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Intersection number of paths lying on a Digital
Surface and a new Jordan Theorem

Sébastien FOUREY and Rémy MALGOUYRES

GREYC, ISMRA, 6, bd Maréchal Juin 14000 Caen
{Fourey,Malgouyres}@greyc.ismra.fr

Abstract. The purpose of this paper is to define the notion of “real”
intersection between paths drawn on the 3d digital boundary of a con-
nected object. We consider two kinds of paths for different adjacencies,
and define the algebraic number of oriented intersections between these
two paths. We show that this intersection number is invariant under any
homotopic transformation we apply on the two paths. Already, this in-
tersection number allows us to prove a Jordan curve theorem for some
surfels curves which lie on a digital surface, and appears as a good tool
for proving theorems in digital topology about surfaces.
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Introduction

Digital surfaces of three dimensional objects have proved to be a fruitful model

for visualisation and analysis of the objects they represent ([2]), especially in the

biomedical field. Efficient algorithms for extracting surfaces from volumes, and

computing shape characteristics exist ([4]). Sometimes, the surface itself needs

to be segmented since some anatomic points are defined on it. Then we obtain

some subset X of the set of the surfels of the surface. In [5], several tools of

image analysis are defined in this nonplanar framework to analyse the topology

of the subset X.

In particular, in [5], two complementary adjacency relations between surfels

on a digital surface are introduced, the e−adjacency and the v−adjacency, and a

notion of topology preservation is proposed. Given Y ⊂ X two subsets of a digital

surface, a relationship is established, between the property of X to be reducible

to Y by sequential deletion of simple surfels, and the fundamental groups ([3])

of Y and X. However, the conditions obtained in [5] seem redundant, and the

authors conjecture that a stronger theorem exists. Such powerful results are

now difficult to prove because of the lack of tools for proving theorems about

homotopy of closed paths.



On the other hand, topological properties of curves, well known in the 2D

planar discrete case, have not yet been studied for curves on digital surfaces.

However, the nonplanar framework imposes us to take into account the notion

of homotopy properties of the considered curves. Again, the need for the devel-

opment of a tool for proving theorems about homotopy of curves or closed paths

appears.

The purpose of this paper is to propose such a tool. Given two paths c and π

on a digital surface, we define a nontrivial integer invariant Iπ,c, called the inter-

section number of π and c, an e−path and a v−path, which represents intuitively

the algebraic number of transverse intersections between c and π, summing alge-

braically the intersections with a sign depending on their orientations. We prove

that the number Iπ,c is invariant when c or π ranges within a homotopy class of

paths. In other words, the number Iπ,c, which can be computed with the data

of c and π, is in fact a function of the homotopy classes of c and π.

This invariant can for instance be used as follows: given a closed path π, we

can prove that π is not homotopic to a trivial path by exhibiting another path c

such that Iπ,c ̸= 0. We illustrate this principle by proving a Jordan property for

those of the simple closed curves which are homotopic, as closed paths, to a trivial

path. The intersection number appears as a good tool for proving theorems in

digital topology, and we expect to use it in the future to prove more results, in

particular concerning topology preservation within surfaces.

1 Basic notions and definitions

To define the notion of a digital surface, we must recall few notions of digital

topology. First, we consider objects as subsets of the 3 dimensional space Z3.

Elements of Z3 are called voxels (short for “volume elements”). Voxels which

do not belong to an object O ⊂ Z3 constitute the complement of the object

and is denoted by O. Any voxel can be seen as a unit cube centered on a point

with integer coordinates : v = (i, j, k) ∈ Z3. Now, we can define some binary

symetric antireflexive relations between voxels. Two voxels are said 6−adjacent

if they share a face, 18−adjacent if they share an edge and 26−adjacent if they

share a vertex. For topological considerations, we must always use two different

adjacency relations for an object and its complement. We sum this up by the

use of a couple (n, n) with {n, n} = {6, 18}, the n−adjacency being used for the

object and the n−adjacency for its complement. By transitive closure of these

adjacency relations, we can define another one : connectivity between voxels. We

define an n-path π with a length k from a voxel a to a voxel b in O ⊂ Z3 as a

sequence of voxels (vi)i=0...k such that ∀0 ≤ i < k, vi is n-adjacent or equal to



vi+1, v0 = a and vk = b. Connectivity now can be defined; two voxels a and b

are called n-connected in an object O if there exists an n-path π from a to b in

O. This is an equivalence relation on voxels of an object O, and the n−connected

components of the object O are equivalence classes of points according to this

relation. Using this equivalence relation on the complement of an object we can

define a background component of O as a connected component of O.

