dominant and energy-momentum conservation plays a less important role.

ForY ≫ ln x ∼ ln(1− x), Ng,q(x) (Ng,q(1 − x)) can be replaced byNg,q in the hard partonic splitting

regionx ∼ 1 − x ∼ 1 (non-singular or regular parts of the splitting functions), while the dependence

at smallx ≪ 1 is kept in the singular termΦ(x) ≈ Ns/x as done in the vacuum. Furthermore, the

integration overx can be replaced by the integration overY (x) = ln
(

xEΘ
Q0

)

. Thus, one is left with the

approximate system of two-coupled equations,

d2

dY 2
Ng(Y ) = γ2

0

(

Ns − a1
d

dY

)

Ng(Y ), (5)

d2

dY 2
Nq(Y ) =

CF

Nc
γ2
0

(

Ns − ã1
d

dY

)

Ng(Y ), (6)

with the initial conditions at thresholdNA(0) = 1 andN
′

A(0) = 0 and the hard constants:

a1=
1

4Nc

[

11

3
Nc +

4

3
TR

(

1 − 2
CF

Nc

)]

, ã1 = 3/4.

The quantum corrections∝ a1, ã1 in (5,6) arise from the integration over the regular part of the splitting

functions, they areO(
√

αs/Ns) suppressed andpartially account for energy conservation as happens in

the vacuum.

These equations can be solved by applying the inverse Mellintransform to the self-contained gluonic

equation (5), which leads to

Nh
g (Y ) ≃ K ×

∫

C

dω

2πi
ω

a1
β0

−2
exp

[

ω(Y + λ) +
Ns

β0ω

]

, (7)

where the contourC lies to the right of all singularities ofNg(ω) in the complex plane. Since we are

concerned with the asymptotic solution of the equation asY ≫ 1 (EΘ ≫ Q0), that is the high-energy

limit, the inverse Mellin transform (7) can be estimated by the steepest descent method. Indeed, the large

2



 10

 100

 1000

 20  40  60  80  100  120  140  160  180  200

N
gh

Q (GeV)

MLLA, Ns=1
MLLA, Ns=1.6
MLLA, Ns=1.8

Figure 1: MLLA (8) medium-modified average multiplicity as afunction of Q = EΘ in the vacuum

(Ns = 1) and in the medium (Ns = 1.6 andNs = 1.8) for nf = 3.

parameter isY and the function in the exponent presents a saddle point atω0 =
√

Ns/β0(Y + λ), such

that the asymptotic solution reads

Nh
g (Y ) ≃ K× (Y + λ)

−

σ1
β0 exp

√

4Ns

β0
(Y + λ), (8)

whereσ1 = a1

2 − β0

4 . The constantσ1 is Ns-independent because it resums vacuum corrections. There-

fore, the production of soft gluons in the medium becomesexp
[

2(
√

Ns − 1)
√

(Y + λ)/β0

]

higher

than the standard production of soft gluons in the vacuum [4]. From (1) and (8) one obtains the medium-

modified MLLA anomalous dimensionγmed = 1
Ng

dNg

dY
=

√
Nsγ0 − σ1γ

2
0 , which is nothing but the

MLLA rate of multi-particle production with respect to theevolution-time variable Y in the dense

medium. In Fig. 1, we display the medium-modified average multiplicity (8) with predictions in the

vacuum (Ns = 1) in the range10 ≤ Q(GeV) ≤ 200; we setQ0 = Λ
QCD

= 0.23 GeV in the lim-

iting spectrum approximation [7], and takeK = 0.2 from [7]. The valuesNs = 1.6 andNs = 1.8

in the medium may be realistic for RHIC and LHC phenomenology[3, 5]; the jet energy subrange

10 ≤ Q(GeV) ≤ 50 displayed in Fig. 1 has been recently considered by the STAR collaboration, which

reported the first measurements of charged hadrons and particle-identified fragmentation functions from

p+p collisions [8] at
√

sNN = 200 GeV. Finally, the whole jet energy range in the same figure, inparticu-

lar for those values atQ ≥ 50 GeV, will be reached at the LHC, i.eQ = 100 GeV is an accessible value

in this experiment (see [3] and references therein).

