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Abstract

When Debye length is comparable or larger than the distance be-
tween two identical particles the overlapping between particles double-
layers can play an important role in their interactions. This paper
presents a theoretical analysis of the interaction between two iden-
tical particles with overlapped double-layers. We particularly focus
on the effect of a Stern electrostatic condition from linearization of
the adsorption isotherm near the isoelectric (neutrality) point in or-
der to capture how polyvalent ion condensation affects and reverses
the surface charge. The stationary potential problem is solved within
the framework of an asymptotic lubrication approach for a mean-field
Poisson–Boltzmann model. Both spherical and cylindrical particles
are analyzed. The results are finally discussed in the context Debye-
Hückel (D-H) limit and beyond it.

1 Introduction

Recent AFM studies have shown that, in the presence of a polyvalent counter-
ion, two similarly charged or identical surfaces can develop a short-range
attractive force at a distance comparable to the Debye screening length λ
[Zohar et al.(2006), Besterman et al.(2004)]. This observation is most likely
related to earlier reports on attraction between identical colloids in an elec-
trolyte, although the role of poly-valency is not as well established for colloids
[Han and Grier(1999)]. It is also related to the condensation of likecharged
molecules like DNAs [Gelbart et al.(2000)]. Such attraction has raised some
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2 PROBLEM UNDER STUDY 2

debate during the past ten years since for two identical objects is necessarily
repulsive according to the classical Poisson-Boltzmann (PB) mean-field the-
ory [Neu(1999)]. For this reason, theories for like-charge attraction phenom-
ena have sought mechanisms beyond the classical mean-field description to in-
clude spatial correlation of charge fluctuations [Lubatsky and Safran(2008),
Netz and Orland(2000), Lau and Pincus(2002), Lau(2008)]. In a previous
contribution [Plouraboué and Chang(2008)] we realized that including a Stern
layer for the mean-field boundary condition is compatible with previous
field-theoretical analysis of the role of fluctuations on mean-field descrip-
tion [Lau and Pincus(2002), Lau(2008)]. In this framework we obtained an
implicit analytic solution for the mean-field potential and compute the at-
traction between two planar surfaces. In this contribution we derive an
asymptotic computation of the potential between two spherical or cylindrical
identical particles. As opposed to the situation where the particle distance
is large compared to the Debye length for which the DLVO approximation
holds, we focus here on the possible non-linear interaction between particles
double-layers.

2 Problem under study

2.1 Governing equation

We very briefly discuss here the stationary electro-kinetic problem that one
has to solve for the electric potential φ′ (Cf for example [Karniadakis et al.(2004)]
for more details). We consider an electrolyte solution composed of Z-charged
positive/negative ions. Boltzmann equilibrium associated with the concen-
tration/potential leads to the non-linear mean-field PB relation :

∇2φ′ = 2
ZFC∞

ǫ0ǫp
sinh

(

ZFφ′

RgT

)

(1)

Where F is the Faraday constant, ǫp the solution relative permittivity, ǫ0 the
dielectric permittivity of vacuum, Rg the perfect gas constant, T the tem-
perature and C∞ a reference concentration in the far-field region. These pa-
rameters are usually used to define the Debye length λ =

√

ǫ0ǫpRgT/F 2C∞.
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Figure 1: Slide view of the two indentical particles under study.

2.2 Particle shape and boundary conditions

Let us now discuss the surface shape h′(r′) of the particles sketched on figure
1. This figure represent a section of either a cylindrical or a spherical par-
ticle. In the first case, the problem under study is translationally invariant
along the direction perpendicular to the figure plane, aligned along the cylin-
der main axis. In the second case, the problem under study is rotationally
invariant along the z′ axis. In both case the particle shape in the section
follows a circle. From elementary trigonometry identities one gets

(a− (h′ − hm))
2
+ r′2 = a2, (2)

so that,
h′(r′) = hm + a−

√
a2 − r′2. (3)

This problem can be associated with different boundary conditions at the
particles surfaces. We will mainly focus in this study on the influence of a
Stern layer at the particles surfaces

∂nφ
′(±h′(r′)) = Kφ′(±h′(r′)) (4)