1.1 Digital surface

In this paper, we are interested by surfaces constituted by the boundary between

a 6−connected or 18−connected subset O of Z3 and V , one of its background

components. As in [7] we first define the border between O and V by:

δ(O, V ) = {(a, b) | a is 6−adjacent to b, a ∈ O, b ∈ V }
The set Σ = δ(O, V ) is called a digital surface and has the Jordan property

(according to the definition given in [7]).

Each couple (a, b) of Σ is called a surfel (short for surface element) and

can be seen as the common face shared by two 6-adjacent voxels, the first one

belonging to the object, the second one to the background. Note that such a

face is oriented according to the outward normal and this definition of a surfel is

more restrictive than the classic one. In fact, we call a voxel face the unit square

shared by any two 6-adjacent voxels, but a surfel is the oriented common face

of two 6-adjacent voxels, where the first on is a voxel of O and the second one a

voxel of V .

In the sequel of this paper, Σ = δ(O, V ) is a digital surface.

1.2 Surfels Neighborhood

A surfel in a digital surface shares a given edge with at most three other ones.

Depending on the adjacency considered for the object (6 or 18), we can define

an adjacency relation between surfels in such a way that a surfel has exactly four

neighbors, one per edge (whereas at most 3 other surfels can share a given edge).

The definition of this classical regular graph on Σ can be found for instance in

[6]. This adjacency is called e−adjacency (short for “edge adjacency”). As in [5]

we define a loop as an e−connected component of the set of the surfels which

share a given vertex (see Figure 1). One can see that a vertex is not sufficient

to uniquely define a loop since a vertex can define two distinct loops. In fact, a

loop is well defined given a vertex and a surfel incident to this vertex.

We say that two surfels are v−adjacent (short for “vertex adjacent”) if they

belong to a common loop. We denote byNn(x) for n ∈ {e, v} the n-neighborhood



of the surfel x, i.e. the set composed of the surfels of Σ which are n-adjacent to

x.

In the case when O is considered as 18−connected, we avoid some special

configurations by the assumption that any loop of the surface is a topological

disk. A formal way to express this assumption is to say that two v−adjacent

surfels which are not e−adjacent cannot both belong to two distinct loops. An

equivalent formulation can be stated as follows: we assume that if the object O

the surface of which we consider is studied with 18−connectivity, and if there

exists in O two 18−adjacent voxels which are not 6−adjacent (see Figure 2)

then, at least one of the two following properties is satisfied:

– The two voxels have an 18−neighbor in O in common.

– The voxels have two 26−neighbors in O in common which are themselves

26−adjacent.

Fig. 1. Example of a loop.
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Fig. 2. A pathological case for which a
loop is not a topological disk.

This restriction is necessary and sufficient to ensure that a loop is a topological

disk. However, given a surfel x ∈ Σ, we will also need to define a topology on

the neighborhood Nv(x) under which it is a topological disk too (see [5]). For

this purpose, we define the ex−adjacency relation:

Definition 1 Let x be a surfel of a digital surface Σ. We say that two surfels y

and y′ of Nv(x)∪{x} are ex−adjacent if they are e−adjacent and both contained

in a loop which contain x.

This relation allows us to deal with the ex−connected component of Nv(x) ∩X

where X is a set of surfels.

1.3 Surfels paths

Let n ∈ {e, v}.



Definition 2 An n-path c with a length l in a digital surface Σ is a sequence

(sk)0≤k≤l of l+1 surfels for which sk is n-adjacent or equal to sk+1 for 0 ≤ k < l.

A closed n-path is a path such that sl = s0.

Notation 1 For a sequence s = (si)0≤i≤n of surfels, we denote s∗ = {si| 0 ≤
i ≤ n}.

