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Medium-modified average multiplicity and multiplicity fluctuations in jets

Redamy Pérez-Ramos1

1II. Institut für Theoretische Physik, Universität Hamburg

Luruper Chaussee 149, D-22761 Hamburg, Germany.

The energy evolution of medium-modified average multiplicities and multiplicity fluctuations in
quark and gluon jets produced in heavy-ion collisions is discussed at next-to-leading order (NLO) in
perturbative QCD. We use modified splitting functions, accounting for induced soft gluon radiation
from a hard parton, which propagates through quark gluon plasma. The leading contribution of
the standard production of soft hadrons is found to be enhanced by the factor

√

Ns while NLO
corrections are suppressed by 1/

√

Ns, where the parameter Ns > 1 accounts for the induced-soft
gluons in the hot medium. Our results for such global observables are cross-checked and compared
with their limits in the vacuum.

Recent experiments at the Relativistic Heavy Ion
Collider (RHIC) have established a phenomenon of
strong high-transverse momentum hadron suppression
[1], which supports the picture that hard partons going
through dense matter suffer a significant energy loss prior
to hadronization in the vacuum (for recent review see [2]).

Predictions concerning multi-particle production in
such reactions can be carried out by using the QCD
interpretation of the medium-induced modification of
the one-particle single inclusive distribution inside high
energy jets [3], the so-called “distorted hump-backed
plateau”, which was considered by Borghini and Wiede-
mann in [4]. The Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) splitting functions [3] of the QCD evo-
lution equations were distorted so that the role of soft
emissions was enhanced by introducing the medium fac-
tor Ns in the infra-red singular terms.

In this letter we are concerned with multi-particle pro-
duction in quark and gluon jets, A = q, g, produced
in nucleus-nucleus collisions at very high energy. We
make predictions at NLO for the medium-modified aver-
age multiplicity NA, for the ratio r = NG/NQ and finally
for the second multiplicity correlators 〈NA(NA − 1)〉/N2

A

which defines the width of the multiplicity distribution.

The starting point of our analysis is the NLO or
Modified-Leading-Logarithmic-Approximation (MLLA)
master evolution equation for the generating functional
[3] which determine the jet properties at all energies to-
gether with the initial conditions at threshold at small
x, where x is the fraction of the outgoing jet energy
carried away by a single gluon. Their solutions with
medium-modified splitting functions can be resummed
in powers of

√

αs/Ns and the leading contribution can
be represented as an exponential of the medium-modified
anomalous dimension which takes into account the Ns-
dependence:

NA ≃ exp

{

∫ Y

γmed (αs(Y )) dY

}

, (1)

where γmed(αs) can be expressed as a power series of

√

αs/Ns in the symbolic form:

γmed (αs) ≃
√

Ns ×
√

αs

(

1 +

√

αs

Ns

+ O
(

αs

Ns

))

.

Within this logic, the leading double logarithmic approx-
imation (DLA, O(

√
Nsαs)), which resums both soft and

collinear gluons, and NLO (MLLA, O(αs)), which re-
sums hard collinear partons and accounts for the running
of the coupling constant αs, are complete. The choice
dY = dΘ/Θ, where Θ ≪ 1 is the angle between outgo-
ing couples of partons in independent partonic emissions,
follows from Angular Ordering (AO) in intra-jet cascades
[3]. In order to obtain the hadronic spectra, we advocate
for the Local Parton Hadron Duality (LPHD) hypothe-
sis [5]: global and differential partonic observables can
be normalized to the corresponding hadronic observables
via a certain constant K that can be fitted to the data,
i.e. Nh

g,q = K × Ng,q.

The evolution of a jet of energy E and half-opening an-
gle Θ involves the DLA anomalous dimension γ0 related
to the coupling constant αs through γ2

0 = 2Ncαs/π, with
αs = 2π/4Ncβ0(Y + λ), where Y = ln(Q/Q0) (Q = EΘ
is the hardness or maximum transverse momentum of
the jet) and λ = ln(Q0/Λ

QCD
) is a parameter associated

with hadronization (Q0 is the collinear cut-off parame-
ter, kT > Q0, and Λ

QCD
is the intrinsic QCD scale). At

MLLA, as a consequence of angular ordering in parton
cascading, the average multiplicity inside a gluon and a
quark jet, Ng,q, obey the system of two-coupled evolution
equations [6] (the subscript Y denotes d/dY )

NgY
=

∫ 1

0

dx γ2
0

[

Φg
g (Ng(x) + Ng(1 − x) − Ng)

+nfΦq
g (Nq(x) + Nq(1 − x) − Ng)

