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Abstract

In this paper, we prove a new result of digital topology which state that the digital
fundamental group – a notion previously introduced by Kong in [Kon89] – is sufficient
to characterize topology preservation whithin digital surfaces. This proof involves a
new tool for proving theorems in this field : the Intersection Number which counts
the number of real intersections between two surfels loops lying on a digital surface.
The main property of the intersection number and the reason why it is useful is the
following : the intersection number between two paths does not change after any
continuous deformation applied to the paths.
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Introduction

In [Kon89], Kong introduced the digital fundamental group as a criterion for topology
preservation in the digital space Z3. The question being “When some set Y can be obtained
by applying an homotopic thinning algorithm to another set X ?”. Indeed, whereas a
simple necessary condition considering holes in objects of Z2 exists, the 3D case is not so
trivial.
Furthermore, in the 2D case, topology preservation has shown to be a very basic and
essential tool in pattern recognition and classification of objects represented in a planar
grid. Thus, the topology preservation in the 3D case is a very important question if
we expect to develop useful and efficient tools for 3D images analysis. Many authors
have worked on homotopic thinning algorithms from which a simple notion of homotopy
between digital sets can be derived (see [Kon89], [Ber94] or [Kon95]). Now a question
remains about existence of a usable algorithm to decide if a given 3D set can be obtained
by homotopic thinning of another one.
Today, a necessary condition P(X, Y ) can be given in terms of properties of the funda-
mental group morphism induced by inclusion of sets, and inclusion between cavities of
the objects.
Now, another kind of digital objects is heavily used for image visualization and analysis
: digital surfaces. Such objects are defined as the “visible” boundaries of a 3D object
represented as a set of unit cubes (or voxels). These surfaces are constituted by unit 2D
squares so called surfels. For example, such objects have been used in [ML98] to extract
some anatomical informations from Nuclear Magnetic Resonance (NMR) images.
In [ML98], authors have proved that a similar criterion to the condition P previously
mentioned, using the digital fundamental group and intersection between “holes”, is a
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necessary and sufficient condition for homotopy between parts of digital surfaces. Holes
here denote connected components of the complement of a part X of a digital surface Σ.
Since this paper, it was a conjecture that the condition about the “holes” was itself a
consequence of the condition relative to the fundamental groups except in a very particular
case. The purpose of this paper is to state and prove this result and then give a new
Theorem about homotopy between subsets of a digital surface (Section 6). This leads to
a very comprehensive new characterization which shows the ability of the fundamental
group to completely characterize homotopy within digital surfaces.
On the other hand, the lack of tools for studying homotopy classes of paths, which are
elements of the fundamental group, brings us to consider a new tool : the Intersection
Number. This number, which counts oriented intersections between two kinds of paths,
is invariant under any continuous deformation of the paths. Then, it can be used for
example to show that two paths are not homotopic. Similarly, it can also be used to show
that a path cannot be continuously deformed into a trivial path (i.e. a path reduced to
a single surfel). This property can be seen as a generalization of the notion introduced
in [RN97] where Rosenfeld and Nakamura study the properties of digital curves in 2D,
considering for example curves surrounding a 2D hole. In our case, we have studied curves
surrounding tunnels and this appears as an intermediate step between 2D and 3D cases.
Note that the possible numbers of real intersections between closed curves drawn on a
digital surface is related to the genus of the surface. Indeed, it is for example possible to
draw two curves wich intersect only one time on the surface of a solid thorus whereas this
is impossible on a sphere. The intersection number, which is defined here, allows such
considerations in the digital field.
The definition of the Intersection Number is given in subsection 2.1, the main properties
are stated in Section 3 and their proofs are given in 5. In the section 6 we use this new tool
and prove the above mentioned theorem on the characterization of homotopy between
sets using the fundamental group.

1 Definitions and preliminaries

1.1 Basic notions

The context of this paper is digital surfaces. In order to define what we call a digital
surface, we must recall few notions of digital topology. First, we consider objects as
subsets of the 3 dimensional space Z3. Elements of Z3 are called voxels (short for “volume
elements”). The set of voxels which do not belong to an object O ⊂ Z3 constitute the
complement of the object and is denoted by O. Any voxel can be seen as a unit cube
centered at a point with integer coordinates v = (i, j, k) ∈ Z3. Now, we can define some
binary symmetric antireflexive relations between voxels. Two voxels are said 6−adjacent
if they share a face, 18−adjacent if they share an edge and 26−adjacent if they share
a vertex. For topological considerations, we must always use two different adjacency
relations for an object and its complement. We sum this up by the use of a couple (n, n)
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with {n, n} = {6, 18}, the n−adjacency being used for the object and the n−adjacency for
its complement. By transitive closure of these adjacency relations, we can define another
one : connectivity between voxels. We define an n-path π with a length k from a voxel a
to a voxel b in O ⊂ Z3 as a sequence of voxels (vi)i=0,... ,k such that for 0 ≤ i < k, the voxel
vi is n-adjacent or equal to vi+1, with v0 = a and vk = b. Now we define connectivity :
two voxels a and b are called n-connected in an object O if there exists an n-path π from
a to b in O. This is an equivalence relation between voxels of O, and the n−connected
components of an object O are equivalence classes of voxels according to this relation.
Using this equivalence relation on the complement of an object we can define a background
component of O as an n−connected component of O.

1.2 Digital surfaces

In this paper, we are interested by surfaces constituted of the boundary between a
6−connected or 18−connected subset O of Z3, and V which is one of its background
components. As in [Udu94] we first define the border between O and V by:

δ(O, V ) = {(a, b) | a ∈ O, b ∈ V and a is 6−adjacent to b}
The set Σ = δ(O, V ) is called a digital surface and has the Jordan property (according
to the definition given in [Udu94]). Each couple (a, b) of Σ is called a surfel (short for
surface element) and can be seen as the common face shared by two 6-adjacent voxels,
the first one belonging to the object, the second one to its background. Note that such
a face is oriented according to the outward normal and this definition of a surfel is more
restrictive than the classical one. In fact, we call a voxel face the unit square shared by
any two 6-adjacent voxels, but a surfel is the oriented common face of two 6-adjacent
voxels, where the first one is a voxel of O and the second one is a voxel of V .
In the sequel of this paper, Σ = δ(O, V ) is a digital surface.

1.3 Surfels Neighborhood, surfel paths

A surfel in a digital surface shares a given edge with at most three other surfels. We can
define an adjacency relation between surfels, which depends on the adjacency considered
for the object (6 or 18), in such a way that a surfel has exactly four neighbors, one per
edge . The definition of this classical regular graph on Σ can be found for instance in
[RKW91], and is as follows :
Definition 1 If Σ = δ(O, V ) where O ⊂ Z3 is n−connected and V is one of its back-
ground components. Let (a, b) and (a′, b′) be two surfels of δ. We say that the two surfels
(a, b) and (a′, b′) are e−adjacent if they share an edge and :
• If (n, n) = (6, 18) then a and a′ are 6−connected by a sequence of at most 3 voxels in

O.
• If (n, n) = (18, 6) then b and b′ are 6−connected by a sequence of at most 3 voxels in

O.
A pair {x, y} of e−adjacent surfels of Σ is called an edgel.
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As in [ML98] we define a loop as an e−connected component of the set of the surfels
which share a given vertex (see Figure 1). One can see that a vertex is not sufficient to
uniquely define a loop since a vertex can define two distinct loops. In fact, a loop is well
defined given a vertex and a surfel incident to this vertex. We say that two surfels are
v−adjacent (short for “vertex adjacent”) if they belong to a common loop. We denote by
Nn(x) for n ∈ {e, v} the n−neighborhood of the surfel x, i.e. the set composed of the
surfels of Σ which are n−adjacent to x.
In the case when Σ = δ(O, V ) and O is 18−connected, we avoid some special configu-
rations by the assumption that any loop of the surface is a topological disk. A formal
way to express this assumption is to say that two v−adjacent surfels which are not
e−adjacent cannot both belong to two distinct loops. An equivalent formulation can be
stated as follows: we assume that if the object O the surface of which we consider is stud-
ied with 18−connectivity, and if there exists in O two 18−adjacent voxels which are not
6−adjacent (see Figure 2) then, at least one of the two following properties is satisfied:
• The two voxels have an 18−neighbor in O in common.
• The voxels have two 26−neighbors in O in common which are themselves 26−adjacent.

Fig. 1. Example of a loop.

y

y

k+1

k

Fig. 2. A pathological case for which a
loop is not a topological disk.

This restriction is necessary and sufficient to ensure that a loop is a topological disk. We
need a similar restriction on O when Σ = δ6+(O, V ).
In the sequel, we refer to the following remark :
Remark 1 Exactly one loop of Σ may contain two surfels which are v−adjacent but not
e−adjacent.
The purpose of this paper is to study the topological properties of subsets of the set of
the surfels of Σ. Let X ⊂ Σ, let a and b two surfels of X and n ∈ {e, v}. We define an
n−path c from a to b in X with a length k as a sequence (xi)i=0,... ,k of surfels of X with
x0 = a, xk = b and such that for i ∈ {0, . . . , k − 1}, the surfel xi is n−adjacent to xi+1.
The n−path c is called closed if xk is equal to x0, and then subscripts of surfels in c
must be understood modulo k. A path (xi)i=0,... ,k is said simple if xi ̸= xj when i ̸= j
(except for {i, j} = {0, k} if c is closed). For a surfel x, we will denote x ∈ c if x = xi

for some i ∈ {0, . . . , k}, we also denote by c∗ the set {x | x ∈ c}. Two surfels x and x′

are called n−connected in X if there exists an n−path from x to x′ in X. This is an
equivalence relation and the n−connected components of X are the equivalence classes of
this relation. If X ⊂ Σ, we denote by Cn(X) the set of n−connected components of X
and by Cx

n(X) the set of all n−connected components of X which are n−adjacent to a
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given surfel x. Note that Cn(X) is a set of subsets of Σ and not a set of surfels. If α and
β are two n−paths such that the last surfel of α is n−adjacent or equal to the first surfel
of β, we denote by α ∗ β the concatenation of the two paths α and β. Note that in the
case when the last surfel of α is equal to the first surfel of β it is not duplicated in the
resulting concatenation.
We also need to recall the notion of a digital simple closed curve.
Definition 2 A subset C of Σ is called a simple closed n−curve (for n ∈ {e, v}) if it is
n−connected and any surfel x of C is n−adjacent to exactly two other surfels of C. In
this case, one can find a simple closed n−path c in Σ such that c∗ = C which is called a
parameterization of the curve C. We also call c a parameterized simple closed n−curve.

1.4 Simple surfels, Homotopy

Let x ∈ Σ. As previously set, we assume that any loop in Σ is a topological disk. However,
the v−neighborhood of the surfel x is not always a topological disk. In such a case, we have
to define a topology on Nv(x) ∪ {x} under which it is a topological disk. Let us consider
two surfels y and y′ in Nv(x) ∪ {x}. We say that y and y′ are ex−adjacent [respectively
vx−adjacent ] if they are e−adjacent [respectively v−adjacent] and are contained in a
common loop which contains x. We denote by Ge(x, X) [respectively Gv(x, X)] the graph
whose vertices are the surfels of Nv(x) ∩ X and whose edges are pairs of ex−adjacent
[respectively vx−adjacent] surfels of Nv(x)∩ X. We denote by Cx

n(Gn(x, X)) the set of all
connected components of Gn(x, X) which contain a surfel n−adjacent to x.
Definition 3 We call x ∈ X an n−isolated surfel if Nn(x) ∩ X = ∅ and an n−interior
surfel if Nn(x) ∩ X = ∅.
Definition 4 (simple surfel [ML98]) A surfel x is called n−simple in X if and only if
the number Card(Cx

n(Gn(x, X))) of connected components of Gn(x, X) which are n−adja-
cent to x is equal to 1, and if x is not n−interior to X. Intuitively, a surfel is n−simple
in X if its deletion does not change the topology of X.
Remark 2 Similarly with the 2D case, if the surfel x is neither n−isolated nor
n−interior then we have Card(Cx

n[Gn(x, X)]) = Card(Cx
n[Gn(x, X)]).

Definition 5 (Homotopy) Let Y ⊂ X be two subsets of Sigma. The set Y is said to
be (lower) n−homotopic to X if and only if Y can be obtained from X by sequential
deletion of n−simple surfels.
This notion of homotopy enables to define topology-preserving thinning algorithms within
subsets of a digital surface.

1.5 The fundamental group of a digital surface

In this section, we define the digital fundamental group in the framework of digital sur-
faces, following the definition of Kong in [Kon89] and [Kon88].
Now, we need to introduce the n−homotopy relation between n−paths. Intuitively, a
path α is homotopic to a path β if α can be “continuously deformed” into β. Let us
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consider X ⊂ Σ. First, we introduce the notion of an elementary deformation. Two closed
n−paths π and π′ in X having the same extremities are the same up to an elementary
n−deformation (with fixed extremities) in X if they are of the form π = π1 ∗ γ ∗ π2 and
π′ = π1∗γ′∗π2, the n−paths γ and γ′ having the same extremities and being both included
in a common loop. Now, the two n−paths π and π′ are said to be n−homotopic (with
fixed extremities) in X if there exists a finite sequence of n−paths π = π0, . . . , πm = π′

such that for i = 0, . . . , m −1 the n−paths πi and πi+1 are the same up to an elementary
deformation (with fixed extremities). In this case, we denote π ≃ π′. A closed n−path
π = (y0, . . . , yp = y0) is said to be n−reducible in X if π ≃n (y0, y0) in X.
Let B ∈ X be a fixed surfel called the base surfel. We denote by An

B(X) the set of all
closed n−paths π = (x0, . . . , xp) which are included in X and such that x0 = xp = B. The
n−homotopy relation is an equivalence relation on An

B(X), and we denote by Πn
1 (X, B)

the set of the equivalence classes of this equivalence relation. If c ∈ An
B(X), we denote by

[c]Πn
1 (X,B) the class of c under this relation.