Definition 3 (Concatenation of paths) If a = (a0, . . . , an) and b = (b0, . . . , bn)

are two n−paths such that an is n−adjacent or equal to b0 then we denote a.b =

(a0, . . . , an, bo, . . . , bm), which is called the concatenation of the two paths a and

b.

1.4 Homotopy of paths, Fundamental Group

The fundamental group in digital topology, as defined by Kong in [3], has shown

to be a very useful tool for studying topology of digital sets. Here, we define an

analogue to the fundamental group for digital surfaces. First, we must define a re-

lation of elementary deformation between paths, the elementary H-deformation

relation.

Definition 4 (elementary H−deformation and homotopy of paths) Let X ⊂ Σ.

Let c = (xi)i=0,...,q and c′ = (x′
i)i=0,...,q′ be two v−paths in X. The path c is

said to be an elementary H-deformation of c′ in X if c = π1.α.π2, c
′ = π1.α

′.π2.

Where α and α′ have the same extremities and are both contained in a common

loop of the surface Σ (note that the path π1 or π2 can be empty).

We define the n-homotopy relation between paths as the transitive closure of the

elementary H-deformation: two n-paths c and c′ are called n-homotopic (which

we denote by c ≃n c′) if there exists a sequence of H-deformations which allows

us to obtain one from the other.

Remark 1 If a path c is not closed, then any path c′ which is n−homotopic to

c must have the same extremities as c.

Now, the set of equivalence classes of closed n−paths from a surfel b (called

the base point) to b in Σ, given an operation on classes induced by concatenation

of paths, has a group structure. It is called the fundamental group of Σ with base

point b and denoted by Πn(b,Σ). This (generally non-abelian) group structure is

very useful for studying the topology of objects in the digital spaces Z2 and Z3 or

surfaces. It is used for example for the characterization of topology preservation

([1] and [5]).

This first and simple definition of elementary deformation of paths will be

too “large” in our context and proofs in the sequel will need to consider a more



restrictive transformation for v−paths with simpler conditions, which leads to

the same notion of homotopy.

Definition 5 Let X ⊂ Σ, c = (xi)i=0,...,q and c′ = (x′
i)i=0,...,q′ be two v−paths

in X. Then, c is said to be an elementary L-deformation of c′ in X if c =

π1.(s1, s2, s3).π2 and c′ = π1.(s1, s2).π2. Where the three surfels s1, s2 and s3
belong to a common loop of Σ. We define the L-deformation as the symmetric

and transitive closure of the elementary L−deformation.

In other words, the elementary L−relation links two v-paths which are almost

the same except that one is obtained by deletion in the other of a surfel which

belongs to the same loop as its predecessor and successor. Now, we can state the

following property :

Proposition 1 Two v−paths c and c′ are v−homotopic in a surface X ⊂ Σ if

and only if one is an L−deformation of each other in X.

2 The intersection number : Definition

In the following, paths all lie on a digital surface Σ. If a path is closed, the

subscripts of surfels must be read modulo l where l is the length of the path.

Notation 2 (Vertices and oriented edges) Since a surfel has four vertices, we

can order these vertices as in [6] by distinguishing one vertex for each type

of surfel (we distinguish 6 types of surfels according to the outward normal

vector) and impose a turning order for vertices around the outward normal to

the surfel. Each vertex of a given surfel is associated with a number in {0, 1, 2, 3}.
With this parameterization of vertices we can define oriented edges as couples of

consecutive vertices according to the cyclic order. So, for each surfel, we have the

four following oriented edges : (0, 1), (1, 2), (2, 3) and (3, 0). If {a, b} ⊂ {0, 1, 2, 3},
we denote as an interval [a, b] the set of vertices met when looking after vertices

from a to b in the cyclic order defined before. So, we can write c ∈ [a, b] if

the vertex c is met when looking for vertices from a to b. For an e−path π =

(yk)k=0,...,p and for k ∈ {0, . . . , p}, we define frontπ(k) (resp. backπ(k)) as the

oriented edge (a, b) with a, b ∈ {0, 1, 2, 3} of the surfel yk shared as an edge by

yk and yk+1 (resp. yk and yk−1). Remark that backπ(0) and frontπ(p) are not

defined if π is not closed.