We consider an iso-electric point situation for which the reference poten-
tial is taken to be zero so that the right-hand side of (4) is a linear func-
tion of φ′. As already discussed in [Plouraboué and Chang(2008)], the con-
stant K scales as the inverse of the Debye length λ from previous analysis
[Lau and Pincus(2002), Lau(2008)].
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We will compare the obtained results for Stern-Layer with other boundary
conditions such as an applied surface field at each particles

−∂nφ
′(±h(r′)) = ∓E ′

p± (5)

Where E ′

p± stands for the Electric field prescribed either at the top p+ or
the bottom p− particle. From using Gauss’s theorem, one realizes that pre-
scribing the field is equivalent to prescribe a surface charge at the particle
surfaces. Another widely used boundary condition is to prescribe the elec-
trical potential at the particle surface :

φ′(±h(r′)) = φ′

p±. (6)

In the following we will compare these three boundary conditions in the D-H
approximation.

2.3 Asymptotic formulation

2.3.1 Dimensionless formulation

Let us first discuss some physics associated with the problem for choosing an
interesting dimensionless formulation. First, the distance between the parti-
cles involves one characteristic length which is the minimum distance hm. As
discussed in the introduction non-trivial effects for particles interactions arise
when this distance is of the same order or shorter than the Debye length λ.
Furthermore, difficulties in quantifying this interaction are associated with
the importance of non-linear effects in the double-layer. Numerical estima-
tion can be used but necessitates an accurate description of rapid potential
variations inside double layers which can be computationally challenging.
A possible way to get around this difficulty is to use the specific limit for
which those double-layer effects matters, i.e when the distance hm is suffi-
ciently small. From realizing that the Debye length λ generally lies between
nanometer to micron scale, it can be seen that many interesting situations
are associated with particle radius a larger than Debye length a≫ λ. In the
limit hm ≪ a and thus, an asymptotic ”lubrication” analysis of the prob-
lem can be sough for. More specifically, in this limit, most of the potential
variation holds along the transverse direction between two particles whose
typical length is hm rather that in the longitudinal direction, roughly parallel
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to the particles surfaces, for which the potential variations holds along a typ-
ical length-scale

√
ahm. This discussion suggests the following dimensionless

formulation of transverse coordinates z, h and longitudinal ones r:

z′ = hmz
h′ = hmh
r′ =

√
hmar

(7)

Those coordinates associated with rapid variation of the potential inside a
central region are “inner” coordinates and are used in section 2.3.2.

Another choice could have been taken from simply considering the po-
tential variations far from the confined region, for which the only relevant
length-scale is the particle radius. In this case, ’outer’ dimensionless coordi-
nates can be defined with upper-case notations

z′ = aZ
r′ = aR
h′ = aH

(8)

that will be subsequently used in section 2.3.3.

2.3.2 Asymptotic expansion : inner region

Introducing the small parameter ǫ = hm/a, one can then re-write the shape
equation (3)

h(r) =
1

ǫ
+ 1 − 1

ǫ
(1 − ǫr2)1/2 ≃ 1 +

r2

2
+ ǫ

r4

8
(9)

This behavior suggests the following asymptotic sequence for the shape :

h = h0 + ǫh1

h0(r) = 1 + r2

2

h1(r) = r4

8

(10)

The normal vector n to the particle surfaces can also be computed :

n ≃ −
(

0
1

)

+
√
ǫ
(

y
0

)

+ ǫ
(

0
1

)

y2

2
+ ... (11)

Using the usual dimensionless formulation for the potential φ = ZFφ′/RgT
the normal derivative of the dimensionless potential on the upper particle
reads :

∂nφ = ∇φ.n ≃ −∂zφ+ ǫ(∂yφy + ∂zφ
y2

2
) (12)
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A similar result with opposite sign for the first term holds for the lower
particle. Dimensionless PB problem (1) reads

(

∂2
z + ǫ∇2

//

)

φ = 2

(

hm

λ

)2

sinh φ (13)

Where ∇2
// is the Laplacian contribution orthogonal to the (e

z
, e

r
) section

which is different for cylindrical or spherical particles. We will not need to
specify it further since we are just going to compute the leading order con-
tribution to the following asymptotic sequence in the inner region suggested
by (10)

φ = φ0 + ǫφ1. (14)