We find, as expected, that the production of soft hadrons increases asNs > 1: the available phase

space for the production of harder collinear hadrons is restricted as the model itself states. The medium-

modified MLLA gluon to quark average multiplicity ratio,r = Ng/Nq = Nh
g /Nh

q , following from (8)

and (3) reads

r = r0

[

1 − r1
γ0√
Ns

+ O
(

γ2
0

Ns

)]

, r0 =
Nc

CF
, (9)

where we introduced the coefficientr1 = a1 − ã1 in the term suppressed byγ0/
√

Ns as Ns > 1.

Therefore, if compared with its behavior atNs = 1, we check, as expected from the model [3], thatr

becomes closer to its asymptotic DLA limitr0 = Nc/CF = 9/4, as depicted in Fig. 2. SettingNs = 1

in (9), one recovers the appropriate limits in the vacuum [4,9, 10]. Finally, the gluon jets are still more
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Figure 2: MLLA ratio r (9) as a function ofQ = EΘ in the vacuum (Ns = 1) and in the medium

(Ns = 1.6 andNs = 1.8) for nf = 3.

active than the quark jets in producing secondary particlesand the shape of the curves are roughly the

same.

The normalized second multiplicity correlatorA2 = 〈NA(NA − 1)〉/N2
A defines the width of the multi-

plicity distribution and is related to its dispersion by theformulaD2
A = (A2 − 1)N2

A + NA [9]. These

moments, which are less inclusive than the average multiplicity, prove to beK-independent and therefore

provide a pure test of multiparticle production. The medium-modified system of two-coupled evolution

equations for this observable follows from the MLLA master equation for the azimuthally averaged gen-

erating functional [4] and can be written in the convenient form

d

dY
(N (2)

g − N2
g ) =

∫ 1

0
dxγ2

0Φg
g

[

N (2)
g (Y + lnx)+

(

N (2)
g (Y + ln(1 − x)) − N (2)

g (Y )
)

+
(

Ng(Y + ln x) − Ng(Y )
)(

Ng(Y + ln(1 − x)) − Ng(Y )
)]

+nf

∫ 1

0
dxγ2

0Φq
g

[

2
(

N (2)
q (Y + ln x)−N2

q (Y + ln x)
)

−
(

N (2)
g (Y )−N2

g (Y )
)

+
(

2Nq(Y + ln x) − Ng(Y )
)(

2Nq(Y + ln(1 − x)) − Ng(Y )
)]

, (10)

d

dY
(N (2)

q − N2
q ) =

∫ 1

0
dxγ2

0Φg
q

[

N (2)
g (Y + lnx)+

(

N (2)
q (Y + ln(1 − x)) − N (2)

q (Y )
)

+2
(

Ng(Y + ln x) − Nq(Y )
)(

Nq(Y + ln(1 − x)) − Nq(Y )
)]

, (11)

which proves to be more suitable for obtaining analytical solutions in the following. We use a new

method to compute solutions at MLLA by replacingN (2)
A = A2N

2
A on both sides of the expanded

equations atx ∼ 1 − x ∼ 1. The notations in (10,11) follow the same logic as those in (5,6). Applying

the analysis that led to the system (5,6), we obtain from (10,11)

d2

dY 2

(

N (2)
g − N2

g

)

= γ2
0

(

Ns − a1
d

dY

)

N (2)
g + (a1 − b1)γ

2
0

d

dY
N2

g , (12)

d2

dY 2

(

N (2)
q − N2

q

)

=
CF

Nc

γ2
0

(

Ns − ã1
d

dY

)

N (2)
g , (13)

where

b1 =
1

4Nc

[

11

3
Nc − 4

TR

Nc

(

1 − 2
CF

Nc

)2
]

.
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Figure 3: MLLA second multiplicity correlator inside a gluon jet (15) as a function ofQ = EΘ in the

vacuum (Ns = 1) and in the medium (Ns = 1.6 andNs = 1.8 for nf = 3.

The constantNs only affects the leading double logarithmic term of the equations. The terms propor-

tional toa1, (a1 − b1) andã1 are hard vacuum corrections, whichpartially account for energy conserva-

tion, indeedγ2
0

dN
dY

≈
√

Nsγ
3
0 and the relative correction to DLA isO(

√

αs/Ns).