Definition 6 Let π = (yk)k=0,...,p be an n−path. We say that π has a local back

and forth at the surfel yk if yk−1 = yk+1.



Remark 2 Suppose that π has no local back and forth. Then, if (a, b) =

backπ(k) and (c, d) = frontπ(k) then a ̸= c and b ̸= d. Indeed, since the edges

are oriented, a = c implies that b = d; this would mean that the front and back

edges of yk are equal, so that we would have yk−1 = yk+1.

We want to define locally, at each point of an e−path the right side and

the left side on the surface, taking into account the orientation of the surface

(Definition 8 below).

Definition 7 Let π = (yk)k=0,...,p be an e−path. For k ∈ {1, . . . , p − 1} (k ∈
{0, . . . , p} if π is closed), we define the sets Lπ(k) and Rπ(k) both included in

{0, 1, 2, 3}. Let (a, b) = backπ(k) and (c, d) = frontπ(k). If yk−1 ̸= yk+1 then we

define Lπ(k) = [d, a] and Rπ(k) = [b, c] (see Figure 3). If yk−1 = yk+1 we define

Lπ(k) = Rπ(k) = ∅. Note that Lπ(k) and Rπ(k) are also defined for k = 0 or

k = p in the case when π is a closed e−path.

π
yk

π

π

L (k)

R (k)

Fig. 3. A surfel yk of π,
and the two sets Lπ(k)
and Rπ(k).

yk
π

π
Right (k)

Left (k)

π

Fig. 4. A surfel yk of π,
and the two sets Leftπ(k)
and Rightπ(k).

k

y
k+1

y
y
k-1

Fig. 5. An example for
which Rightπ(k) = ∅.

Notation 3 For a surfel x and a given vertex number w ∈ {0, 1, 2, 3} we denote

by Lw(x) the unique loop associated to the vertex w of x which contains the

surfel x.

Definition 8 Let π = (yk)k=0,...,p be an e−path. For 0 < k < p (0 ≤ k ≤ p if π

is closed) we define the set of surfels Leftπ(k) and Rightπ(k) by:

Leftπ(k) = [
∪

w∈Lπ(k)

Lw(yk)] \ {yk−1, yk, yk+1} and

Rightπ(k) = [
∪

w∈Rπ(k)

Lw(yk)] \ {yk−1, yk, yk+1}.

Note that one of these two sets can be empty if {yk−1, yk, yk+1} constitute a

loop with a length 3 (i.e. yk−1 is e−adjacent to yk+1). Such a case is depicted by

Figure 5. In the case when yk−1 = yk+1, both sets Leftπ(k) and Rightπ(k) will

be empty since Lπ(k) and Rπ(k) have been defined as empty in this case. See

Figure 4 for an example of such sets.



Remark 3 Due to our assumption that loops are topological disks, we have:

Leftπ(k) ∩ Rightπ(k) = ∅.
If yk−1 is not e−adjacent to yk+1 then Nv(yk) \ {yk−1, yk+1} has exactly two

eyk
−connected components (see Definition 1): Rightπ(k) and Leftπ(k).

In the sequel of this paper we have set some restrictions on the paths studied.

In this goal, we define a property P.

Notation 4 Let c = (xi)i=0,...,q be a v−path and π = (yk)k=0,...,p be an e−path

in Σ. We say that the property P(π, c) is satisfied if when c is not closed then

c0, cq /∈ π∗ and when π is not closed then y0, yp /∈ c∗.

Definition 9 Given a v-path c = (xi)i=0,...,q and an e-path π = (yk)k=0,...,p such

that P(π, c) holds, we introduce the contribution to the intersection number of a

couple (k, i) with k ∈ {1, . . . , p−1} ({0, . . . , p} if π is closed) and i ∈ {1, . . . , q−1}
({0, . . . , q} if c is closed) by Iπ,c(k, i) = I−

π,c(k, i) + I+
π,c(k, i) where:

I−
π,c(k, i) =

1
2
if xi = yk, xi−1 ∈ Rightπ(k). I+

π,c(k, i) = − 1
2
if xi = yk, xi+1 ∈ Rightπ(k).