The concatenation of closed n−paths is compatible with the n−homotopy relation, hence
it defines an operation on Πn

1 (X, B), which to the class of α and the class of β associates
the class of α ∗ β. This operation provides Πn

1 (X, B) with a group structure. We call this
group the n−fundamental group of X. The n−fundamental group defined using a surfel
B′ as base surfel is isomorphic to the n−fundamental group defined using a surfel B as
base surfel if X is n−connected.
Now, we consider Y ⊂ X ⊂ Σ and B ∈ Y a base surfel. A closed n−path in Y is a
particular case of a closed n−path in X. Furthermore, if two closed n−paths of Y are
n−homotopic (with fixed extremities) in Y , they are n−homotopic (with fixed extremi-
ties) in X. These two properties enable us to define a canonical morphism i∗ : Πn

1 (Y ) −→
Πn

1 (X), which we call the morphism induced by the inclusion map i : Y −→ X. To the
class of a closed n−path α ∈ An

B(Y ) in Πn
1 (Y ) the morphism i∗ associates the class of the

same n−path in Πn
1 (X).

1.6 Euler characteristics

In the following, we will need to define precisely what we call a topological disk and a
topological sphere. For this purpose, we will use the classical notion of Euler characteristics
which has been defined for this framework in [ML98].
Definition 6 We associate a dimension to surfels, edgels and loops which is equal re-
spectively to 2, 1 and 0. We can identify a surfel x with the set {x}. We call a surfel a
2−cell, an edgel a 1−cell and a loop a 0−cell.
Definition 7 (Elementary Euler n−characteristics of a cell)
For d ∈ {0, 1, 2} and for c a d−cell, we define the elementary Euler characteristics of c
in X as

χd
n(X, c) = (−1)d.Card(Cn(x ∩ X)).

Note that the only case in which χd
n(X, c) can be different from 0, 1 and −1 is when c

is a loop and n = e. If EΣ and LΣ are respectively the sets of edgels and loops of Σ, we
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denote :
χ2

n(X) =
∑
s∈Σ

χ2
n(X, s), χ1

n(X) =
∑

ϵ∈EΣ

χ1
n(X, ϵ) and χ0

n(X) =
∑

l∈LΣ

χ0
n(X, l).

Definition 8 We define the Euler n−characteristics of X, and we denote by χn(X) the
following quantity:

χn(X) = χ0
n(X) + χ1

n(X) + χ2
n(X) = Card(X) + χ1

n(X) + χ2
n(X).

The following Theorem has been proved in [ML98] :
Theorem 1 If Y ⊂ X ⊂ Σ are n−connected, then the following properties are equivalent:
(1) Y is n−homotopic to X.
(2) χn(X) = χn(Y ) and each n−connected component of Y contains a surfel of X.

2 Intersection Number of paths

In this section, we introduce a new tool for proving theorems in the framework of digital
surfaces which has been introduced in [FM99]. The main idea of this tool is to count the
number of real intersections between a v−path and an e−path. Again, we have to use two
complementary adjacencies notably in order to avoid the classical topological paradox of
paths which could cross without meeting themselves. Then, the main property of this
number is that it is left unchanged when one apply an homotopic deformation to any of
the two paths. Thus, it will be useful to distinguish homotopy classes of paths.

2.1 Definition

In order to define oriented intersections, we first define an orientation for surfels and then
what we call the “left side” and the “right side” of an e−path.
Notation 1 (Vertices and oriented edges) Since a surfel has four vertices, we can
order these vertices as in [RKW91] by distinguishing one vertex for each type of surfel
(we distinguish 6 types of surfels according to their outward normal vector) and impose a
turning order for vertices around the outward normal to the surfel (the counterclockwise
order). Each vertex of a given surfel is associated with a number in {0, 1, 2, 3}. With this
parameterization of vertices we can define oriented edges as couples of consecutive vertices
according to the cyclic order. So, for each surfel, we have the four following oriented edges
: (0, 1), (1, 2), (2, 3) and (3, 0). For an e−path π = (yk)k=0,... ,p and for k ∈ {0, . . . , p}, we
define frontπ(k) when yk ̸= yk+1 (resp. backπ(k) when yk ̸= yk−1) as the oriented edge
(a, b) with a, b ∈ {0, 1, 2, 3} of the surfel yk shared as an edge by yk and yk+1 (resp. yk

and yk−1). Remark that backπ(0) and frontπ(p) are not defined if π is not closed.
We want to define locally, at each point yk of an e−path π, the right side and the left
side of π on the surface, taking into account the orientation of the surface (Definition 10
below). These local left and right sets will be in fact subsets of the v−neighborhood of
the surfel yk

Lemma 1 Let x be a surfel of Σ. Then, Nv(x) is a simple closed ex−curve.
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Proof: We prove that for any surfel y of Nv(x), there are exactly two surfels z1 and z2
in Nv(x) such that y is ex−adjacent to z1 and z2.
Let y be a surfel of Nv(x). First, we suppose that y and x are not e−adjacent. Then, from
Remark 1, only one loop L of Σ may contain both x and y. Let z1 and z2 be the only
(from the very definition of a loop) two surfels of L which are e−adjacent to y. It follows
that z1 and z2 are the only two surfels e−adjacent to y which can belong to a loop which
contains x. In other words, z1 and z2 are the only two surfels ex−adjacent to y.
Now, we may suppose that x and y are e−adjacent. Then, we may suppose without loss
of generality that y shares as an edge with x the oriented edge (0, 1) of y. Then, exactly
two loops contain both x and y : L0(y) and L1(y). Let z1 be the (unique) surfel of Σ
which shares as and edge with y the oriented edge (3, 0) of y; and let z2 be the (unique)
surfel of Σ which shares as and edge with y the oriented edge (1, 2) of y. It is immediate
that {z1, z2} ⊂ Nv(x) and z1 ̸= z2. Obviously the surfel z3 which share as an edge with
y the oriented edge (2, 3) can belong neither to L1 nor to L2. Finally, z1 and z2 are the
only two surfels of Σ which are ex−adjacent to y.
Furthermore, we must state that Nv(x) is ex−connected. This comes immediately from
the fact that Nv(x) is made of the union of the four loops which contain x, minus the
surfel x itself. Now, the loops can be ordered following the vertices order; each one is
e−connected and shares a surfel with its successor in the latter order. It follows that the
union (minus {x}) introduced before is ex−connected. 2

Now, given a surfel y in Nv(x), there exists exactly two parameterizations (see Defini-
tion 2) π = (yk)k=0,... ,p and π′ = (y′

k)k=0,... ,p′ of the simple closed ex−curve C = Nv(x)
such that y0 = y′

0. Furthermore, is is immediate that π−1 = π′. Then, we can define as
follows a canonical parameterization of the neighborhood of a surfel x which starts at a
given surfel y of Nv(x).
Definition 9 (canonical parameterization of Nv(x)) Let x ∈ Σ and y ∈ Nv(x). We
define the canonical parameterization of Nv(x) associated to the surfel y, denoted by
Cy(x), as the only ex−path π = (y0, . . . , yp) from y = y0 to y = yp such that π is
a parameterization of the simple closed ex−curve C = Nv(x) and which satisfies the
following property : for all k ∈ {0, . . . , p − 1}, x ∈ Lwk

(yk) where (wk − 1 mod 4, wk) is
the oriented edge of yk shared as an edge by yk and yk+1.
In other words, Cy(x) is the only ex−path π from y to y in Nv(x) such that x is always
on the left of π for an observer which would walk on π and always look in the direction
of the next surfel in the parameterization.
We can now define locally, at each point yk of an n−path π, the locals left and right sides
of π on the surface, taking into account the orientation of the surface.
Notation 2 For a surfel x and a given vertex number w ∈ {0, 1, 2, 3} we denote by Lw(x)
the unique loop associated with the vertex number w of x which contains the surfel x.
Definition 10 (local left and right sets) Let π = (yk)k=0,... ,p be an n−path for n ∈
{e, v} and k ∈ {1, . . . , p − 1} (k ∈ {0, . . . , p} if π is closed). Then, let γ = (γ0, . . . , γl) =
Cyk−1

(yk) be the canonical parameterization of Nv(yk) associated to yk−1. Let h be the
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(a) (b) Leftπ(k) = ∅. (c) Leftπ(k) =
∅.

Right  (k)

Left  (k)

yk-1 y
k+1

k
y

π

π

Fig. 3. Some illustrations of the sets Leftπ(k) and Rightπ(k) where π = (yk)k=0,... ,p.

only integer in {1, . . . , l} such that yk+1 = γh. We define the sets of surfels Leftπ(k) and
Rightπ(k) by :
If l = h (i.e yk−1 = yk+1) then Leftπ(k) = Rightπ(k) = ∅, otherwise,

Rightπ(k) = Nv(yk) ∩ {γi | 0 < i < h − 1}

Leftπ(k) = Nv(yk) ∩ {γi | h + 1 < i < l}

Note that both sets Rightπ(0) and Leftπ(0) are not defined in the case when π is not closed
(since the notation yi−1 has no meaning for i = 0 in this case).
A few examples of such sets Leftπ(k) and Rightπ(k) are depicted in Figure 3 for some
e−paths.
Remark 3 If c = (xi)i=0,... ,q is an n−path [resp. a closed n−path] and i ∈ {1, . . . , q − 1}
[resp. i ∈ {0, . . . , q}] is such that xi+1 and xi−1 are e−adjacent, then either Right c(i) = ∅
and Left c(i) = Nv(xi)\{xi−1, xi+1}; or Left c(i) = ∅ and Right c(i) = Nv(xi)\{xi−1, xi+1}.
See Figure 3(c) for an example of such a situation. Conversely, one of these two sets may
be empty only when the the two surfels xi−1 and xi+1 are either equal or e−adjacent.
Remark 4 If c = (xi)i=0,... ,q is an n−path on Σ, then Left c(i) ∩ Right c(i) = ∅ for all
i ∈ {1, . . . , q − 1} (for all i ∈ {0, . . . , q − 1} if c is closed).
Remark 5 If c = (xi)i=0,... ,q is an n−path on Σ and xi is a surfel of c such that xi−1

and xi+1 are neither equal nor nxi
−adjacent; then the sets Left c(i) and Right c(i) are both

non empty and each contains a surfel which is n−adjacent to xi.
An example of a configuration which satisfies the latter remark is depicted in Fig-
ure 3(a). Indeed, the two surfels yk−1 and yk+1 of Figure 3(a) are not ex−adjacent so
that Leftπ(k) ∩ Nv(x) ̸= ∅ and Rightπ(k) ∩ Nv(x) ̸= ∅. Finally, a counter example is
depicted in Figure 3(c).
The following property is the necessary and sufficient condition which will allow the
definition of the intersection number between two paths.
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Notation 3 Let π = (yk)k=0,... ,p be an n−path and c = (xi)i=0,... ,q be an n−path in Σ.
We say that the property P(π, c) is satisfied if in case when π is not closed then neither
y0 nor yp belongs to c∗.
Now we define the contribution to the intersection number of a couple of subscripts.
Definition 11 (contribution to the intersection number) Let π = (yk)k=0,... ,p be
an n−path and c = (xi)i=0,... ,q be an n−path such that P(π, c) holds. Let k ∈ {0, . . . , p −
1} and i ∈ {0, . . . , q}. We define the contribution to the intersection number of the
couple (k, i) denoted by Iπ,c(k, i) which is equal to zero if xi ̸= yk, otherwise Iπ,c(k, i) =
I−

π,c(k, i) + I+
π,c(k, i) where :

I−
π,c(k, i) = 0 if i = 0,

I−
π,c(k, i) = 0.5 if xi−1 ∈ Rightπ(k),

I−
π,c(k, i) = −0.5 if xi−1 ∈ Leftπ(k),

I−
π,c(k, i) = 0 in all other cases.

I+
π,c(k, i) = 0 if i = q,

I+
π,c(k, i) = −0.5 if xi+1 ∈ Rightπ(k),

I+
π,c(k, i) = 0.5 if xi+1 ∈ Leftπ(k),

I+
π,c(k, i) = 0 in all other cases.