]

, (2)

NqY
=

∫ 1

0

dx γ2
0

[

Φg
q (Ng(x) + Nq(1 − x) − Ng)

]

, (3)

which follow from the MLLA master evolution equation
for the generating functional; nf is the number of light
quark flavors, Ng,q ≡ Ng,q(Y ), Ng,q(x) ≡ Ng,q(Y + lnx),
Ng,q(1 − x) ≡ Ng,q(Y + ln(1 − x)), ΦB

A denotes the



2

medium-modified DGLAP splitting functions:

Φg
g(x) =

Ns

x
− (1 − x)[2 − x(1 − x)], (4)

Φq
g(x) =

1

4Nc

[x2 + (1 − x)2], (5)

Φg
q(x) =

CF

Nc

(

Ns

x
− 1 +

x

2

)

, (6)

which accounts for parton energy loss in the medium by
enhancing the singular terms like Φ ≈ Ns/x as x ≪ 1 as
proposed in the Borghini-Wiedemann model [4].

For Y ≫ lnx ∼ ln(1−x), Ng,q(x) (Ng,q(1−x)) can be
replaced by Ng,q in the hard partonic splitting region x ∼
1 − x ∼ 1 (non-singular or regular parts of the splitting
functions), while the dependence at small x ≪ 1 is kept
in the singular term Φ(x) ≈ Ns/x as done in the vacuum.
Furthermore, the integration over x can be replaced by

the integration over Y (x) = ln
(

xEΘ
Q0

)

. Thus, one is left

with the approximate system of two-coupled equations,

d2

dY 2
Ng(Y ) = γ2

0

(

Ns − a1
d

dY

)

Ng(Y ), (7)

d2

dY 2
Nq(Y ) =

CF

Nc

γ2
0

(

Ns − ã1
d

dY

)

Ng(Y ), (8)

with the initial conditions at threshold NA(0) = 1 and
N

′

A(0) = 0 and the hard constants:

a1=
1

4Nc

[

11

3
Nc +

4

3
TR

(

1 − 2
CF

Nc

)]

, a1 = 3/4,

where we have introduced TR = nf/2. The quantum
corrections ∝ a1, ã1 in (7,8) arise from the integration
over the regular part of the splitting functions, they are
O(

√

αs/Ns) suppressed and partially account for energy
conservation as happens in the vacuum.

These equations can be solved by applying the inverse
Mellin transform to the self-contained gluonic equation
(7), which leads to

Ng(Y ) ≃
∫

C

dω

2πi
ω

a1
β0
−2 exp

[

ω(Y + λ) +
Ns

β0ω

]

, (9)

where the contour C lies to the right of all singularities
of Ng(ω) in the complex plane. Since we are concerned
with the asymptotic solution of the equation as Y ≫ 1
(EΘ ≫ Q0), that is the high-energy limit, the inverse
Mellin transform (9) can be estimated by the steepest
descent method. Indeed, the large parameter is Y and
the function in the exponent presents a saddle point at
ω0 =

√

Ns/β0(Y + λ), such that the asymptotic solution
reads

Nh
g (Y ) ≃ K × (Y + λ)

−

σ1
β0 exp

√

4Ns

β0
(Y + λ), (10)

where σ1 = a1

2 − β0

4 with β0 = 1
4Nc

(

11
3 Nc − 4

3TR

)

. The
constant σ1 is Ns-independent because it resums vacuum
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FIG. 1: MLLA (10) medium-modified average multiplicity as
a function of Q = EΘ in the vacuum (Ns = 1) and in the
medium (Ns = 1.6 and Ns = 1.8) for nf = 3.

corrections. Therefore, the production of soft gluons in a

dense medium becomes exp
[

2(
√

Ns − 1)
√

(Y + λ)/β0

]

higher than the standard production of soft gluons in
the vacuum [3]. From (1) and (10) one obtains the
medium-modified MLLA anomalous dimension γmed =
1

Ng

dNg

dY
=

√
Nsγ0−σ1γ

2
0 , which is nothing but the MLLA

rate of multi-particle production with respect to the
evolution-time variable Y in the dense medium. Fix-
ing γmed = const, we are able to give the rough de-
pendence of the coupling constant as a function of Ns,
that is αs(Ns) ≃ 1/Ns. This behavior follows the trends
first observed in [7, 8] with fixed-coupling numerical so-
lution. In Fig. 1, we display the medium-modified av-
erage multiplicity (10) with predictions in the vacuum
(Ns = 1) in the range 10 ≤ Q(GeV) ≤ 500; we set
Q0 = Λ

QCD
= 0.23 GeV in the limiting spectrum ap-

proximation [6], and take K = 0.2 from [6]. The values
Ns = 1.6 and Ns = 1.8 in the medium may be realistic
for RHIC and LHC phenomenology [4]. We find, as ex-
pected, that the production of soft hadrons increases as
Ns > 1, which implies that the available phase space for
the production of harder collinear hadrons is restricted.