Introducing this sequence in the governing equation (13) leads to the leading
order

∂2
zφ0 = βm sinhφ0, (15)

where βm = 2(hm/λ)2. From (12) the associated Boundary conditions, with
prescribed electric fields (5) reads at the leading order :

∂zφ0(±h0) = ±Ep± (16)

Where we have used dimensionless electric fields Ep± = ZFE ′

p±/RgThm. For
prescribed potentials (6), the leading order boundary conditions reads :

φ0(±h0) = φp± (17)

And finally the Stern layer boundary condition reads at leading order

∂zφ0(±h0) = ∓µβmφ0(±h0) (18)

Where we have introduced a parameter µ which stands for dimensionless pre-
factor between the potential and its gradient at the particle surface boundary
condition.

2.3.3 Outer region

Using dimensionless formulation, (8) PB problems (1) reads :

ǫ2∇2Φ = βm sinh Φ. (19)
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The inner problem suggests the following asymptotic sequence for the poten-
tial in the outer region :

Φ = Φ0 + ǫΦ1 (20)

Injecting this sequence in the outer governing equation (19) leads to the
following leading order problem :

sinh Φ0 = 0, (21)

whose solution is Φ0 = 0, so that the matching condition at leading order is
just limy→∞ φ0(0, y) = 0.

3 Results

Since the outer region solution is trivial we now focus on the inner region
solution which is going to provide the interesting potential variations for
particle interactions.

3.1 Debye-Hückel approximation

We examine here the linearized limit of small dimensionless potential φ≪ 1.
Let us first consider prescribed electrical fields at the particles surfaces. In
this case the solution of the linearized limit of (15) with boundary conditions
(16) reads

φ0 =
1

2

(

E+ cosh z

sinh h0
+
E− sinh z

cosh h0

)

(22)

where we have introduced notation E+ = Ep+ + Ep− and E− = Ep+ −
Ep−. The case of symmetrical particles corresponds to E− = 0, since the
corresponding fields at each particle are identical and of opposite sign. We
then recover in this case that ∂zφ0(r, z = 0) = 0. Let us now write-down the
solution associated with the boundary conditions (17)

φ0 =
1

2

(

φ+ cosh z

cosh h0
+
φ− sinh z

sinh h0

)

(23)

where we have introduced notation φ+ = φp+ + φp−, and φ− = φp+ − φp−.
One can also see that in this case symmetrical particles are associated with
φ− = 0 so that the resulting field will also fulfills ∂zφ0(r, z = 0) = 0. Finally
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let us now discuss the D-H limit solution associated with boundary conditions
(18) for which a family of non-symmetrical solutions can be found

φ0 ∼ sinh
z

h0
(24)

The amplitude coefficients of this eigenfunction cannot be specified since
boundary conditions (18) are linearly varying with the potential. Further-
more it can be shown that only specific values of h0 can match these boundary
conditions.

3.2 Non-linear PB problem

It is now interesting to realize that the leading order problem (15) associ-
ated with boundary conditions (16),(17) or (18) can be expressed in a single
variable ζ = z/h0(r) independently of any other explicit Dependance on
the longitudinal variable r. Hence, one can then map the leading order PB
problem between two identical particle onto the same problem between two
parallel planes. Hence, we recover here the solution previously studied in
[Plouraboué and Chang(2008)] for Stern layer boundary conditions. Let us
now recall here the main steps of the solution. A first integral of (15) using
the variable change ζ = z/h0(r) for φ0(ζ) is

1

2
(∂ζφ0)

2 = β(r) (coshφ0) + d (25)

where d depends on the value prescribed at the particle, and β(r) = 2(hmh0(r)/λ)2.
Introducing notation d′ = d/β, one finds that this constant depends upon
the applied boundary condition. For prescribed electric field (16) one finds

d′(r) =
d

β(r)
=

1

2
E2

p+ − coshφ0(1) =
1

2
E2

p− − coshφ0(−1), (26)

whilst, in the case of prescribed potentials (17)

d′(r) =
d

β(r)
=

1

2
[∂ζφ0(1)]2 − cosh φp+ =

1

2
[∂ζφ0(−1)]2 − coshφp−. (27)

Finally in the case of Stern layer boundary conditions (18) this constant is

d′(r) =
d

β(r)
=

1

2
[µφ0(1)]2 − coshφ0(1) =

1

2
[µφ0(−1)]2 − cosh φ0(−1) (28)
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Figure 2: Surface potential of an anti-symmetric solution φ(1) at ζ = 1
versus dimensionless parameter β. The dotted lines display an asymptotic
value which can be computed (Cf [Plouraboué and Chang(2008)] for more
details on this point).