Note that Iπ,c(k, i) = 0 if xi−1 = xi+1 or yk−1 = yk+1 (since Leftπ(k) = Rightπ(k) = ∅ in
this case).
Note that I−

π,c(k, i) depends on the position of xi−1 relative to the n−path π at the surfel
yk, and I+

π,c(k, i) depends on the position of xi+1. Also observe that Iπ,c(0, i) = 0 for all
i ∈ {0, . . . , q} if π is not closed since P(π, c) implies that xi ̸= y0 for all i ∈ {0, . . . , q}
in this case. Indeed, otherwise Iπ,c(0, i) would not be defined when π is not closed and
xi = y0.
Definition 12 (Intersection Number) Let π = (yk)k=0,... ,p be an n−path and let c =
(xi)i=0,... ,q be a n−path such that the property P(π, c) holds. The intersection number of
the n−path π and the n−path c, denoted by Iπ,c, is defined by :

Iπ,c =
p−1∑
k=0

q∑
i=0

Iπ,c(k, i) =
p−1∑
k=0

∑
i|xi=yk

Iπ,c(k, i) =
q∑

i=0

∑
k|xi=yk

Iπ,c(k, i).

Notation 4 Let π = (yk)k=0,... ,p be an n−path and c = (xi)i=0,... ,q be an n−path such
that P(π, c) holds, then, for h ∈ {0, . . . , p} and l ∈ {0, . . . , q} we denote :

Iπ
π,c(l) =

p−1∑
k=0

Iπ,c(k, l) and Ic
π,c(h) =

q∑
i=0

Iπ,c(h, i).

Figure 4 and Figure 5 show two examples of intersection numbers.
Notation 5 We call a trivial path any closed path (x, x) reduced to a surfel x of Σ.
Remark 6 From the very definition of Iπ,c, we have Iπ,c = 0 as soon as π or c is a
trivial path.

3 Main properties

In this section, we introduce the main theorem relative to the intersection number which
was first stated in [FM99] and [FM] with a less comprehensive proof. Indeed, the proofs
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Fig. 4. A v−path c (in grey) and an
e−path π (in black) such that Iπ,c = 0.

Fig. 5. A v−path c and an e−path π
such that Iπ,c = ±1.

which will be given here are more concise then the ones in previously mentioned papers.
Theorem 2 Let π = (yk)k=0,... ,p be an n−path in Σ (n ∈ {e, v}). Furthermore, let c =
(xi)i=0,... ,q and c′ = (x′

i)i=0,... ,q′ be two n−paths such that P(π, c) and P(π, c′) hold. If c′ is
n−homotopic to c in Σ (in Σ \ {y0, yp} if π is not closed), then Iπ,c = Iπ,c′.
In other words, the intersection number between an n−path π and an n−path c, as
defined in previous subsection, is invariant under any homotopic deformation applied to
the path c. First, we prove the following Proposition which states that the intersection
number has a commutative property (up to a change of sign).
Proposition 2 Let π = (yk)k=0,... ,p be an n−path of Σ and c = (xi)i=0,... ,q be an n−path
of Σ such that both P(π, c) and P(c, π) hold. Then, Iπ,c = −Ic,π.
The Property stated by Theorem 2 can be used together with Proposition 2 to show
that a closed n−path α (n ∈ {e, v}) is not n−homotopic to a trivial path by finding an
n−path β whose intersection number with α is not equal to zero. More generally, it can
be used to distinguish two not n−homotopic paths if their intersection numbers with a
third n−path are different.
Indeed, the following theorem is an immediate consequence of both Theorem 2 and Propo-
sition 2.
Theorem 3 Let π = (yk)k=0,... ,p and π′ = (y′

k)k=0,... ,p′ be two n−paths in Σ (n ∈ {e, v}).
Furthermore, let c = (xi)i=0,... ,q be an n−path such that the properties P(π, c), P(π′, c),
P(c, π), and P(c, π′) hold. If π′ is n−homotopic to π in Σ (in Σ \ {x0, xq} if c is not
closed), then Iπ,c = Iπ′,c.
Proof: From Proposition 2 and since P(π, c) and P(c, π) hold we have Iπ,c = −Ic,π.
On the other hand, still from Proposition 2 and since P(π′, c) and P(c, π′) hold we have
Iπ′,c = −Ic,π′ . Finally, from Theorem 2, since P(c, π) and P(c, π′) hold; and since π′ is
n−homotopic to π in Σ (in Σ \ {x0, xq} if c is not closed) then Ic,π = Ic,π′ . 2

The proof of Theorem 2 will come after the following section which states several useful
properties of the intersection number.
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4 Useful Properties

4.1 Change of sign with path inversion

Proposition 3 Let π be an n−path and c be an n−path such that P(π, c) holds. Then
Iπ,c = −Iπ−1,c.
In order to prove Proposition 3, we first state the following Lemmas.
Lemma 4 Let π = (yk)k=0,... ,p be an n−path in Σ. Then, Leftπ(k) = Rightπ−1(p−k) and
Rightπ(k) = Leftπ−1(p − k) for all k ∈ {1, . . . , p − 1}. Furthermore, if π is closed, then
Leftπ(0) = Rightπ−1(0) and Rightπ(0) = Leftπ−1(0).
Proof: Let π = (yk)k=0,... ,p and π−1 = (y′

k)k=0,... ,p.
If π is closed, then y0 = y′

0, y1 = y′
p−1 and yp−1 = y′

1. Let β = Cyp−1(y0) = (β0, . . . , βl0)
be the canonical parameterization of Nv(y0) associated to yp−1. And let h0 be the only
integer of {1, . . . , l0} such that yp−1 = βh0 . If h0 = l0 it is immediate that Leftπ(0) =
Rightπ−1(0) = Rightπ(0) = Leftπ−1(0) = ∅. If h0 < l0 then it is also immediate that
β′ = (βh0 , βh0+1, . . . , βl0).(β0, β1, . . . , βh0) is the canonical parameterization of Nv(y

′
0) =

Nv(y0) associated to the surfel y′
p−1 = y1 (see Definition 9). Finally, from Definition 10,

Leftπ(0) = Rightπ−1(0) and Rightπ(0) = Leftπ−1(0).
Now, for all k ∈ {1, . . . , p − 1} we observe that yk = y′

p−k, yk−1 = y′
(p−k)+1 and yk+1 =

y′
(p−k)−1 . For such k, let γ = Cyk−1

(yk) = (γ0, . . . , γl) be the canonical parameterization of
Nv(yk) associated to yk−1. And let h be the only integer of {1, . . . , l} such that yk+1 = γh.
If h = l it is immediate that Leftπ(k) = Rightπ−1(p−k) = Rightπ(k) = Leftπ−1(p−k) = ∅.
If h < l then it is also immediate that γ′ = (γh, γh+1, . . . , γl).(γ0, γ1, . . . , γh) is the
canonical parameterization of Nvy′

p−k = Nvyk associated to the surfel y′
(p−k)−1 = yk+1 (see

Definition 9). Finally, from Definition 10, Leftπ(k) = Rightπ−1(p − k) and Rightπ(k) =
Leftπ−1(p − k). 2

Lemma 5 Let π = (yk)k=0,... ,p be an n−path with a length p in Σ and c = (xi)i=0,... ,q be an
n−path with a length q in Σ such that P(π, c) holds. Then, Iπ,c(k, i) = −Iπ−1,c(p−k, i) for
all k ∈ {1, . . . , p − 1} and all i ∈ {0, . . . , q}. If π is closed, then Iπ,c(0, i) = −Iπ−1,c(0, i)
for all i ∈ {0, . . . , q}.
Proof: Let π−1 = (y′

0, . . . , y′
p). From Lemma 5, we have Rightπ(k) = Leftπ−1(p − k)

and Leftπ(k) = Rightπ−1(p − k) for all k ∈ {1, . . . , p − 1}. Then, following Definition 11,
we have Iπ,c(k, i) = −Iπ−1,c(p − k, i) for all i ∈ {0, . . . , q}. If π is closed and still from
Lemma 4 and Definition 11, we have Rightπ(0) = Leftπ−1(0) and Leftπ(0) = Rightπ−1(0)
so that Iπ,c(0, i) = −Iπ−1,c(0, i) for all i ∈ {0, . . . , q}. 2

Proof of Proposition 3: Let π = (y0, . . . , yp), π−1 = (y′
0, . . . , y′

p) and c = (x0, . . . , xq).
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Iπ,c =

[ q∑
i=0

Iπ,c(0, i)

]
+

p−1∑
k=1

q∑
i=0

Iπ,c(k, i) (1)

Iπ−1,c =

[ q∑
i=0

Iπ−1,c(0, i)

]
+

p−1∑
k=1

q∑
i=0

Iπ−1,c(p − k, i) (2)

Following Lemma 5, we have Iπ,c(k, i) = −Iπ−1,c(p − k, i) for all k ∈ {1, . . . , p − 1}
and all i ∈ {0, . . . , q}. Furthermore, if π is not closed and since P(π, c) holds, then
Iπ,c(0, i) = Iπ−1,c(0, i) = 0 for all i ∈ {0, . . . , q} (since xi ̸= y0 for such i). If π is closed
and still from Lemma 5, we have Iπ,c(0, i) = −Iπ−1,c(0, i) for all i ∈ {0, . . . , q}. Finally,
Iπ,c = −Iπ−1,c from equations (1) and (2). 2

Proposition 6 Let π = (yk)k=0,... ,p be an n−path and c = (xi)i=0,... ,q be an n−path such
that P(π, c) holds; then Iπ,c = −Iπ,c−1.
In order to prove Proposition 6, we first establish the following Lemma.
Lemma 7 Let π = (yk)k=0,... ,p be an n−path with a length p in Σ and c = (xi)i=0,... ,q be
an n−path with a length q in Σ such that P(π, c) holds. Then, Iπ,c(k, i) = −Iπ,c−1(k, q− i)
for all k ∈ {0, . . . , p − 1} and all i ∈ {0, . . . , q}.
Proof: Let c−1 = (x′

0, . . . , x′
q) so that for all i ∈ {0, . . . , q} we have xi = x′

q−i.
• For i ∈ {1, . . . , q − 1} we observe that xi = x′

q−i, xi−1 = x′
(q−i)+1, xi+1 = x′

(q−i)−1.
Thus from Definition 11 and for such i, we have Iπ,c(k, i) = −Iπ,c−1(k, q − i) for all
k ∈ {0, . . . , p − 1}.
• For i = 0, since x0 = x′

q and x1 = x′
q−1 we also have Iπ,c(k, 0) = I+

π,c(k, 0) =
−I−

π,c−1(k, q) = −Iπ,c−1(k, q − 0) for all k ∈ {0, . . . , p − 1}.
• For i = q, since xq = x′

0 and xq−1 = x′
1 we also have Iπ,c(k, q) = I−

π,c(k, q) =
−I+

π,c−1(k, 0) = −Iπ,c−1(k, q − q) for all k ∈ {0, . . . , p − 1}.
Finally, for all k ∈ {0, . . . , p−1} and all i ∈ {1, . . . , q−1} we have Iπ,c(k, i) = −Iπ,c(k, q−
i). 2

Proof of Proposition 6: Let c−1 = (x′
0, . . . , x′

q) so that for all i ∈ {0, . . . , q} we have
xi = x′

q−i. Then,

Iπ,c =
p−1∑
k=0

q∑
i=0

Iπ,c(k, i)

But, from Lemma 7, Iπ,c(k, i) = −Iπ,c−1(k, q − i) for all i ∈ {0, . . . , q} and all k ∈
{0, . . . , p − 1}. It is then immediate that,

Iπ,c =
p−1∑
k=0

q∑
i=0

−Iπ,c−1(k, i) = −Iπ,c−1

2

14



4.2 Commutativity property

In further proofs, we will use Proposition 2 which was introduced in subsection 3 and
which sates that swapping the roles played by the two paths in the definition of the
intersection number leads to a change of the sign of this intersection number, when such
a permutation is possible. Indeed, in the case when π is closed and c is not closed, then if
an extremity of c belongs to π∗ the intersection number Iπ,c is well defined whereas the
number Ic,π is not. The idea of this commutativity property is summarized in Figure 6
where one can say that c crosses π from left to right by observing one of the two following
statements :
– c enters π from the left side at the point a and exits π to the right side of π at the point
b, or
– π enters c from the right side of c at the point a and exits c to the left side of c at the
point b.

a

b

c
π

Fig. 6. There are two ways to check that c crosses π from left to right.

We recall Proposition 2 :

Proposition 2 Let π = (yk)k=0,... ,p be an n−path of Σ and c = (xi)i=0,... ,q be an n−path
of Σ such that both P(π, c) and P(c, π) hold. Then, Iπ,c = −Ic,π.

In order to prove this very intuitive result, we must state several technical lemmas.
Lemma 8 Let π = (yk)k=0,... ,p be an n−path of Σ and c = (xi)i=0,... ,q be an n−path of Σ
such that both P(π, c) and P(c, π) hold. For all k ∈ {1, . . . , p − 1} (k ∈ {0, . . . , p − 1} if
π is closed) and all i ∈ {1, . . . , q − 1}, we have Iπ,c(k, i) = −Ic,π(i, k).
Proof of Lemma 8: Following Definition 11, the cases when xi ̸= yk, xi−1 = xi+1

or yk−1 = yk+1 are immediate since in these cases Iπ,c(k, i) = Ic,π(i, k) = 0. Thus, we
suppose in the sequel of this proof that xi = yk, xi−1 ̸= xi+1, yk−1 ̸= yk+1. By the same
way, if xi−1 = yk−1 and xi+1 = yk+1, or if xi−1 = yk+1 and xi+1 = yk−1 it is immediate that
Iπ,c(k, i) = Ic,π(i, k) = 0. Then we may also suppose that {yk−1, yk+1} ̸= {xi−1, xi+1}; the
following cases remain :
Case 1 xi−1 = yk−1 (see Figure 7) so that I−

π,c(k, i) = I−
c,π(i, k) = 0. Then, let γ =

(γ0, . . . , γl) = Cyk−1
(yk) = Cxi−1

(xi) be the canonical parameterization of Nv(yk) =
Nv(xi) and h be the only integer in {1, . . . , l} such that yk+1 = γh. Following assump-
tions made before, xi+1 /∈ {γ0 = γl, γh}.