I−
π,c(k, i) = − 1

2
if xi = yk, xi−1 ∈ Leftπ(k). I+

π,c(k, i) =
1
2
if xi = yk, xi+1 ∈ Leftπ(k).

I−
π,c(k, i) = 0 in all other cases. I+

π,c(k, i) = 0 in all other cases.

Note that I−
π,c(k, i) = 0 (resp. I+

π,c(k, i) = 0) if xi ̸= yk or yk−1 = yk+1 or

xi−1 ∈ {yk−1, yk, yk+1} (resp. xi+1 ∈ {yk−1, yk, yk+1}). If yk−1 = yk+1, we have

I−
π,c(k, i) = I+

π,c(k, i) = 0 since Leftπ(k) = Rightπ(k) = ∅.
In other words, I−

π,c(k, i) depends on the position of xi−1 relative to the e-path

π at the surfel yk. And I+
π,c(k, i) depends on the position of xi+1.

Definition 10 Let c = (xi)i=0,...,q be a v−path and let π = (yk)k=0,...,p be an

e-path satisfying the property P(π, c). The intersection number of the v−path c

and the e−path π, denoted by Iπ,c is defined by:

Iπ,c =
p−1∑
k=0

q−1∑
i=0

Iπ,c(k, i) =
p−1∑
k=0

∑
i|xi=yk

Iπ,c(k, i) =
q−1∑
i=0

∑
k|xi=yk

Iπ,c(k, i).

Figure 6 and Figure 7 show two examples of intersection numbers.

Notation 5 We denote:

Iπ
π,c(i) =

p−1∑
k=0

Iπ,c(k, i) and Ic
π,c(k) =

q−1∑
i=0

Iπ,c(k, i)

3 Independence up to homotopy

The purpose of this section is to state and sketch the proof of the two following

theorems:



Fig. 6. A v−path c (light grey) and
an e−path π (in dark grey) such that
Iπ,c = 0.

Fig. 7. A v−path c and an e−path π
such that Iπ,c = ±1.

Theorem 1 Let π = (yk)k=0,...,p be an e−path, c = (xi)i=0,...,q and c′ =

(x′
i)i=0,...,q′ be two v−paths on a digital surface Σ such that P(π, c) and P(π, c′)

hold. If c′ is v−homotopic to c in Σ (in Σ \ {y0, yp} if π is not closed), then

Iπ,c = Iπ,c′ .

Theorem 2 Let c = (xi)i=0,...,q be a v−path of a digital surface Σ , π =

(yk)k=0,...,p and π′ = (y′k)k=0,...,p′ be two e−paths such that P(π, c) and P(π′, c)

hold. If π′ and π are e−homotopic in Σ (in Σ \ {x0, xq} if c is not closed), then

Iπ,c = Iπ′,c.

We first prove Theorem 1, and Theorem 2 will appear as a corollary of Theorem 1.

Since v−homotopy and L−deformation are equivalent relations, then we can

prove the equality when considering the latter relation between the paths c

and c′. Furthermore, to prove these properties for any L−deformation, it is

sufficient to prove it for an elementary L−deformation. Now, in order to prove

this equality, we consider the contribution of intersection intervals between the

two paths π and c on a first hand, π and c′ on the other hand. But these intervals

can have very bad properties when considering the general case, especially when

π has local back an forths (see Definition 6). So, to avoid this special cases, we

first suppose that the path π has no local back and forth and prove Theorem 1

in this case. In a second step, we prove that the intersection number between

a v−path c and an e−path π is left unchanged when one removes all back and

forths in π.

First we state some technical lemmas.



3.1 Important lemmas

Let π = (yk)k=0,...,p be an e−path with no local back and forth on Σ, then we

have the three following lemmas:

Lemma 2 Let k ∈ [1, p − 1] if π is not closed and k ∈ [0, p] otherwise. If

x1 and x2 are two surfels of a given loop containing the surfel yk such that

{x1, x2} ∩ {yk−1, yk, yk+1} = ∅, then we have either {x1, x2} ⊂ Leftπ(k) or

{x1, x2} ⊂ Rightπ(k).