Hence in each case the function d′(r) either depends on the potential solution
at the particle surface or on its gradient. In the case of Stern layer boundary
condition (18) the anti-symmetrical solution associated with parameter µ > 1
is always attractive [Plouraboué and Chang(2008)]. This is thus the solution
onto which we will focus on. A symmetrical solution also exists for parameter
µ < 1 but this case is not considered in this study. Let us now briefly
recall here the main steps for finding a implicit solution to the PB non-linear
problem. We use Boltzmann transformation

ψ0 = e−φ0/2 (29)

so that (25) reads

1

2
(∂ζφ0)

2 = 2eφ0(∂ζψ0)
2 =

1

2
(ψ2

0 +
1

ψ2
0

) + d′ (30)

so that the problem on new variable ψ0 becomes

∂ζψ0 = ±1

2

√

ψ4
0 + 2d′ψ2

0 + 1 = ±1

2

√

(ψ2 − α−)(ψ2 − α+), (31)
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with,

α± = −d′ ±
√

d′2 − 1, (32)

which solution can be found formally equal to

±
√

β(r)

2
ζ + c = −√

α−F (ψ0
√
α+, α−) , (33)

up to a constant c to be specified. Evaluating (33) at the upper and lower
particle boundary ζ = z/h0 = ±1 leads to the following implicit condition
for the potential value ψ0(±1)

√

β(r) = −√
α− [F (ψ0(1)

√
α+, α−) − F (ψ0(−1)

√
α+, α−)] , (34)

Now, collecting relation (29) and (34) with one of the boundary condition
associated with the d′(r) value (26), (28) gives a system of two transcendental
equations for φ0(±1) that can be solved numerically [Plouraboué and Chang(2008)]
for each β(r). Figure 2 shows the result of this numerical computation. It
is interesting to note that for value of β smaller than a critical value which
depends on µ β < βc(µ) the resulting surface potential is zero, and thus
the solution will be zero every-where-else in between the two particles (Cf

[Plouraboué and Chang(2008)] for the expression of β < βc(µ)). In these
regions, the local interaction will obviously be zero at leading order.

4 Computation of the force

4.1 Local pressure contribution

We now compute the force between the particle. From using Green’s theorem
it is possible to show that the particle/particle interaction can be computed
from evaluating the Maxwell stress tensor contraction with the normal surface
of any closed surface around one particle [Neu(1999)]. Since, at infinity, the
matching condition gives vanishing field perturbations, any closed far-field
surface around one of the two particles which intersects the mean-plane, has
no contribution to the force. Hence, the only contribution on the force is the
scalar product of the stress tensor on the normal to the z = 0 mean-plane.

Let us now compute the force from considering the asymptotic expansion
of the Maxwell stress tensor. For dimensionless formulation σ′ = σǫp(RT/ZF )2/λ2,
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this tensor reads

σ =
1

β(r)

(

−1
2
(∂ζφ)2 + ǫ

2
(∂rφ)2

√
ǫ∂rφ∂ζφ√

ǫ∂rφ∂ζφ −1
2
(∂ζφ)2 − ǫ

2
(∂rφ)2

)

(35)

So that, one can write :

σ =
1

β(r)

(

−1

2
(∂ζφ)2I +

√
ǫ∂rφ∂ζφ

(

0 1
1 0

)

+ ǫ(∂rφ)2

(

1 0
0 −1

)

+ ..

)

(36)

Using (11), one can now obtain that the contribution of the stress tensor to
the mean-plane is :

ez.σ.ez =
1

β(r)

(

−1

2
(∂zφ)2 − ǫ

2
(∂rφ)2 + ..