If xi+1 = γj for 0 < j < h then xi+1 ∈ Rightπ(k) and h > j implies that yk+1 ∈
Left c(i) (see Definition 10). From Definition 11, it follows that I+

π,c(k, i) = −I+
c,π(i, k) =

0.5 and finally Iπ,c(k, i) = −Ic,π(i, k).
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If xi+1 = γj for h < j < l then xi+1 ∈ Leftπ(k) and j > h implies that yk+1 ∈
Right c(i) (see Definition 10). From Definition 11, it follows that I+

π,c(k, i) = 0.5 and
I+

c,π(i, k) = −0.5 so that Iπ,c(k, i) = −Ic,π(i, k).
Case 2 xi−1 = yk+1 (see Figure 7) so that I−

π,c(k, i) = I−
c,π(i, k) = 0. We observe that

Iπ,c(k, i) = −Iπ−1,c(p − k, i) and Ic,π(i, k) = −Ic,π−1(i, p − k) (Lemma 5). Thus, we
must prove that Iπ−1,c(p − k, i) = Ic,π−1(i, p − k). Now, let π−1 = (y′

0, . . . , y′
p) then

yk = y′
p−k and yk+1 = y′

(p−k)−1 and we are came down to the previous case at subscript
p − k of π−1.

Case 3 xi+1 = yk+1 (see Figure 7) so that I+
π,c(k, i) = I+

c,π(i, k) = 0. We observe that
Iπ,c(k, i) = −Iπ−1,c(p − k, i) = Iπ−1,c−1(p − k, q − i) (from Lemma 5 and Lemma 7),
by the same way Ic,π(i, k) = Ic−1,π−1(q − i, p − k). It is then sufficient to prove that
Iπ−1,c−1(p−k, q−i) = −Ic−1,π−1(p−k, q−i). If c−1 = (x′

0, . . . , x′
q) and π−1 = (y′

0, . . . , y′
q)

then, on a first hand xi = x′
q−i, xi+1 = x′

(q−i)−1, xi−1 = x′
(q−i)+1. On the other hand,

yk = y′
p−kmodp, yk−1modp = y′

(p−k)+1modp and yk+1modp = y′
(p−k)−1modp. We are came

back to case 1 with the subscripts (p − k mod p) and (q − i mod p) so that this case is
equivalent to case 1.

Case 4 xi+1 = yk−1 (see Figure 7) so that I+
π,c(k, i) = I+

c,π(i, k) = 0. We observe that
Iπ,c(k, i) = −Iπ,c−1(k, q − i) and Iπ,c(c, π) = −Ic−1,π(q − i, k) (Lemma 7). It is then
sufficient to prove that Iπ,c−1(k, q − i) = Ic−1,π(q − i, k). If c−1 = (x′

0, . . . , x′
q) then

xi = x′
q−i, xi−1 = x′

(q−i)+1 and xi+1 = x′
(q−i)−1 so that this cases is equivalent to case 1.

Case 5 If {xi+1, xi−1} ∩ {yk−1, yk+1} = ∅.
Let γ = (γ0, . . . , γl) = Cyk−1

(yk) be the canonical parameterization of Nv(yk) and h
be the only integer in {1, . . . , l} such that yk+1 = γh. Then there exists m and m′ such
that γm = xi−1 and γm′

= xi+1. Since, {xi+1, xi−1} ∩ {γ0 = γl, γh} = ∅ it follows that
{m, m′} ⊂ {1, . . . , h − 1} ∪ {h + 1, . . . , l − 1}. The following cases are illustrated in
Figure 8.

i) If 1 < m < m′ < h then

γ′ = (γm, . . . , γm′
).(γm′

, . . . , γh).(γh, . . . , γl).(γ0, . . . , γm)

is the canonical parameterization Cxi−1
(xi) of Nv(xi). It follows that {xi−1, xi+1} ⊂

Rightπ(k) and {γ0 = yk−1, γh = kk+1} ⊂ Left c(i). Finally, from Definition 11, we
obtain that Iπ,c(k, i) = Ic,π(i, k) = 0.

ii) If 1 < m′ < m < h then

γ′ = (γm, . . . , γh).(γh, . . . , γl).(γ0, . . . , γm′
).(γm′

, . . . , γm)

is the canonical parameterization Cxi−1
(xi) of Nv(xi). It follows that {xi−1,= xi+1} ⊂

Rightπ(k) and {γl = yk−1, γh = kk+1} ⊂ Left c(i). Finally, from Definition 11, we obtain
that Iπ,c(k, i) = Ic,π(i, k) = 0.

iii) If h < m < m′ < l then

γ′ = (γm, . . . , γm′
).(γm′

, . . . , γl).(γ0, . . . , γh).(γh, . . . , γm)

is the canonical parameterization Cxi−1
(xi) of Nv(xi). It follows that {xi−1, xi+1} ⊂
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Leftπ(k) and {γ0 = yk−1, γh = kk+1} ⊂ Left c(i). Finally, from Definition 11, we obtain
that Iπ,c(k, i) = −Ic,π(i, k) = 0.

iv) If h < m′ < m < l then

γ′ = (γm, . . . , γl).(γ0, . . . , γh).(γh, . . . , γm′
).(γm′

, . . . , γm)

is the canonical parameterization Cxi−1
(xi) of Nv(xi). It follows that {xi−1, xi+1} ⊂

Leftπ(k) and {γl = yk−1, γh = kk+1} ⊂ Right c(i). Finally, from Definition 11, we obtain
that Iπ,c(k, i) = −Ic,π(i, k) = 0.

v) If 0 < m < h < m′ < l then

γ′ = (γm, . . . , γh).(γh, . . . , γm′
).(γm′

, . . . , γl).(γ0, . . . , γm)

is the canonical parameterization Cxi−1
(xi) of Nv(xi). It is then straightforward that

xi−1 ∈ Rightπ(k), xi+1 ∈ Leftπ(k), yk−1 = γ0 ∈ Left c(i) and yk+1 = γh ∈ Right c(i).
Finally, from Definition 11, we obtain that Iπ,c(k, i) = −Ic,π(i, k) = +1.

vi) If 0 < m′ < h < m < l then

γ′ = (γm, . . . , γl).(γ0, . . . , γm′
).(γm′

, . . . , γh).(γh, . . . , γm)

is the canonical parameterization Cxi−1
(xi) of Nv(xi). It follows that xi−1 ∈ Leftπ(k),

xi+1 ∈ Rightπ(k), yk−1 = γ0 ∈ Right c(i) and yk+1 = γh ∈ Left c(i). Finally, from
Definition 11, we obtain that Iπ,c(k, i) = −Ic,π(i, k) = −1.

π-1
c
-1

c
-1π-1

π
c

Case 2Case 1 Case 4Case 3

Fig. 7. An illustration of the cases investigated in the proof of Lemma 8 when
{xi−1, xi+1} ∩ {yk−1, yk+1} ̸= ∅

vi)v)iv)iii)ii)i)

π

c

Fig. 8. An illustration of the cases investigated in the proof of Lemma 8 when
{xi−1, xi+1} ∩ {yk−1, yk+1} = ∅
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2

The following definition will allow us to use Lemma 8 for closed paths at subscripts
corresponding to the extremities of either the path c or the path π of this lemma when
the path is closed.
Definition 13 (shift operation) Let π = (yk)k=0,... ,p be a closed n−path in Σ with a
length p > 1. We denote by Sh(π) the closed n−path (yp−1, y0, . . . , yp−1) which is the
result of a shift of π of one step in the opposite direction of its parameterization.
Then, the two following Lemmas will be of interest in the sequel.
Lemma 9 Let π = (yk)k=0,... ,p be a closed n−path and c = (xi)i=0,... ,q be an n−path in
Σ. If π has a length p > 1, then Iπ,c(0, i) = ISh(π),c(1, i) for all i ∈ {0, . . . , q}.
Corollary 10 Let π = (yk)k=0,... ,p be a closed n−path and c = (xi)i=0,... ,q be an n−path
in Σ, then Iπ,c = ISh(π),c.
Proof of Lemma 9: Let Sh(π) = (y′

0, . . . , y′
p) so that yp−1 = y′

0, y0 = y′
1 and y1 = y′

2.
It follows that Rightπ(0) = RightSh(π)(1) and Leftπ(0) = LeftSh(π)(1) so that Iπ,c(0, i) =
ISh(π),c(1, i) for all i ∈ {0, . . . , q}. 2

Lemma 11 Let π = (yk)k=0,... ,p be an n−path and c = (xi)i=0,... ,q be a closed n−path in
Σ. If c has a length q > 1, then Iπ,Sh(c)(k, 1) = Iπ,c(k, 0)+Iπ,c(k, q) for all k ∈ {0, . . . , p}.
Corollary 12 Let π = (yk)k=0,... ,p be an n−path and c = (xi)i=0,... ,q be closed n−path in
Σ, then Iπ,c = Iπ,Sh(c).
Proof of Lemma 11: Let Sh(c) = (x′

0, . . . , x′
q) so that xq−1 = x′

0, x0 = x′
1 and x1 = x′

2.
We have Iπ,Sh(c)(k, 1) = I−

π,Sh(c)(k, 1) + I+
π,Sh(c)(k, 1). Since x0 = x′

1 and xq−1 = x′
0 it

follows that I−
π,Sh(c)(k, 1) = I−

π,c(k, q) for all k ∈ {0, . . . , p}. Furthermore, since x0 = x′
1

and x1 = x′
2 it follows that I+

π,Sh(c)(k, 1) = I+
π,c(k, 0) for all k ∈ {0, . . . , p}.

Finally, Iπ,Sh(c)(k, 1) = I+
π,c(k, 0)+I−

π,c(k, q) for all k ∈ {0, . . . , p}; but from Definition 11,
I+

π,c(k, 0) = Iπ,c(k, 0) and I−
π,c(k, q) = Iπ,c(k, q). 2

Then, in order to prove Proposition 2 we will need the two following lemmas which state
the behavior of the contributions to the intersection number at the extremities of each
path π and c of the Proposition.
Lemma 13 Let π = (yk)k=0,... ,p be a closed n−path and c = (xi)i=0,... ,q be an n−path in
Σ. Then Iπ,c(0, i) = −(Ic,π(i, 0) + Ic,π(i, p)) for all i ∈ {1, . . . , q − 1}.
Proof: From Lemma 9, we have Iπ,c(0, i) = ISh(π),c(1, i). From Lemma 8 and for all i ∈
{1, . . . , q − 1}, ISh(π),c(1, i) = −Ic,Sh(π)(i, 1). Now, since π is closed and from Lemma 11,
−Ic,Sh(π)(i, 1) = −(Ic,π(i, 0) + Ic,π(i, p)). 2

Lemma 14 Let π = (yk)k=0,... ,p be closed n−path and c = (xi)i=0,... ,q be closed n−path
in Σ. Then Iπ,c(0, 0) + Iπ,c(0, q) = −(Ic,π(0, 0) + Ic,π(0, p))

Proof: From Lemma 9, Iπ,c(0, 0) + Iπ,c(0, q) = ISh(π),c(1, 0) + ISh(π),c(1, q) and from
Lemma 11, ISh(π),c(1, 0) + ISh(π),c(1, q) = ISh(π),Sh(c)(1, 1). Then, following Lemma 8,
ISh(π),Sh(c)(1, 1) = −ISh(c),Sh(π)(1, 1). Again, Lemma 9 implies that −ISh(c),Sh(π)(1, 1) =
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−Ic,Sh(π)(0, 1) whereas Lemma 11 implies that −Ic,Sh(π)(0, 1) = −(Ic,π(0, 0) + Ic,π(0, p)).
Finally, we have obtained that Iπ,c(0, 0) + Iπ,c(0, q) = −(Ic,π(0, 0) + Ic,π(0, p)). 2

Proof of Proposition 2: The sum of Definition 12 may be written as follows :

Iπ,c = Iπ,c(0, 0) + Iπ,c(0, q) +
q−1∑
i=1

Iπ,c(0, i) +

p−1∑
k=1

Iπ,c(k, 0) + Iπ,c(k, q) +
q−1∑
i=1

Iπ,c(k, i)

 (3)

• If π is closed then Lemma 13 implies that Iπ,c(0, i) = −Ic,π(i, 0) − Ic,π(i, p) for

i ∈ {1, . . . , q − 1}. Then,
q−1∑
i=1

Iπ,c(0, i) = −
q−1∑
i=1

[Ic,π(i, 0) + Ic,π(i, p)]. Furthermore, from

Lemma 8, Iπ,c(k, i) = −Ic,π(i, k) for all k ∈ {1, . . . , p − 1} and all i ∈ {1, . . . , q − 1}.
Thus, equation (3) becomes :