Lemma 3 Let k ∈ [1, p − 2] if π is not closed and k ∈ [0, p − 1] otherwise.

If x is a surfel such that x /∈ {yk−1, yk, yk+1, yk+2} and x, yk and yk+1 are

included in a common loop, then: x ∈ Rightπ(k) (resp. Leftπ(k)) if and only if

x ∈ Rightπ(k + 1) (resp. Leftπ(k + 1)).

Lemma 4 Let k ∈ [1, p − 3] if π is not closed and k ∈ [0, p − 2] otherwise. If

k is such that yk, yk+1 and yk+2 are included in a common loop, yk−1 ̸= yk+2

and yk+3 ̸= yk, then yk+2 ∈ Rightπ(k) (resp. Leftπ(k)) if and only if yk ∈
Rightπ(k + 2) (resp. Leftπ(k + 2)).

3.2 Independence when π has no local back and forth

In order to prove the Theorem 1, we use the following proposition:

Proposition 5 Let c = (xi)i=0,...,q and c′ = (x′
i)i=0,...,q′ be two v−paths on a

digital surface Σ, let π = (yk)k=0,...,p be an e−path with no local back and forth

such that P(π, c) and P(π, c′) hold. If c′ is an elementary L−deformation of c

in Σ (in Σ \ {y0, yp} if π is not closed) then Iπ,c′ = Iπ,c.

In the sequel of this subsection, c and c′ are v−paths satisfying the hypothesis

of Proposition 5. From the very definition of the elementary L−deformation, c′

is obtained by the removal in c of the surfel xl (0 < l < q if c is not closed,

and 0 ≤ l ≤ q otherwise). This means that c′ = (x′
0, . . . , x

′
q−1) where x′

i = xi if

0 ≤ i < l and x′
i = xi+1 if l ≤ i < q.

We have to prove that Iπ,c = Iπ,c′ with Iπ,c =
q−1∑
i=0

Iπ
π,c(i) and Iπ,c′ =

q−2∑
i=0

Iπ
π,c′(i).

For i = 0, . . . , l − 2 if c is closed and for i = 1, . . . , l − 2 otherwise, we have

xi−1 = x′
i−1, xi = x′

i and xi+1 = x′
i+1, so that Iπ

π,c′(i) = Iπ
π,c(i). If c is not closed

then Iπ
π,c′(0) = Iπ

π,c(0) = 0 since x0 = x′
0 /∈ π∗. Similarly, for i = l+ 1, . . . , q − 2

we have x′
i−1 = xi, x

′
i = xi+1 and x′

i+1 = xi+2, so that Iπ
π,c′(i) = Iπ

π,c(i+ 1).

Finally we have to evaluate the difference :

Iπ,c − Iπ,c′ =
[
Iπ
π,c(l − 1) + Iπ

π,c(l) + Iπ
π,c(l + 1)

]
−
[
Iπ
π,c′(l − 1) + Iπ

π,c′(l)
]
(1)



In order to prove that this difference is zero, we sum the contributions of inter-

section intervals between π and the three surfels {xl−1, xl, xl+1} of c on a first

hand, and between π and the two surfels {x′
l−1, x

′
l} of c′ on the other hand.

Definition 11 Let b = (z0, . . . , zr) be an e-path, and d = (t0, . . . , ts) be a

v−path. Let X be a set of integers in [0, s] (X will be either {l − 1, l, l + 1}
or {l − 1, l}). We define the set of intersection intervals between the path b and

d in X by:

Λb,d(X) = {[k1, k2]| ∀k ∈ [k1, k2], ∃h ∈ X, zk = th and ∀i ∈ X, ti /∈ {zk1−1, zk2+1}}
When applying this definition, we shall use b = π and d = c or d = c′.