)

(37)

Now using (14) one finds

ez.σ.ez =
1

β(r)

(

−1

2
(∂zφ0)

2 − ǫ

(

1

2
(∂rφ0)

2 + ∂zφ0∂zφ1

)

+ ..

)

(38)

which is the contribution of the Maxwell stress. The dimensionless osmotic
contribution p0 associated with a far-field zero reference potential is

p0 = cosh φ− 1 = coshφ0 − 1 +O(ǫ) (39)

Finally, to the leading order, one can find the total local pressure at ζ = 0

p(r) =

(

− 1

2β(r)
[∂ζφ0(r, 0)]2 + coshφ0(r, 0) − 1

)

+O(ǫ) (40)

As previously indicated it is interesting to note that in the case of anti-
symmetrical solution for which φ0(r, 0) = 0 this pressure is always negative
and thus attractive. For any symmetrical solution for which on the contrary,
∂zφ0(r, 0) = 0 and φ0(r, 0) 6= 0, we observe that this pressure is positive, so
that the interaction is repulsive, because the osmotic contribution is always
positive. Finally it is interesting to note from (25) that this force is simply
related to the constant d′

p(r) = −d′(r) − 1 +O(ǫ) (41)

This show that solving for the potential at the particle surface φ0(r, ζ = ±1) is
enough to compute the total force from using (26) or (28) to deduce constant
d′ for a given value of β(r), that is to say a given value of r. Let us now
explicitly estimate this force for spherical or cylindrical particles.
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4.2 Total force

The total force formulation is the integral of the local force over the hori-
zontal plane z = 0. We define two distinct dimensionless force in the case of
spherical or cylindrical particles. For spherical particles we scale the force to
the square of the sphere radius Fs = aλǫp(RT/ZF )2/λ2F ′. For cylindrical
particles, we rather consider the product of radius a to the cylinder length L :
Fc =

√
aλLǫp(RT/ZF )2/λ2F ′. The integration nevertheless differs between

spherical or cylindrical particles. In the case of two spheres one finds :

Fs = 2π
hm

λ

∫

∞

0

p(r)rdr. (42)

In the following we will also use the equivalent formulation

Fs = 2π

∫

∞

hm

λ

p(h0)dh0. (43)

In the case of two cylinders, the total force per unit length is :

Fc = 2

√

hm

λ

∫

∞

0

p(r)dr (44)

Let us now first evaluate the forces in the D-H limit.

4.2.1 Force in the Debye-Hückel approximation

• In the case of prescribed fields the evaluation of (40) in the φ0 ≪ 1 limit,
using solution (22) leads to

p(r) =
1

8

(

λ

hm

)2 E2
+ cosh2 h0 − E2

−
sinh2(h0)

cosh2(h0) sinh2(h0)
, (45)

One can see that in the case of symmetrical boundary conditions E− = 0, this
pressure is positive leading to repulsion. In the fully non-symmetrical case,
then E+ = 0, and this pressure is negative leading, as expected to attraction
between the particles. For sphere one finds :

Fs =

(

λ

hm

)

π

4
(E2

+Is1 − E2
−
Is2) (46)
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where,
Is1 =

∫

∞

0
rdr

sinh2(1+r2/2)
= 2

e2+1
≃ 0.23840

Is2 =
∫

∞

0
rdr

cosh2(1+r2/2)
= 2

e2−1
≃ 0.31303

(47)

For cylinders one finds :

Fc =

(

λ

hm

)3/2
1

4
(E2

+Ic1 −E2
−
Ic2) (48)

where,
Ic1 =

∫

∞

0
dr

sinh2(1+r2/2)
≃ 0.5895922

Ic2 =
∫

∞

0
dr

cosh2(1+r2/2)
≃ 0.40108449

(49)

• Let us now consider the case with prescribed potentials. From linearization
of (40) in the φ0 ≪ 1 limit, the solution (24) leads to the following local
pressure

p =

(

λ

hm

)2
1

8

φ2
+sinh2(h0) − φ2

−
cosh2(h0)

cosh2(h0)sinh2(h0)
, (50)

As expected, this pressure is again always repulsive for symmetrical bound-
ary conditions φ− = 0, and might be attractive for fully anti-symmetric
conditions φ+ = 0. For two spheres one finds the total force

Fs =
λ

hm

π

4
(φ2

+Is2 − φ2
−
Is1), (51)

Whilst for two cylinders

Fc =

(

λ

hm

)3/2
1

4
(φ2

+Ic2 − φ2
−
Ic1). (52)

Hence, in the Debye-Hückel approximation, the force can only be attractive
for prescribed non-symmetrical fields. We do not discuss here the D-H limit
for the Stern layer boundary condition since the solution is only specified up
to a multiplicative constant in this regime, so that the absolute value of the
force is not define.