Iπ,c = Iπ,c(0, 0) + Iπ,c(0, q) +
q−1∑
i=1

−(Ic,π(i, 0) + Ic,π(i, p)) +

p−1∑
k=1

Iπ,c(k, 0) + Iπ,c(k, q) +
q−1∑
i=1

Ic,π(i, k)

 (4)

– If c is closed, then Lemma 13 implies that Ic,π(0, k) = −(Iπ,c(k, 0) + Iπ,c(k, q)) for
k ∈ {1, . . . , p − 1} so that equation (4) becomes :

Iπ,c = Iπ,c(0, 0) + Iπ,c(0, q) −
q−1∑
i=1

[Ic,π(i, 0) + Ic,π(i, p)] +

p−1∑
k=1

−Ic,π(0, k) −
q−1∑
i=1

Ic,π(i, k)


If π and c are closed paths, it follows from Lemma 14 that Iπ,c(0, 0) + Iπ,c(0, q) =

Ic,π(0, 0) + Ic,π(0, p). Then,

Iπ,c = −(Ic,π(0, 0) + Ic,π(0, p)) −
q−1∑
i=1

[Ic,π(i, 0) + Ic,π(i, p)] +

p−1∑
k=1

−Ic,π(0, k) −
q−1∑
i=1

Ic,π(i, k)


or,

Iπ,c = −
q−1∑
i=0

[Ic,π(i, 0) + Ic,π(i, p)] −
p−1∑
k=1

q−1∑
i=0

Ic,π(i, k)
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so,

Iπ,c = −
q−1∑
i=0

Ic,π(i, 0) −
q−1∑
i=0

Ic,π(i, p) −
p−1∑
k=1

q−1∑
i=0

Ic,π(i, k)

and finally,

Iπ,c = −
p∑

k=0

q−1∑
i=0

Ic,π(i, k) = −Ic,π

– If c is not closed and since P(c, π) holds, then Ic,π(0, k) = Iπ,c(k, 0) = Iπ,c(k, q) = 0 for
all k ∈ {0, . . . , p}. Then, equation (4) becomes :

Iπ,c =
q−1∑
i=1

−(Ic,π(i, 0) + Ic,π(i, p)) −
p−1∑
k=1

q−1∑
i=1

Ic,π(i, k) or,

Iπ,c = −
q−1∑
i=1

Ic,π(i, 0) −
q−1∑
i=1

Ic,π(i, p) −
p−1∑
k=1

q−1∑
i=1

Ic,π(i, k) finally,

Iπ,c = −
p∑

k=0

q−1∑
i=1

Ic,π(i, k) = −
q−1∑
i=1

p∑
k=0

Ic,π(i, k)

Since Ic,π(0, k) = 0 for all k ∈ {0, . . . , p},

Iπ,c = −
q−1∑
i=0

p∑
k=0

Ic,π(i, k) = −Ic,π

• If π is not closed and since P(π, c) holds, then Iπ,c(0, i) = Iπ,c(p, i) = Ic,π(i, 0) =

Ic,π(i, p) = 0 for i ∈ {0, . . . , q} so that
q∑

i=0

Iπ,c(0, i) = 0. Then, equation (3) becomes :

Iπ,c =
p−1∑
k=1

Iπ,c(k, 0) + Iπ,c(k, q) +
q−1∑
i=1

Iπ,c(k, i)


From Lemma 8, Iπ,c(k, i) = −Ic,π(i, k) for all k ∈ {1, . . . , p−1} and all i ∈ {1, . . . , q−1}.

Iπ,c =
p−1∑
k=1

Iπ,c(k, 0) + Iπ,c(k, q) −
q−1∑
i=1

Ic,π(i, k)

 (5)

– If c is closed, then Lemma 13 implies that Iπ,c(k, 0) + Iπ,c(k, q) = −Ic,π(0, k) for all
k ∈ {1, . . . , p − 1} and equation (5) becomes :

Iπ,c =
p−1∑
k=1

q−1∑
i=0

−Ic,π(i, k) =
q−1∑
i=0

p−1∑
k=1

−Ic,π(i, k)
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Furthermore, Ic,π(i, 0) = Ic,π(i, p) = 0 for all i ∈ {0, . . . , q} since π is not closed and
P(π, c) holds, so that :

Iπ,c =
q−1∑
i=0

p∑
k=0

−Ic,π(i, k) = −Ic,π

– If c is not closed then Iπ,c(k, 0) = Iπ,c(k, q) = 0 for all k ∈ {0, . . . , p} since P(c, π)
holds, then equation (5) becomes :

Iπ,c = −
p−1∑
k=1

q−1∑
i=1

Ic,π(i, k)

From Lemma 8, Iπ,c(k, i) = −Ic,π(i, k) for all k ∈ {1, . . . , p−1} and all i ∈ {1, . . . , q −
1}. Then,

Iπ,c = −
q−1∑
i=1

p−1∑
k=1

Ic,π(i, k) = −Ic,π

2

4.3 An additive property

The following proposition will be useful in further proofs.
Proposition 15 Let π = (yk)k=0,... ,p be an n−path on Σ; let c = (xi)i=0,... ,q and c′ =
(x′

i)i=0,... ,q′ be two n−paths on Σ such that xq = x′
0. If P(π, c) and P(π, c′) hold, then

Iπ,c.c′ = Iπ,c + Iπ,c′.
Proof of Proposition 15: Let us compute Iπ,c.c′ with c.c′ = (z0, . . . , zq+q′).
It is sufficient to prove that for k ∈ {1, . . . , p − 1} (k ∈ {0, . . . , p} if π is closed) :

q+q′∑
i=0

Iπ,c.c′(k, i) =
q∑

i=0

Iπ,c(k, i) +
q′∑

i=0

Iπ,c′(k, i) (6)

We simply write that for k ∈ {0, . . . , p − 1} (k ∈ {0, . . . , p} if π is closed) :

q+q′∑
i=0

Iπ,c.c′(k, i)= Iπ,c.c′(k, 0) +

q−1∑
i=1

Iπ,c.c′(k, i)

 + Iπ,c.c′(k, q) (7)

+

q+q′−1∑
i=q+1

Iπ,c.c′(k, i)

 + Iπ,c.c′(k, q + q′)

Now, for such k we observe that Iπ,c(k, 0) = I+
π,c(k, 0) from Definition 11. Since x0 = z0

and x1 = z1 we obtain that I+
π,c(k, 0) = I+

π,c.c′(k, 0) which is also equal to Iπ,c.c′(k, 0)
following Definition 11. By the same way, we prove that Iπ,c.c′(k, q + q′) = Iπ,c′(k, q′).

21



For i ∈ {1, . . . , q − 1}, we have Iπ,c.c′(k, i) = Iπ,c(k, i) since xi = zi, xi−1 = zi−1 and
xi+1 = zi+1. Similarly, for i ∈ {q + 1, . . . , q + q′ − 1}, we have Iπ,c.c′(k, i) = Iπ,c′(k, i − q)
since xi = zi−q, xi−1 = z(i−q)−1 and xi+1 = z(i−q)+1.
Furthermore, we have Iπ,c.c′(k, q) = I−

π,c.c′(k, q) + I+
π,c.c′(k, q). Then, we observe that

Iπ,c(k, q) = I−
π,c(k, q) and Iπ,c′(k, 0) = I+

π,c′(k, 0). But, I−
π,c(k, q) = I−

π,c.c′(k, q) since
xq = zq and xq−1 = zq−1. Similarly, I+

π,c′(k, 0) = I+
π,c.c′(k, q) since x′

0 = zq and x′
1 = zq+1.

Finally, Iπ,c.c′(k, q) = Iπ,c(k, q) + Iπ,c′(k, 0).
By replacing the corresponding terms in equation (7) we obtain that :

q+q′∑
i=0

Iπ,c.c′(k, i)= Iπ,c′(k, 0) +

q−1∑
i=1

Iπ,c(k, i)

 + Iπ,c(k, q)

+ Iπ,c′(k, 0) +

q′−1∑
i=1

Iπ,c′(k, i)

 + Iπ,c′(k, q′)

or,

q+q′∑
i=0

Iπ,c.c′(k, i) =
q∑

i=0

Iπ,c(k, i) +
q′∑

i=0

Iπ,c′(k, i)

Finally, Iπ,c.c′ = Iπ,c + Iπ,c′ . 2

Corollary 16 Let π = (yk)k=0,... ,p and π′ = (y′
k)k=0,... ,p′ be two n−paths on a digital

surface Σ such that yp = y′
0; let c = (xi)i=0,... ,q be an n−path on Σ . If P(π, c), P(π′, c),

P(c, π) and P(c, π′) hold then Iπ.π′,c = Iπ,c + Iπ′,c.
Proof: Since P(c, π) and P(c, π) hold it is immediate that P(c, π.π′) holds. Then, from
Proposition 2, we have Iπ.π′,c = Ic,π.π′ . Now, from Proposition 15 we obtain that Ic,π.π′ =
Ic,π + Ic,π′ . But, under the hypothesis of this corollary and again from Proposition 2 we
have Ic,π = Iπ,c and Ic,π′ = Iπ′,c. 2

5 Proof of the main Theorems

The proof of Theorem 2 will be slightly different for the case when (n, n) = (e, v) and
(n, n) = (v, e). However, in both cases, we will first define a relation of deformation be-
tween paths (the which is in fact equivalent to the homotopy relation as stated respectively
by Proposition 24 and Proposition 17 respectively for n = v and n = e.
For n = v, this new deformation is based on the insertion of triplets of surfels, or the
insertion of back and forth in the paths. Then, Proposition 18 will state that a triplet of
surfel always have an intersection number equal to zero with any e−path (as soon as this
e−path is closed, otherwise the triplet must not meet an extremity of the e−path).
For n = e, this new deformation is based on the insertion of e−loops of surfels (Defini-
tion 17), or the insertion of back and forth in the paths. Then, Proposition 25 will state
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in a similar way to Proposition 18 that an e−loop always have an intersection number
equal to zero with any v−path (a soon as this v−path is closed, otherwise the e−loop
must not meet an extremity of the v−path).
Finally, using Proposition 15, a straightforward proof of Theorem 2 for n = e and n = v
will be given.
Remark 7 Note that, without loss of generality, we suppose in this section that any path
mentioned (except closed ones) has the following property : two consecutive surfels in the
path are distinct.

5.1 Another definition for the homotopy of v−paths

First, we introduce the notion of an elementary T −deformation and the definition of the
T −deformation relation follows immediately.
Definition 14 (back and forth) A simple closed n−path π = (x0, x1, x0) in Σ is called
a back and forth in Σ.
Definition 15 (triplet) A simple closed v−path π = (x0, x1, x2, x0) included in a loop
of Σ is called a triplet in Σ.
Definition 16 Let X ⊂ Σ, c = (xi)i=0,... ,q and c′ = (x′

i)i=0,... ,q′ be two v−paths in X. The
path c is said to be an elementary T −deformation of c′ in X (and we denote c ∼T c′) if
c = π1.(s).π2 and c′ = π1.γ.π2; or if c = π1.γ.π2 and c′ = π1.(s).π2. Where γ is a back and
forth from s to s in X, or γ is a triplet from s to s in X. We define the T −deformation
relation as the transitive closure of the elementary T −deformation relation.
In other words, the relation of elementary T −deformation links together two v−paths
which are almost the same except that one is obtained by insertion in the other of a
triplet of surfels which belongs to the same loop , or by insertion in the other of a back
and forth. Now, we can state the following proposition :
Proposition 17 Let X ⊂ Σ. Two v−paths c and c′ are v−homotopic in X if and only
if they are the same up to a T −deformation.
Proof: First, an elementary T −deformation is a particular case of an elementary
v−deformation where the v−paths γ and γ′, used in subsection 1.5 to define an ele-
mentary n−deformation, are closed paths, one of which is reduced to a single surfel and
the other one is a triplet or a closed path with a length of 2 which are both included in a
loop, i.e. an elementary deformation cell. It immediately follows that if two v−paths are
the same up to a T −deformation then they are v−homotopic.
Now, it is sufficient to prove that, if two v−paths are the same up to an elementary
v−deformation, then they are the same up to a T −deformation. Let c and c′ be two
v−paths which are the same up to an elementary v−deformation, i.e. c = π1.γ.π2 and
c′ = π1.γ

′.π2 where γ and γ′ are two paths with the same extremities and included in a
common loop.
We first prove that any v−path α = (a0, . . . , ah) with a length l greater than one and
included in a loop is a T −deformation of the path (a0, ah). We proceed by an induction