In other words, an interval [k1, k2] is a maximal sequence of subscripts of

surfels of π which belong to a certain subset of c∗. The idea of the following is

that the deletion of a surfel in c will either suppress, reduce or disconnect such

intersection intervals but the sum of the contributions of the resulting intervals

will be equal to the contribution of the initial interval. More precisely, we shall

prove:

Proposition 6 Denoting Λ = Λπ,c({l − 1, l, l + 1}) and Λ′ = Λπ,c′({l − 1, l}),
then ∀λ ∈ Λ:∑

k∈λ

Iπ,c(k, l − 1) + Iπ,c(k, l) + Iπ,c(k, l + 1) =
∑

λ′∈Λ′
λ′⊂λ

∑
k∈λ′

Iπ,c′(k, l − 1) + Iπ,c′(k, l)

Sketch of proof: To prove this proposition, we first note that the intersection

intervals in Λ must have a length l ≤ 3 or the three surfels xl−1, xl and xl+1

must be pairwise e−adjacent as in the only two possible configurations depicted

in Figure 8. The equality of Proposition 6 is shown by using Lemma 2 for intervals

whith a length 1, Lemma 3 for intervals with a length 2 and Lemma 4 for intervals

with a length 3. For intervals with a length greater then 3, the proof uses these

three lemmas and considerations about periodicity of π in this special case. 2

Fig. 8. Two cases when 3 surfels are pairwise e−adjacent.

Sketch of proof of Proposition 5:

Since {k ∈ [0, p] | yk ∈ {xl−1, xl, xl+1}} =
∪
λ∈Λ

λ and the λ ∈ Λ are pairwise



disjoint, and similarly for Λ′, due to equation (1) and Proposition 6, we have:
Iπ,c − Iπ,c′ =∑
λ∈Λ

∑
k∈λ

Iπ,c(k, l−1)+Iπ,c(k, l)+Iπ,c(k, l+1)−
∑
λ∈Λ

∑
λ′∈Λ′
λ′⊂λ

∑
k∈λ′

Iπ,c′(k, l−1)+Iπ,c′(k, l)

= 0. 2

3.3 Independence under Shrunk operation

Given an e−path π = (yk)k=0,...,p, we define the operations shrunk(π) and

Shrunk(π):

Definition 12 Let π = (yk)k=0,...,p be an e−path such that that there exists l,

0 < l < p (0 ≤ l ≤ p if π is closed) such that yl−1 = yl+1 and for all l′ such

that yl′−1 = yl′+1, then l < l′. We define shrunk(π) as the path obtained by the

deletion in π of the two surfels yl and yl+1. Remark that shrunk(π) is still an

e−path since yl−1(= yl+1) is e−adjacent to yl+2.

Shrunk(π) is the path obtained after sequential applications of shrunk on π

until the resulting path has no local back and forth.

The following lemma means that removing all back and forths in the e−path

leaves the intersection number unchanged.

Lemma 7 Let π = (yk)k=0,...,p be an e−path on Σ and c = (xi)i=0,...,q a v−path

on Σ such that P(π, c) holds then Iπ,c = IShrunk(π),c.

In order to prove this lemma, it is sufficient to prove that Iπ,c = Ishrunk(π),c.
To to this, we first observe that if π has its first local back and forth at yl
(l ∈ [0, p] if π is closed, l ∈ [1, p − 1] otherwise) then Iπ,c − IShrunk(π),c =

Ic
π,c(l − 1) + Ic

π,c(l) + Ic
π,c(l + 1) − Ic

shrunk(π),c(l − 1). Then, we can prove for

i = 0, . . . , q−1 that Iπ,c(l−1, i)+Iπ,c(l, i)+Iπ,c(l+1, i)−Ishrunk(π),c(l−1, i) = 0.

Several cases must be examined depending on the position of surfels xi, xi−1

and xi+1 relative to the surfels yl−2, yl−1 = yl+1, yl and yl+2. Each case is

straightforward.

3.4 Proofs of the main results

Proof of Theorem 1: By induction, it is sufficient to prove Theorem 1 in

the case when c′ is an elementary L−deformation of c. If π′ = Shrunk(π), then

lemma 7 shows that Iπ,c = Iπ′,c. Since π
′ has no local back and forth, and since

c′ is an elementary L−deformation of c′ in Σ (in Σ \ {y0, yp} if π is not closed),