The medium-modified MLLA gluon to quark average
multiplicity ratio, r = Ng/Nq = Nh

g /Nh
q , following from

(10) and (3) reads

r = r0

[

1 − r1
γ0√
Ns

+ O
(

γ2
0

Ns

)]

, r0 =
Nc

CF

, (11)

where we introduced the coefficient r1 = a1 − ã1 in the
term suppressed by γ0/

√
Ns as Ns > 1. Therefore, r

approaches its asymptotic DLA limit r0 = Nc/CF = 9/4
when the coherent radiation of soft gluons is enhanced
by the medium, as depicted in Fig. 2. Moreover, r0 is not
affected by Ns and is seen to be universal. Setting Ns = 1
in (11), one recovers the appropriate limits in the vacuum
[3, 9, 10]. This observable is interesting because it is
K-independent, and it is therefore expected to provide
a pure test of multi-particle dynamics [5]. Finally, the
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FIG. 2: MLLA ratio r (11) as a function of Q = EΘ in the
vacuum (Ns = 1) and in the medium (Ns = 1.6 and Ns = 1.8)
for nf = 3.

gluon jets are still more active than the quark jets in
producing secondary particles and the shape of the curves
are roughly the same.

The second multiplicity correlator in quark and gluon
jets was first considered in [9] at MLLA in the vacuum. It

is defined in the form N
(2)
A = 〈NA(NA−1)〉 in gluon (A =

g) and quark (A = q) jets. The normalized second multi-
plicity correlator defines the width of the multiplicity dis-
tribution and is related to its dispersion D2

A = 〈NA(NA−
1)〉 − N2

A by the formula D2
A = (A2 − 1)N2

A + NA. The
second multiplicity correlators normalized to their own
squared average multiplicity are G2 = 〈Ng(Ng − 1)〉/N2

g

and Q2 = 〈Nq(Nq − 1)〉/N2
q inside a gluon and a quark

jet respectively. These moments, which are less inclusive
than the average multiplicity, prove to be K-independent.
The medium-modified system of two-coupled evolution
equations for this observable follows from the MLLA
master equation for the azimuthally averaged generating
functional [3] and can be written in the convenient form

(N (2)
g − N2

g )Y =

∫ 1

0

dxγ2
0Φg

g

[

N (2)
g (x)+

(

N (2)
g (1 − x) (12)

− N (2)
g

)

+
(

Ng(x) − Ng

)(

Ng(1 − x) − Ng

)]

+nf

∫ 1

0

dxγ2
0Φq

g

[

2
(

N (2)
q (x)−N2

q (x)
)

−
(

N (2)
g −N2

g

)

+
(

2Nq(x) − Ng

)(

2Nq(1 − x) − Ng

)]

,

(N (2)
q − N2

q )Y =

∫ 1

0

dxγ2
0Φg

q

[

N (2)
g (x)+

(

N (2)
q (1 − x) (13)

−N (2)
q

)

+ 2
(

Ng(x) − Nq

)(

Nq(1 − x) − Nq

)]

,

which proves to be more suitable for obtaining analytical
solutions in the following. We use a new method to com-

pute solutions at MLLA by replacing N
(2)
A = A2N

2
A on

both sides of the expanded equations at x ∼ 1 − x ∼ 1.
The notations in (12,13) follow the same logic as those
in (7,8).

Applying the analysis that led to the system (7,8), we
obtain from (12,13)

d2

dY 2

(

N (2)
g − N2

g

)

= γ2
0

(

Ns − a1
d

dY

)

N (2)
g (14)

+ (a1 − b1)γ
2
0

d

dY
N2

g ,

d2

dY 2

(

N (2)
q − N2

q

)

=
CF

Nc

γ2
0

(

Ns − ã1
d

dY

)

N (2)
g ,(15)

where

b1 =
1

4Nc

[

11

3
Nc − 4

TR

Nc

(

1 − 2
CF

Nc

)2
]

.

The constant Ns only affects the leading double loga-
rithmic term of the equations. The terms proportional
to a1, (a1 − b1) and ã1 are hard vacuum corrections,
which partially account for energy conservation, indeed
γ2
0

dN
dY

≈
√

Nsγ
3
0 and the relative correction to DLA is

O(
√

αs/Ns).