23



on the length l. Let αk be a v−path included in a loop L with a length lk. We distinguish
two cases :
• Either αk = (a0, a1), or
• αk is a path with a length lk ≥ 2. Then αk = ω.(a, b, c) where {a, b, c} ⊂ L and
ω may be reduced to (a) if l = 2. Then the path αk is an elementary T −deforma-
tion of the path α′ = ω.(a, b, c).(c, b, a, c).(c). Now, α′ = ω.(a, b).(b, c, b).(b, a, c) is an
elementary T −deformation of the path α′′ = ω.(a, b, a, c) which is itself an elementary
T −deformation of the path αk+1 = ω.(a, c). Finally, αk is an T −deformation of the path
αk+1 = ω.(a, c), which has a length lk+1 = lk − 1.
Finally, either the path αk has a length of one or it is shown that αk is a T −deformation
of a path αk+1 in X with a lower length then αk. By induction with α0 = α , their
must exist k′ > 0 such that αk′ has a length of one (i.e αk′ = (a0, ah)) and which is a
T −deformation of α.
Then, we have just proved that both paths γ and γ′ are equivalent up to a T −deforma-
tion in X to the path reduced to their extremities. It is then immediate that those two
paths are themselves equivalent up to a T −deformation in X. 2

5.1.1 Intersection number of triplets
In this subsection, we will prove the following Proposition which states that a triplet c
(Definition 15) has an intersection number equal to zero with any e−path π as soon as
P(π, c) holds.
Proposition 18 Let c be a triplet in Σ and let π = (yk)k=0,... ,p be an e−path on Σ such
that P(π, c) holds. Then, Iπ,c = 0.
In order to prove Proposition 18, we first state the two following lemmas.
Lemma 19 Let c = (x0, x1, x2, x0) be a triplet in Σ. Then, depending on the order of the
parameterization of c, one of the two following properties is satisfied :
• ∀i ∈ {0, 1, 2}, Left c(i) ∩ Ne(xi) = ∅.
• ∀i ∈ {0, 1, 2}, Right c(i) ∩ Ne(xi) = ∅.
Proof: This lemma comes from local considerations. Indeed, since for all i ∈ {0, 1, 2}
the three surfels xi−1, xi and xi+1 are included in a common loop, then, depending on the
order of the parameterization, exactly one of the intervals between xi−1 and xi+1 of the
canonical parameterization of Nv(xi) cannot contain a surfel e−adjacent to xi. And it is
readily seen that this interval coincides either with Left c(i) for all i ∈ {0, 1, 2} or with
Right c(i) for all i ∈ {0, 1, 2}. 2

Lemma 20 Let c = (x0, x1, x2, x0) be a triplet in Σ. Then, one of the two following
properties is satisfied :
• Ic,π = −0.5 for all e−path π with a length 1 which enters c and Ic,π = +0.5 for all

e−path π with a length 1 which exits c.
• Ic,π = +0.5 for all e−path π with a length 1 which enters c and Ic,π = −0.5 for all

e−path π with a length 1 which exits c.
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Proof: This lemma is a straightforward consequence of Lemma 19 and Definition 11. 2

Proof of Proposition 18: Let π = (yk)k=0,... ,p and πh = (yh, yh+1) for h ∈ {0, . . . , p−1}
so that π = π0.π1. . . . .πp−1. Since c is closed, then property P(c, π′) holds and since P(π, c)
holds too, from Proposition 2 we have Iπ,c = −Ic,π.
Furthermore, since c is closed, the property P(c, π′) holds for any e−path π′ in Σ. Then,
Proposition 15 implies :

Ic,π = Ic,π0 + Ic,π1 + . . . + Ic,πq−1

First, it is immediate that Ic,πh
= 0 for any h ∈ {0, . . . , p − 1} such that πh does not

enter neither exits c. Indeed, Ic,πh
is obviously equal to 0 if c∗ ∩ π∗

h = ∅; and since c has
a length of 3 it is also immediate (from the Definition 11) that Ic,πh

= 0 when π∗
h ⊂ c∗.

Furthermore, since π is either closed or c∗ meets neither y0 nor yp (property P(π, c)), it is
immediate that the number of πh’s which enter c is equal to the number of πh’s which exit

c. Then, from Lemma 20, it follows that Ic,π =
p−1∑
h=0

Ic,πh
= 0. Finally, Iπ,c = −Ic,π = 0. 2

Remark 8 The intersection number Iπ,c of an e−path π with a triplet c is either equal
to zero or not defined. Indeed, if P(π, c) is not satisfied, then Iπ,c is not defined (see
Figure 9).

π

c

y

y

0

5

Fig. 9. Iπ,c is not defined since y0 ∈ c∗, whereas Ic,π = ±0.5.

Now, we can achieve the proof of Theorem 2 for n = e using Proposition 17, Proposition 15
and Proposition 18.

5.2 Proof of Theorem 2 when (n, n) = (e, v)

Here, we achieve the proof of the main theorem in the case of a v−homotopic deformation
of the v−path c.
Proof of Theorem 2 for (n, n) = (e, v): From Proposition 17 it is sufficient to prove
Theorem 2 in the case when c′ is an elementary T −deformation of c in X. Following
Definition 16, we may suppose that c = c1.(s).c2 and c′ = c1.γ.c2. Where γ is a back and
forth or a triplet from s to s in X. Since P(π, c) holds, it is straightforward that P(π, c1),
P(π, γ) and P(π, c2) hold too. Then, from Proposition 15, we have Iπ,c = Iπ,c1+Iπ,γ+Iπ,c2 .
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If γ is a back and forth in X, i.e γ = (γ0, γ1, γ3) where γ3 = γ0, then it is immediate
from Definition 11 that Iπ

π,γ(0) = 0 and Iπ
π,γ(1) = 0 so that Iπ,γ = 0. On the other hand,

if γ is a triplet, then Iπ,γ = 0 from Proposition 18.
In both cases, it remains that Iπ,c = Iπ,c1 + Iπ,c2 = Iπ,c1.c2 = Iπ,c′ . 2

5.3 Another definition of homotopy for e−paths

Definition 17 (e−loop) A parameterization of a loop containing a surfel x of Σ and
which starts at the surfel x is called an e−loop from x to x in Σ (see Figure 10).
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Fig. 10. An e−loop c = (x0, x1, x2, x3, x4, x5, x0) in a digital surface Σ.

First, we introduce the notion of an elementary E−deformation and the definition of the
E−deformation relation follows immediately.
Definition 18 Let X ⊂ Σ, c and c′ be two e−paths in X. The path c is said to be
an elementary E−deformation of c′ in X (and we denote c ∼E c′) if c = c1.(s).c2 and
c′ = c1.γ.c2; or if c = c1.γ.c2 and c′ = c1.(s).c2. Where γ is an e−loop or a back and forth
from s to s in X. In this case, we also say that c and c′ are the same up to an elementary
E−deformation. We define the E−deformation relation (denoted by ≃E) as the transitive
closure of the elementary E−deformation relation.
In other words, the relation of elementary E−deformation links together two e−paths
which are almost the same except that one is obtained by insertion in the other of a
simple closed e−path included in a loop. Now, we can state the following proposition :
Lemma 21 Let c be an e−path in Σ. Then, either c is simple or c = c1.β.c2 where β is
a simple closed path with a length greater then 1.
Proof: Let c = (x0, . . . , xq). Then, if c is not simple, let h ∈ {0, . . . , q} and l ∈ {0, . . . , q}
be such that xh = xl and l > h; and suppose that l is minimal for these properties. Thus,
c = (x0, . . . , xh).(xh, . . . , xl).(xl, . . . , xq) and (xh, . . . , xl) is simple. 2

Lemma 22 Let c = (xi)i=0,... ,q be an e−path in X included in a loop L of Σ. Then c is
E−deformation of a simple path from x0 to xq in X.
Proof: We proceed by an induction on the length of a path αk for k ≥ 0 with α0 = c.
Let αk be an e−path in X with a length lk and which is included in L. From Lemma 21,
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αk is simple or there exists a simple closed path βk with a length greater than 1 such
that αk = αk

1.βk.αk
2. Since βk is obviously included in L, then βk is an e−loop or a back

and forth in X so that αk is an elementary E−deformation of the path αk+1 = αk
1.αk

2.
Furthermore, the path αk+1 has a length lk+1 < lk since βk has a length greater than 1.
Since the length lk is necessary greater than or equal to 0, it follows that there exists an
integer l ≥ 0 such that αl is simple. Furthermore, for i = 0, . . . , l − 1, the path αi+1 is an
elementary E−deformation of αi so that αl is an E−deformation of α0 = π. 2

Lemma 23 Let c = (xi)i=0,... ,q be an e−path in X. The path c.c−1 is an E−deformation
of the trivial path (x0, x0).
Proof: Let c = (x0, . . . , xq). Then, for i ∈ {0, . . . , q} be denote by βk the e−path
(x0, x1, . . . , xi). We first prove that for all j ∈ {1, . . . , q} the closed paths βj.(βj)−1 and
βj−1.(βj−1)−1 are equivalent up to an elementary E−deformation. Indeed, for such j we
have βj.(βj)−1 = βj−1.(xj−1, xj, xj−1).(β

j−1)−1 where (xj−1, xj, xj−1) is a back and forth.
Finally, we obtain that c.c−1 = βq.(βq)−1 ≃E βq−1.(βq−1)−1 ≃E . . . ≃E β0.(β0)−1 =
(x0, x0). 2

Proposition 24 Let X ⊂ Σ. Two e−paths c and c′ are e−homotopic in X if and only
if they are the same up to an E−deformation.
Proof: First, an elementary E−deformation is a particular case of an elementary e−defor-
mation where the e−paths γ and γ′, used in subsection 1.5 to define the elementary
n−deformation, are closed paths ; one of which is reduced to a single surfel and the other
one is simple closed e−path included in a loop, i.e. an elementary deformation cell. It
immediately follows that if two e−paths are the same up to a E−deformation then they
are e−homotopic.
Now, it is sufficient to prove that, if two e−paths are the same up to an elementary
e−deformation in X, then they are the same up to a E−deformation in X. Let c and c′

be two e−paths which are the same up to an elementary e−deformation, i.e. c = c1.γ.c2
and c′ = c1.γ

′.c2 where γ and γ′ are two paths in X with the same extremities and
included in a common loop L.
From Lemma 22, the path γ [resp. γ′] is an E−deformation of a simple path β [resp. β′]
included in L. Then, c ≃E c1.β.c2 and c′ ≃ c1.β

′.c2 where β and β′ are simple paths.
If β = β′, then it is immediate that c ≃E c′.
Now, if β and β′ are not the same but are both closed, then β and β′ are simple closed
e−paths in L so that c1.β.c2 ∼E c1.c2 and c1.β

′.c2 ∼E c1.c2 (Lemma 22). Then, c ≃E
(c1.c2) ≃E c′.
If β and β′ are not the same and also not closed, let a and b be the two extremities of β
which are distint. Now, from the very definition of a loop, there exists exactly two dictinct
simple e−paths in a loop between two distinct surfels of this loop (see Figure 10). Since
β ̸= β′ then β∗ ∩ β′∗ = {a, b}. It follows that the path β−1.β′ is a simple closed path from
b to b in L. So c1.β ∼E c1.β.β−1.β′.c2. But from Lemma 23, c1.β.β−1.β′.c2 ≃E c1.β

′.c2 so
that c1.β.c2 ≃E c1.β

′.c2. Finally, c ≃E c′. 2
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5.4 Intersection number of e−loops

Proposition 25 Let c be an e−loop in Σ, then Ic,π = 0 for any v−path π on Σ such
that P(π, c) holds.
Lemma 26 Let c = (xi)i=0,... ,q be an e−loop in Σ. Then, depending on the order of the
parameterization of c, one of the two following properties are satisfied :
• ∀i ∈ {0, . . . , q}, Left c(i) ∩ c∗ = ∅ and Right c(i) ⊂ c∗.
• ∀i ∈ {0, . . . , q}, Right c(i) ∩ c∗ = ∅ and Left c(i) ⊂ c∗.
Proof: This lemma comes from local considerations following the very definition of the
e−loops, the canonical parameterization of the v−neigbhborhood of a surfel, and the
local left and right sets. 2

Lemma 27 Let c = (xi)i=0,... ,q be an e−loop in Σ. Then, depending on the order of the
parameterization of c, one of the two following properties are satisfied :
• Ic,π = −0.5 for all v−path π with a length 1 which enters c and Ic,π = +0.5 for all

v−path π with a length 1 which exits c.
• Ic,π = +0.5 for all v−path π with a length 1 which enters c and Ic,π = −0.5 for all

v−path π with a length 1 which exits c.
Proof: This lemma is a straightforward consequence of Lemma 26. 2

Proof of Proposition 25: Let π = (yk)k=0,... ,p and πh = (yh, yh+1) for h ∈ {0, . . . , p−1}
so that π = π0.π1. . . . .πp−1. Since c is closed, the property P(c, π′) holds for any v−path
π′ in Σ, then Proposition 15 implies that :

Ic,π = Ic,π0 + Ic,π1 + . . . + Ic,πp−1

First, it is immediate that Ic,πh
= 0 for any h ∈ {0, . . . , p−1} such that πh does not enter

neither exits c. Indeed, Ic,πh
is obviously equal to 0 when when π∗

h ∩ c∗ = ∅; and in the
case when π∗

h ⊂ c∗ then from Lemma 27 we also obtain that Ic,πh
= 0. Furthermore, since

π is either closed or c∗ does meet neither y0 nor yp (property P(π, c)), it is immediate
that the number of πh’s which enter c is equal to the number of πh’s which exit c. Then,

from Lemma 27, it follows that Ic,π =
p−1∑
h=0

Ic,πh
= 0. 2

Remark 9 The intersection number Ic,π of an e−loop c with a v−path π may not be
equal to zero if P(π, c) is not satisfied, as depicted in Figure 11.