then from Proposition 5 we have : Iπ′,c = Iπ′,c′ . Now, Lemma 7 implies that

IShrunk(π),c′ = Iπ,c′ . Finally, Iπ,c = Iπ,c′ . 2



Sketch of proof of Theorem 2: It is sufficient to prove Theorem 2 in the case

when π′ is an elementary H−deformation of π. Hence we assume π = π1.α.π2

and π′ = π1.α
′.π2 with α and α′ being two e−paths with same extremities and

being contained in a loop L.
Then, we prove that c is v−homotopic to a v−path c′ which contains no

surfel of the loop L so that Iπ,c′ = Iπ′,c′ . From Theorem 1, we have Iπ,c =

Iπ,c′ = Iπ′,c′ = Iπ′,c. 2

4 A new Jordan theorem

Definition 13 A simple closed n−curve of surfels in Σ is an n−connected set

C of surfels such that for any x ∈ C, the surfel x has exactly two n−neighbors

in C.

Definition 14 For a simple closed n−curve C there exists a sequence c =

(xi)i=0,...,q with q = Card(C) such that for i, j ∈ [0, q] we have xi, xj ∈ C,

and such that xi is n−adjacent to xj if and only if i = j + 1[q] or i = j − 1[q].

Such a closed path c is called a parametrization of C.

We shall use the following theorem:

Theorem 3 (see [7]) A digital surface is an e−connected set of surfel.

Using the notion of the intersection number, we prove:

Theorem 4 Let (n, n) ∈ {(e, v), (v, e)}. If π = (yk)k=0,...,p is a parametrization

of a simple closed n−curve of surfels on a digital surface Σ, not included in a

loop, such that π ≃n π0 = (y, y) (π is n−homotopic to a path reduced to a single

surfel y), then Σ \ π∗ has exactly two n−connected components.

In the sequel of this section, π = (yk)k=0,...,p satisfies the hypothesis of The-

orem 4. Moreover, to improve the readability, we assume that n = e. The idea

of the proof is the same in the case n = v. We need the two following lemmas :

Lemma 8 For any surfel yk of π there exists two surfels α and β such that

α ∈ Rightπ(k) and β ∈ Leftπ(k).

Lemma 8 is a consequence of the fact that π is not contained in a loop.

Lemma 9 There exists two surfels α and β in Σ \ π∗ which are v−adjacent to

a surfel yk of π and which are not v−connected in Σ \ π∗.



Proof: Let α and β be the two surfels defined in Lemma 8. Now, we suppose

by contraposition the existence of a v-path c = (xi)i=0,...,q in Σ \π∗ between the

surfels α and β, v−neighbors of the surfel yk in π and which does not intersect

π∗. We denote c′ = (x0 = α, . . . , xq = β, yk, α) which is a closed v−path. Then,

from the definition of α and β, Iπ,c′ = ±1. Now, since π is e−homotopic to a

single surfel and from Theorem 2 we should have Iπ,c′ = 0. This contradicts the

existence of π. 2

Lemma 10 Let yk and yk+1 be two consecutive surfels of π. For any surfel

s /∈ π∗, which is v−adjacent to yk, there exists a surfel t /∈ π∗, v−adjacent to

yk+1, and a v−path from s to t in Σ \ π∗.

This lemma can be proved by local considerations.

Proof of theorem 4: From lemma 9 there exists two surfels α and β which are

v−adjacent to a surfel yk and not v−connected in Σ \ π∗. In particular, Σ \ π∗

has at least two v−connected components.

Furthermore, for any surfel x ∈ Σ \ π∗, since Σ is e−connected, then there

exists a v−path c′ in Σ \ π∗ from x to a surfel which is v−adjacent to a surfel

of π∗.

Using inductively lemma 10, we see that we can prolong the v−path c′ to a

v−path in Σ \ π∗ from x to α or from x to β. This implies that Σ \ π∗ has at

most two v−connected components. 2

Conclusion

We have defined the intersection number between a v−path and an e−path lying

on a digital surface, and we have proved that this number of “real” intersections

between two surfels paths is invariant under homotopic deformations of the two

paths. The intersection number is a new “topological invariant” in the context

of digital surfaces. Thus, the intersection number has been used to easily prove

a new Jordan theorem for surfels curves. It appears to be a useful tool for digital

topology. In further work, we shall use the intersection number to study topology

preservation in digital surfaces, following the work of [5].
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