Setting N
(2)
g = G2N

2
g in (14) and making use of (10),

the system can be solved iteratively by taking terms up to
O(αs) into consideration. The exact analytical solution
reads,

G2 − 1 =

1 −
(

2

3
a1 + 2b1

)

γ0√
Ns

+ O
(

γ2
0

Ns

)

3 − (4a1 − β0)
γ0√
Ns

+ O
(

γ2
0

Ns

) , (16)

while its expansion in the form 1 + γ0/
√

Ns leads to

G2 − 1 ≈ 1

3
− c1

γ0√
Ns

+ O
(

γ2
0

Ns

)

, (17)

where the linear combination of color factors can be writ-
ten in the form

c1 =
1

4Nc

(

55

9
− 4

TR

Nc

+
112

9

TR

Nc

CF

Nc

− 32

3

TR

Nc

C2
F

N2
c

)

.

(18)

We use (17) and (11) and substitute N
(2)
q = Q2N

2
q into

(15) such that the solution reads

Q2 − 1 ≈ Nc

CF

(

1

3
− c̃1

γ0√
Ns

)

+ O
(

γ2
0

Ns

)

, (19)

where we obtain the combination of color factors

c̃1 =
1

4Nc

(

55

9
+

4

9

TR

Nc

CF

Nc

− 8

3

TR

Nc

C2
F

N2
c

)

. (20)

Setting Ns = 1 in (17) and (19) we get a perfect agree-
ment with the vacuum results [9]. Fixing γ0, it is straight-
forward to obtain the rough behavior of A2 as a function
of Ns: A2 = const − 1/

√
Ns, that is increasing with Ns

as Ns > 1. For A = Q, const = 1 + Nc/3CF and for
A = G, const = 4/3. In Fig. 3 and Fig. 4, we compare
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FIG. 3: MLLA second multiplicity correlator inside a gluon
jet (17) as a function of Q = EΘ in the vacuum (Ns = 1) and
in the medium (Ns = 1.6 and Ns = 1.8 for nf = 3.
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FIG. 4: MLLA second multiplicity correlator inside a quark
jet (19).

our results for the medium-modified second multiplicity
correlators (17) and (19) with the predictions in the vac-
uum (Ns = 1) in the limiting spectrum approximation.
Similarly to the MLLA ratio r(Ns), Eq. (11), the hard
corrections O(γ0) are suppressed by a factor 1/

√
Ns. As

before, these results provide evidence for the softening
of jets in the nuclear medium; moreover, the multiplic-
ity fluctuations of individual events must be larger for
quark jets as compared to gluon jets just like in the vac-
uum [9]. Another interesting feature of these observables
concerns the shape of the curves. They are roughly iden-
tical and prove not to depend on the medium parameter
Ns. Moreover, there exists evidence for a flattening of
the slopes as the hardness of the jet Q = EΘ increases
for Ns ≥ 1 (vacuum and medium). This kind of scal-
ing behavior is known as the Koba-Nielsen-Olsen (KNO)
scaling [11]: it was discovered by Polyakov in quantum
field theory [12] and experimentally confirmed by e+e−

measurements [13] for the second and higher order mul-
tiplicity correlators. Therefore, the KNO-scaling should

hold in heavy-ion collisions.

In this Letter we have dealt with the medium-modified
average multiplicity and the medium-modified second
multiplicity correlator in quark and gluon jets. The start-
ing point of our calculations is based on the Borghini-
Wiedemann model [4], which models parton energy loss
in a dense nuclear medium. The average multiplicity is
found, because of multiple rescattering of the hard par-
ton in the medium, to be enhanced by the factor

√
Ns

on the exponential leading contribution (10). The former
leads, in particular, to the rescaling of αs (αs → αs/Ns)
and to the medium-modified anomalous dimension γmed

(γ → γmed ≈
√

Nsγ0). Furthermore, the energy increase
of the medium-modified average multiplicity at precise
values of Ns can serve as a thermometer on the nuclear
medium of deconfined partons. In general, hard correc-
tions are suppressed by the extra factor 1/

√
Ns, which

leads to the restriction on the production of hard par-
tons in quark and gluon jets. Thus, r, G2 and Q2 ap-
proach the asymptotic DLA r0 = Nc/CF , G2 = 4/3 and
Q2 = 1+Nc/3CF [3]; consequently, these vacuum values
do not take Ns-dependence and prove to be universal.
The previously mentioned KNO-scaling experienced by
G2 and Q2 also proves its universality.
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