5.5 Proof of Theorem 2 when (n, n) = (v, e)

Proof of Theorem 2 for (n, n) = (v, e): Following Proposition 24, it is sufficient to
prove that Iπ,c = Iπ,c′ when c and c′ are two e−paths which are the same up to an
elementary E−deformation in X (in X \ {y0, yp} if π is not closed). Then, let c = c1.γ.c2
and c′ = c1.(s).c2 = c1.c2 where γ is an e−loop or a back and forth from s to s in X (in
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π

Fig. 11. An e−loop c and a v−path π such that Ic,π = ±0.5.

X \ {y0, yp} if π is not closed).
Since P(π, c′) holds, then is is immediate that P(π, c1), P(π, γ) and P(π, c2) hold too.
Then, following Property 15, Iπ,c1.γ.c2 = Iπ,c1 + Iπ,γ + Iπ,c2 .
If γ = (y0, y1.y2) where y2 = y0 is a back and forth in X (in X \{y0, yp} if π is not closed),
then it is immediate from Definition 11 and Definition 12 that Iπ,γ = 0.
If γ is an e−loop, then P(γ, π) holds together with P(π, γ). Then, from Proposition 2, we
have Iπ,γ = −Iγ,π and from Proposition 25 Iγ,π = 0 . Finally, Iπ,c′ = Xπ,c1 + Iπ,c2 and
from Proposition 15 it follows that Iπ,c′ = Iπ,c1.c2 = Iπ,c. 2

6 Topology preservation within digital surfaces

6.1 A new theorem about homotopy in digital surfaces

In section 1.4 we have given the definition of homotopy between subsets of a digital surface
Σ. In this section, we are interested by a characterization of homotopy which involves the
digital fundamental group. The following theorem has been proved in [ML98].
Theorem 4 Let Y ⊂ X ⊂ Σ be n−connected sets. Then, the set Y is n−homotopic to
X if and only if the two following properties are satisfied:
(1) The morphism i∗ : Πn

1 (Y ) −→ Πn
1 (X) induced by the inclusion map i : Y −→ X is

an isomorphism.
(2) Each n−connected component of Y contains a surfel of X.
And the proof of this theorem uses the following lemma also proved in [ML98].
Lemma 28 Let X ⊂ Σ, and let x ∈ X be an n−simple surfel of X. Then the group
morphism i∗ : Πn

1 (X \ {x}) −→ Πn
1 (X) induced by the inclusion of X \ {x} in X is a

group isomorphism.
We recall the following Lemma which is a straightforward consequence of Theorem 1 (see
Section 1.6) and Theorem 4.
Lemma 29 Let Z be an n−connected subset of Σ, then the following conditions are
equivalent:
(1) There exists z in Z such that {z} is n−homotopic to Z.
(2) Z has exactly one n−connected component and χn(Z) = 1.
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(3) Z ̸= Σ and Πn
1 (Z) = {1}.

(4) Z ̸= Σ and χn(Z) = 1.
Now, we define what we call a topological disk and a topological sphere.
Definition 19 An n−connected subset Z of Σ is called a topological disk if it satisfies
the four conditions of Lemma 29.
Definition 20 If Z = Σ and χn(Z) = 2, we say that Z is a topological sphere.
The purpose of this section is to prove that the condition “i∗ is an isomorphism” of
Theorem 4 is sufficient to say that each n−connected component of Y contains a surfel of
X, except in the very particular case when X is the whole surface Σ which is a topological
sphere (see Definition 20) and Y is a disk obtained by removing from X a topological disk
(Definition 19). In other words, except in the above mentioned particular case, condition
2 of Theorem 4 is in fact implied by condition 1 of Theorem 4.
In other words, we prove the following theorem:
Theorem 5 Let Y ⊂ X ⊂ Σ be two n−connected sets such that X ̸= Σ or Σ is not a
sphere or X \ Y is not a topological disk, or Y is not a topological disk, then:
Y is lower n−homotopic to X if and only if the morphism i∗ : Πn

1 (Y, B) −→ Πn
1 (X, B)

induced by the inclusion map i : Y −→ X is an isomorphism for any base surfel B ∈ Y .
To prove this theorem, we suppose that some (X, Y ) satisfies the condition 1 of Theorem 4,
but does not satisfies condition 2 of Theorem 4. In other words, we suppose that i∗ is
an isomorphism for any base surfel B ∈ Y and we also suppose the existence of an
n−connected component of Y which contains no point of X. Namely, we suppose the
existence of an n−connected component of Y , denoted by A, such that A ⊂ X. In a first
step, we prove that this n−connected component A is a topological disk. In a second
step, we will show by an indirect way that the set X \ A is a topological disk too, in fact
equal to Y , and conclude that X = Σ and X is a sphere.
In the sequel of this section, Y ⊂ X are two n−connected subsets of a digital surface Σ,
and we suppose that for any surfel B ∈ Y , the group morphism i∗ between Πn

1 (Y, B) and
Πn

1 (X, B) induced by the inclusion map of Y in X, is an isomorphism, as in Theorem 4.
In further proof, we will use the following simple Lemma.
Lemma 30 Let Y ⊂ X be two n−connected subsets of Σ and B be a surfel of Y . Then,
the two following properties are equivalent :
i) The morphism i∗ : Πn

1 (Y, B) −→ Πn
1 (X, B) induced by the inclusion of Y in X is an

isomorphism.
ii) For all surfels B′ in Y , the morphism i′

∗ : Πn
1 (Y, B′) −→ Πn

1 (X, B′) induced by the
inclusion of Y in X is an isomorphism.

Proof: We only have to prove that property i) implies property ii). Suppose that i∗ :
Πn

1 (Y, B) −→ Πn
1 (X, B) is group isomorphism and let B′ be any surfel of Y . Then, let i′

∗
be the group morphism from Πn

1 (Y, B′) to Πn
1 (X, B′) induced by the inclusion of Y in X.

Now, let iY and iX be the two canonical group isomorphisms respectively from Πn
1 (Y, B)

to Πn
1 (Y, B′) and from Πn

1 (X, B) to Πn
1 (X, B′) (such isomorphisms exist since X and Y

are both n−connected, see subsection 1.5). Clearly, we have i′
∗ = iX ◦ i∗ ◦ i−1

Y so that i′
∗
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is an isomorphism. 2

6.2 First step of the proof

In this section, A is a connected component of Y which contains no surfel of X (i.e.
A ⊂ X) and B is a surfel of Y (B is the base surfel of the digital fundamental groups
which are considered in this section).
Lemma 31 There exists a surfel x0 ∈ A such that the morphism :

i′′
∗ : Πn

1 (Y ∪ (A \ {x0}), B) −→ Πn
1 (X, B)

induced by the inclusion map i′′ : Y ∪ (A \ {x0}) −→ X is an isomorphism and Y is
lower n−homotopic to Y ∪ (A \ {x0}).
Corollary 32 The set {x0} is n−homotopic to A, so that A is a topological disk for the
n−adjacency relation.
Before to prove Lemma 31, we have to prove two preliminary results.
Lemma 33 Let x0 be a surfel of A. If A is composed of at least 2 surfels, then there
exists a surfel x ̸= x0 in A which is n−adjacent to Y and which is n−simple for Y ∪ {x}.
Corollary 34 Let x0 be a surfel of A. If A is composed of at least 2 surfels, then there
exists a surfel x ̸= x0 in A which is n−adjacent to Y and which is n−simple for A.
Proof: From Lemma 33, there exists a surfel x ̸= x0 in A which is n−adjacent to Y
and n−simple for Y ∪ {x}. Then, x is neither n−isolated in Y ∪ {x} nor n−interior to
Y ∪{x} (since A ⊂ Y is n−connected and x ̸= x0). Then, following Remark 2 and since x is
n−simple for Y ∪{x} we have Card(Cx

n[Gn(x, Y ∪{x})]) = Card(Cx
n[Gn(x, Y ∪ {x})]) = 1.

Now, since x ∈ A cannot be n−adjacent to any other n−connected component of Y than
A, it follows that Cx

n[Gn(x, Y ∪ {x})] = Cx
n[Gn(x, A)]. Now, since x is n−adjacent to Y it

is not n−interior to A then x is n−simple for A. 2

Proof of Lemma 33: Let x be a surfel of A ⊂ Y which is n−adjacent to Y and
whose distance to x0 is maximal among all surfels of A which are n−adjacent to Y . The
distance used here is the length of a shortest n−path in A between two surfels. Let us
prove that the surfel x is n−simple for Y ∪ {x}. We have Gn(x, Y ∪ {x}) = Gn(x, Y ) and
Gn(x, Y \{x}) = Gn(x, Y ). Suppose that this surfel x is not n−simple for Y ∪{x}. Since x
is neither n−isolated nor n−interior to Y ∪ {x}, this implies that Card(Cx

n(Gn(x, Y ))) =
Card(Cx

n(Gn(x, Y ))) ≥ 2 (Remark 2). Let a and b be two surfels n−adjacent to x in two
distinct nx−connected components of Gn(x, Y ) which are n−adjacent to x.
Let us denote by π0 the n−path (b, x, a). Since a and b are n−adjacent to x and do not
belong to the same nx−connected component of Nv(x) ∩ Y , a is not nx−adjacent to b.
Following Remark 5 it follows that none of the sets Leftπ0

(1) and Rightπ0
(1) is empty

and each one contains a surfel which is n−adjacent to x. Furthermore, if we suppose that
all the surfels of Leftπ0

(1) or Rightπ0
(1) which are n−adjacent to x belong to Y , it is

immediate that the two surfels a and b are nx−connected in Nv(x)∩Y . Then, there must
exists two surfels s1 and s2 which are n−adjacent to x such that s1 ∈ Rightπ0

(1)∩ A and
s2 ∈ Leftπ0

(1) ∩ A. Moreover, we may assume that s1 and s2 are n−adjacent to Y . Since
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the set Y is n−connected, there exists an n−path β1 from a to B in Y and an n−path
β2 from B to b in Y .
Now, an n−path α1 = (s1, . . . , x0) in A\{x} from s1 to the surfel x0 must exist since the
n−distance between x and x0 is maximal among all surfels of A which are n−adjacent to
Y . Indeed, otherwise, let c be a shortest n−path with a length l between x and x0 in A.
If s1 is not n−connected to x0 in A \ {x} and since s1 is n−adjacent to x, then s1 is at a
distance of l + 1 from x0 in A. This contradicts the fact that x is at a maximal distance
l from x0 among all the surfels of A which are n−adjacent to Y . Similarly, there must
exist an n−path α2 = (s2, . . . , x0) from s2 to x0 in A \ {x}.
Let α be the closed n−path α = (x).α1.α

−1
2 .(x) in A. Note that, from the very construction

of α1 and α2, we have x /∈ α∗
1 and x /∈ α∗

2. We can also construct a closed n−path
β = (B).β2.π0.β1.(B) from B to B in Y ∪ {x} with π0 = (b, x, a) and x /∈ β∗

1 ∪ β∗
2 since β1

and β2 are n−paths in Y . We deduce that the two paths α and β only cross each other
one time in x, and since s1 ∈ Rightπ0

(1) and s2 ∈ Leftπ0
(1), we have Iα,β = −Iβ,α = 1.

Now, since the morphism i∗ from Πn
1 (Y, B) to Πn

1 (X, B) induced by the inclusion of Y
in X is an isomorphism. In particular, i∗ is onto and then, for any equivalence class
[c′]Πn

1 (X,B), there exists a closed n−path c ∈ AB
n (Y ) which is n−homotopic to c′ in X so

that i∗([c]Πn
1 (Y,B)) = [c′]Πn

1 (X,B). In our case, there exists an n−path γ ∈ AB
n (Y ) which is

n−homotopic to the n−path β in X and i∗([γ]Πn
1 (Y,B)) = [β]Πn

1 (X,B). If γ is n−homotopic
to β in X, and from Theorem 2, we deduce that Iα,β = Iα,γ = 1. But since α is an
n−path in A ⊂ Y and γ is an n−path in Y , we have γ∗ ∩ α∗ = ∅ and then Iα,γ = 0 and
we obtain a contradiction. Finally, the point x must be n−simple for Y ∪ {x}. 2

Remark 10 If x is an n−simple surfel for Y ∪ {x}, then, since x is n−simple in A the
set A \ {x} is n−connected.
Proof of Lemma 31: By induction of Lemma 33 (and using Lemma 28) we show that
there exists a sequence of surfels (s0, . . . , sl) such that for all i ∈ {0, . . . , l}, si ∈ A
is n−simple for Y ∪ {s0, . . . , si} and A \ {s0, . . . , sl} = {x0}. Therefore, Y is lower
n−homotopic to Y ∪ (A \ {x0}).
From Lemma 28, the morphism ii

∗ : Πn
1 (Y ∪{s0, . . . , si−1}, B) −→ Πn

1 (Y ∪{s0, . . . , si}, B)
induced by the inclusion of Y ∪{s0, . . . , si−1} in Y ∪{s0, . . . , si} is a group isomorphism.
On the other hand, the morphism i′

∗ : Πn
1 (Y, B) −→ Πn

1 (Y ∪ {si|i = 0, . . . , l} = Y ∪
(A \ {x0}), B) induced by the inclusion map i′ : Y −→ Y ∪ (A \ {x0}) is such that
i′
∗ = il

∗ ◦ . . . ◦ i0. Therefore, the morphism i′
∗ is an isomorphism. Furthermore, since i∗

is an isomorphism, then i′′
∗ = i∗ ◦ i′

∗
−1 is an isomorphism from Πn

1 (Y ∪ (A \ {x0}), B) to
Πn

1 (X, B). 2

6.3 Second step of the proof

In Section 6.2 we have proved that Y is lower n−homotopic to Y ∪ (A \ {x0}) where x0 is
an isolated surfel of Y ∪ (A \ {x0}). In this section, we will state that, under the condition
that the n−path surrounding {x0} in Y ∪ (A \ {x0}) is n−reducible in Y ∪ (A \ {x0}),
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then Y ∪ (A \ {x0}) is a topological disk.