One needs to go to the non-linear PB problem to find a definite answer
to this question.



5 DISCUSSION 14

0.00 0.20 0.40 0.60
hm/λ

−250

−200

−150

−100

−50

0

F s

µ=2
µ=3
µ=4

(a)
0.00 0.20 0.40 0.60

hm/λ

−350

−300

−250

−200

−150

−100

−50

0

F c

µ=2
µ=3
µ=4

(b)
Figure 3: Dimensionless Force computed versus the minimum-gap to Debye
layer ratio for different value of the mixed boundary condition parameter µ.
(a) Between two spheres, (b) between two cylinders.

4.3 Force for Stern-layer boundary condition

In this case a numerical computation has been carried out from the solution
found for the potential field at the surface, which permits to deduce the d′(r)
from (28) and the local pressure from (41).

• The numerical integration is then performed in the spherical case from
formulation (43) with a simple trapezoidal rule. The result obtained is plot-
ted on figure 3a where one can observe a saturation of the Force when the
gap is smaller than the critical ratio βc for which the local pressure tends to
zero.

• A different behavior for the total force is found in the case of two
cylinders for which the formulation (44) associated with an integration along
variable r is chosen to obtain again a simple direct integration. The total
force display a different behavior with localized minimum at hm/λ ≃

√

βc/2
as represented on figure 3b.

5 Discussion

Let us discuss here the main results that have been obtained. We found
in the D-H limit that for any imposed electric field or potential at the par-
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ticle surface the only possible attractive regime exists for non-symmetrical
boundary conditions as expected from previous works [Neu(1999)]. On the
quantitative point of view for any imposed electric field or potential we found
in the D-H limit that the (attractive or repulsive) force display a divergent
behavior with the minimum distance hm which is λ/hm for a sphere or a
(λ/hm)3/2 for a cylinder.

This results differ with the one obtained for Stern layer boundary condi-
tions at the iso-electric point. For two spheres the force decreases up to a
critical ratio of hm/λ which is related to the parameter βc below which the
local pressure tends to zero. The total force then reaches a constant plateau
for very small hm/λ values. This behavior is different for two cylinders for
which a local minimum is first reached, followed by a markedly inflected di-
vergence at very small hm/λ. Both behavior are very different from those
obtained for prescribed electric field and potential.

In any case two important remarks have to be added to better grasp the
validity range of the presented results in the Stern layer case.

First, it is interesting to note that our computation is not valid for very
small value of hm/λ≪ 1. It is important to realize that the most substantial
part of potential variations is mostly concentrated in the thin region of width√
ahm whereas it is very small outside this region. Since there is no interac-

tion for distances smaller than βc , for there is no local pressure, a critical
in-plane distance rc is associated with the critical parameter βc such that
√

βc/2 = hm/λ(1 + r2
c/2) for any interaction to occur. If rc exceeds

√
ahm

our leading order estimate will not give an accurate answer to the resulting
very small interaction that will be associated to the problem. This gives a
lower bond for the ratio hm/λ which has to be larger than hm/λ > 2βcǫ for
our analysis to be valid.

For smaller value of the hm/λ one should then consider the influence of
O(ǫ) corrections to the force which might change the final picture.

6 Conclusion

We compute the electro-osmotic interaction between two particles when the
gap hm is smaller than Debye length λ. We have shown that in the confined
regime for which hm ≪ a and hm < λ the problem can be mapped onto a
one dimensional planar formulation in a reduced parameter z/h0(r) which
encapsulate any radial shape of the particles. We analyzed the influence of
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a Stern layer boundary condition at the iso-electric point on the interaction
and found distinct new and interesting behavior for the particle interaction.
Further extension of this work to non iso-electric point situations could be
considered in the future.
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