SettingN
(2)
g = G2N

2
g in (12) and making use of (8), the system can be solved iteratively by taking terms

up toO(αs) into consideration. The analytical solution reads,

G2 − 1 =

1 −
(

2

3
a1 + 2b1

)

γ0√
Ns

+ O
(

γ2
0

Ns

)

3 − (4a1 − β0)
γ0√
Ns

+ O
(

γ2
0

Ns

) , (14)

while its expansion in the form1 + γ0/
√

Ns leads to

G2 − 1 ≈ 1

3
− c1

γ0√
Ns

+ O
(

γ2
0

Ns

)

, (15)

where the linear combination of color factors can be writtenin the form

c1 =
1

4Nc

(

55

9
− 4

TR

Nc

+
112

9

TR

Nc

CF

Nc

− 32

3

TR

Nc

C2
F

N2
c

)

. (16)

We use (15) and (9) and substituteN
(2)
q = Q2N

2
q into (13) such that the solution reads

Q2 − 1 ≈ Nc

CF

(

1

3
− c̃1

γ0√
Ns

)

+ O
(

γ2
0

Ns

)

, (17)

where we obtain the combination of color factors

c̃1 =
1

4Nc

(

55

9
+

4

9

TR

Nc

CF

Nc

− 8

3

TR

Nc

C2
F

N2
c

)

. (18)

SettingNs = 1 in (15) and (17) we get a perfect agreement with the vacuum results [9]. In Fig. 3 and

Fig. 4, we compare our results for the medium-modified secondmultiplicity correlators (15) and (17)

with predictions in the vacuum (Ns = 1) [9] in the limiting spectrum approximation inside the typical

range10 ≤ Q(GeV) ≤ 200 for RHIC and LHC phenomenology. Similarly to the MLLA ratior(Ns),

Eq. (9), the hard correctionsO(γ0) are suppressed by a factor1/
√

Ns. As expected from the model,
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Figure 4: MLLA second multiplicity correlator inside a quark jet (17).

we check that these results approach their DLA limits whenNs increases; moreover, the multiplicity

fluctuations of individual events must be larger for quark jets as compared to gluon jets just like in the

vacuum [9]. Another interesting feature of these observables concerns the shape of the curves. They

are roughly identical and prove not to depend on the medium parameterNs. Moreover, there exists

evidence for a flattening of the slopes as the hardness of the jet Q = EΘ increases forNs ≥ 1 (vacuum

and medium). This kind of scaling behavior is known as the Koba-Nielsen-Olsen (KNO) scaling [11]:

it was discovered by Polyakov in quantum field theory [12] andexperimentally confirmed bye+e−

measurements [13] for the second and higher order multiplicity correlators.

In this paper we have dealt with the medium-modified average multiplicity and the medium-modified

second multiplicity correlator in quark and gluon jets at RHIC and LHC energy scales. The starting point

of our calculations is based on the Borghini-Wiedemann work[3], which models parton energy loss in

a nuclear medium. The average multiplicity is found to be enhanced by the factor
√

Ns acting on the

exponential leading contribution (8); this leads in particular to the rescaling of the anomalous dimension

γmed (γ → γmed ≈
√

Nsγ0) or equivalently, to the enhancement of the in medium coupling constant.

Since hard corrections are suppressed by the extra factor1/
√

Ns, it is straightforward to check thatr, G2

andQ2 approach the asymptotic DLA limitsr0 = Nc/CF , G2 = 4/3 andQ2 = 1 + Nc/3CF [4] when

Ns increases. The previously mentioned KNO-scaling experienced byG2 andQ2 proves no special

sensibility to the model and should normally hold like in thevacuum.

Finally, since these results are model-dependent, they maystill be improved in the future, specially after

theNs-dependence of the non-singular parts of the splitting functions (4) has been exactly computed.

Perspective: Many experimental characterizations of the medium-modified intrajet structure in heavy-

ion collisions at RHIC and at the LHC require a soft momentum cut-off pcut
T , with Q > pcut

T to remove the

effects of the high multiplicity background. In [3], the soft background was subtracted by integrating the

single inclusive differential distribution dN
d ln pT

(“hump-backed plateau”) over the rangeQ ≥ pT ≥ pcut
T ,

with pcut
T > ΛQCD. Accordingly, the equivalent computation should be performed for the second mul-

tiplicity correlator by integrating the double differential inclusive distribution (two-particle correlation)
d2N

d ln p1,T d ln p2,T
overpi,T , with the lower bounds of integrationpcut

i,T > ΛQCD (i = 1, 2). Imposing such

a cut-off in our calculations will affect the normalizationrather than the behavior and the shape of these

observables as a function ofNs and the jet energy scale of the processQ [14].
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