6.4 Edgel borders of a connected subset X ⊂ Σ

First, we have to define explicitly what we call a “border” of a connected set of surfels.
Let X be an n−connected subset of a surface Σ.
Definition 21 (border edgel) We call a border edgel of X any couple (x, y) of surfels
of Σ such that x ∈ X and y ∈ X. We denote by B(X) the set of border edgels of X.
Definition 22 (s−adjacency relation) We say that two border edgels (x, y) and
(x′, y′) of B(X) are s−adjacent if the three following conditions are satisfied :
• x, y, x′ and y′ belong to a common loop L of Σ.
• x ̸= x′ or y ̸= y′.
• x is e−connected to x′ in L∩X if n = e, and y is e−connected to y′ in L∩X if n = v.
We can define the s−connectivity between border edgels as the transitive closure of this
adjacency relation. The definition of an s−path of border edgels also comes immediately.
Note that any s−connected component of border edgels of X is a simple closed curve (i.e.
each border edgel has exactly two s−neighbors, one per loop which contains this border
edgel) and is called a border of X, whereas a parameterization of such a simple closed
curve is called a parameterized border of X.
Definition 23 (n−path cn(s)) Let s = (s0 = (x0, y0), . . . , sl = (xl, yl)) be a s−path of
border edgels of X. We define the n−path associated with s denoted by cn(s) according
to the following cases :
• If n = e and for i ∈ {0, . . . , l − 1}, we call ci the shortest e−path joining xi to xi+1

in X ∩ L, where L is the unique loop containing {xi, xi+1, yi, yi+1} (path which exists
according to the definition of the s−adjacency between si and si+1). Then ce(s) =
c0 ∗ . . . ∗ cl−1.

• If n = v and for i ∈ {0, . . . , l − 1}, then xi is v−adjacent to xi+1. We define cv(s) =
(x0, . . . , xl).

Remark 11 For any s−path of border edgels s = (s0 = (x0, y0), . . . , sl = (xl, yl)) of
X ⊂ Σ and n ∈ {e, v}, all the surfels of cn(s) are n−adjacent to X.

6.5 Free group

In the following, we will use the notion of the (non-Abelian) free group with m generators.
Let A = {a1, . . . , am} ∪ {a−1

1 , . . . , a−1
m } be an alphabet with 2m distinct letters, and

let Wm be the set of all words over this alphabet (i.e. finite sequences of letters of the
alphabet). We say that two words w ∈ Wm and w′ ∈ Wm are the same up to an elementary
cancellation if one can be obtained by inserting or deleting in the other a sequence of
the form a−1

i ai or a sequence of the form aia
−1
i with i ∈ {1, . . . , m}. Now, two words

w ∈ Wm and w′ ∈ Wm are said to be free equivalent if there is a finite sequence w =
w1, . . . , wk = w′ of words of Wm such that for i = 2, . . . , k the words wi−1 and wi are the
same up to an elementary cancellation. This defines an equivalence relation on Wm and
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we denote by Fm the set of equivalence classes of this equivalence relation. Furthermore,
if w is a word of Wm, we denote by w the equivalence class of the word w following the
latter equivalence relation. The concatenation of words defines an operation on Fm which
provides Fm with a group structure (we define w1w2 = w1w2). The group thus defined is
called the free group with m generators over A. Classically, we denote by w1.w2 the word
obtained by concatenation of the words w1 and w2.
We denote by 1m the unit element of Fm which is equal to ϵ where ϵ is the empty word.
The only result which we shall admit on the free group is the classical result that if a
word w ∈ Lm is such that w = 1m and w is not the empty word, then there exists
in w two successive letters aia

−1
i or a−1

i ai with i ∈ {1, . . . , m}. This remark leads to an
immediate algorithm to decide whether a word w ∈ Wm is such that w = 1m by successive
cancellations.

6.6 Free group element associated with a path

In the sequel X = {x1, . . . , xl} is an n−connected subset of Σ with cardinality l > 1.
Notation 6 If x is a surfel of X, we abbreviate and denote by o(x) the cardinality of
Cx

n[Gn(x, X)], set of nx−connected components of Nv(x)∩ X which are n−adjacent to x.
We observe that o(xi) may be at most equal to 4 . Then, we may assign a number t in
{1, . . . , o(xi)} to each element of Cxi

n [Gn(xi, X)] so that it makes sense to talk of the tth

element of Cxi
n [Gn(xi, X)].

Definition 24 (alphabet AX) Now, we define the alphabet AX as follows :

AX = {x1,1, . . . , x1,o(x1), x2,1, . . . , x2,o(x2), . . . . . . , xl,1, . . . , xl,o(xl)}
∪ {x−1

1,1, . . . , x−1
1,o(x1)

, x−1
2,1, . . . , x−1

2,o(x2)
, . . . . . . , x−1

l,1 , . . . , x−1
l,o(xl)

}

Where the symbols {xi,1, . . . , xi,o(i)} are associated to the surfel xi, and the symbol xi,j is
associated to the jth element of Cxi

n [Gn(xi, X)].
Definition 25 (word associated to a path) If π = (y0, y1) is an n−path in X with
a length 1 such that y0 = xa and y1 = xb for {a, b} ⊂ {0, . . . , l}. We associate to π a
word wn(π, X) of the alphabet AX defined by wn(π, X) = xa,tx

−1
b,u where t and u are such

that xb belongs to the t
th element of Cxa

n [Gn(xa, X)] and xa belongs to the u
th element of

Cxb
n [Gn(xb, X)].

If π = (yk)k=0,... ,p is an n−path with a length q > 1 in X, we define the word wn(π, X)
as follows :

wn(c, X) = wn((y0, y1), X)wn((y1, y2), X)wn((y2, y3), X) . . . wn((yp−1, yp), X)

And we define wn(π, X) to be the empty word if π is of length 0 or is a trivial path.
Definition 26 (free group element associated to a path) If π is an n−path in X
and AX has a cardinality of 2m. We define the element νn(π, X) of the free group with
m generators over AX by : νn(π, X) = wn(π, X).
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Remark 12 If π1 and π2 are two n−paths in X such that the last surfel of π1 is equal
to the first surfel of π2. Then, wn(π1.π2, X) = wn(π1, X)wn(π2, X)

Remark 13 If π is an n−path in X, then, from its very construction, wn(π, X) cannot
contain some pair xi,tx

−1
i,t for i ∈ {0, . . . , l} and t ∈ {1, . . . , o(xi)}.

Proposition 35 Let X be an n−connected subset of Σ with at least two surfels. Let π
and π′ be two n−paths in X. If π ≃n π′ then ν(π, X) = ν(π′, X).
The proof of Proposition 35 relies on the three following lemmas.
Lemma 36 If π is an n−back an forth in X, then νn(π, X) = 12m.
Proof: Let π = (y0, y1, y0) be an n−back and forth in X such that y0 = xa and
y1 = xb. From Definition 26, wn(π, X) = xa,ux−1

b,t xb,tx
−1
a,u if y1 belongs to the tth element of

Cy0
n [Gn(y0, X)]; and y0 belongs to the uth element Cy1

n [Gn(y1, X)]. Finally, it is immediate
that wn(π, X) = 12m. 2

Lemma 37 If π is a triplet in X, then νv(π, X) = 12m.
Proof: Let π = (y0, y1, y2, y0) be a triplet in X. Then, we may suppose without loss
of generality (up to a new numbering of X) that y0 = x0, y1 = x1 and y2 = x2. Since
y0, y1 and y0 belong to a common loop, the surfels y1 and y2 belong to the same ele-
ment of Cy0

v [Gv(y0, X)] (say the first one, still without loss of generality); the two surfels
y0 and y2 belong to the same (say the second) element of Cy1

v [Gv(y1, X)]; and the two
surfels y0 and y1 belong to the same (say the third) element of Cy2

v [Gv(y2, X)]. Thus,
wv((y0, y1), X) = x0,1x

−1
1,2, wv((y1, y2), X) = x1,2x

−1
2,3, and wv((y2, y0), X) = x2,3x

−1
0,1 so that

w(π, X) = x0,1x
−1
1,2x1,2x

−1
2,3x2,3x

−1
0,1. Then,

w(π, X) = x0,1x
−1
1,2x1,2x

−1
2,3x2,3x

−1
0,1 = x0,1x

−1
2,3x2,3x

−1
1,0 = x1,0x

−1
1,0 = 12m. 2

Lemma 38 If π is an e−loop in X, then νe(π, X) = 12m.
Proof: Let π = (y0, . . . , yp) be an e−loop in X. First, we observe that p > 2 and
we may suppose that yi = xi for all i ∈ {0, . . . , p}. Then, from Definition 25 we have
wv(π, X) = wv((x0, x1), X).wv((x1, x2), X). . . . .wv((xp−1, xp), X).
Furthermore, for all k ∈ {1, . . . , p−1} let us denote by σ(k) the number of the element of
Cxk

v [Gv(xk, X)] which contains the surfel xk−1. Then, from the very definition of an e−loop
in X, it is immediate that σ(k) is also the number of the element of Cxk

v [Gv(xk, X)] which
contains the surfel xk+1 (indeed, xk−1 and xk+1 are both e−connected in π∗ ⊂ Nv(xk)∩X).
On the other hand, it is also obvious that x1 and xp−1 both belong to the same element
of Cx0

v [Gv(x0, X)], say the first one. It follows that :

wv(π, X) = x0,1x
−1
1,σ(1)x1,σ(1)x

−1
2,σ(2)x2,σ(2)x

−1
3,σ(2) · · · x−1

p−1,σ(p−1)xp−1,σ(p−1)x
−1
0,1

And then : wv(π, X) = x0,1x
−1
0,1 = 12m. 2

Proof of Proposition 35:
Following Proposition 24 and Proposition 17, it is sufficient to prove this proposition in
the case when π and π′ are the same up to an elementary T −deformation when n = v
and the same up to an elementary S−deformation when n = e.
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If n = e we suppose that π = π1.(s).π2 and π′ = π1.γ.π2 where γ is an e−back and forth
or an e−loop in X. Then, following Remark 12 we have νe(π, X) = we(π1, X)we(π2, X)
and νe(π

′, X) = we(π1, X)we(γ, X)we(π2). Now, from Lemma 36 and Lemma 38, we have
we(γ, X) = 12m and it follows that we(π1, X)we(γ, X)we(π2, X) = we(π1, X)we(π2, X).
Finally, νe(π, X) = νe(π

′, X).
If n = v we suppose that π = π1.(s).π2 and π′ = π1.γ.π2 where γ is a v−back and forth or
a triplet in X. Then, following Remark 12 we have νv(π, X) = wv(π1, X)wv(π2, X) and
νv(π

′, X) = wv(π1, X)wv(γ, X)wv(π2, X). Now, from Lemma 36 and Lemma 37, we have
wn(γ, X) = 12m and it follows that wv(π1, X)wv(γ, X)wv(π2, X) = wv(π1, X)wv(π2, X).
Finally, νv(π, X) = νv(π

′, X). 2

6.7 Important lemmas

The main result of this section is constituted by the following proposition :
Proposition 39 Let Y be an n−connected subset of Σ and x0 be an n−isolated surfel of
Y (i.e. x0 has no n−neighbor in Y ). Let s be the s−curve ((a, x0), (b, x0), (c, x0), (d, x0))
where a, b, c and d are the appropriately named four e−neighbors of x0 in Y . If cn(s) is
n−homotopic to a trivial path in Y , then Y is a topological disk.
In the sequel of this section, Y is an n−connected subset of Σ and s is a parameterized
border of Y (i.e. s is a parameterization of a simple closed s−curve of border edgels of
Y ). In order to prove Proposition 39, we must state the following lemmas.
Lemma 40 If the n−path cn(s) is n−homotopic in Y to a trivial path and (cn(s))

∗ has
more than one surfel then cn(s) contains a surfel which is n−simple for Y .
In order to prove Lemma 40, we first state the following lemma.
Lemma 41 If wn(cn(s), X) contains a pair x−1

i,k xi,k for some i in {1, . . . , l} and some k
in {1, . . . , o(xj)} then the surfel ck of cn(s) such that xi = ck is n−simple for X.
Proof: If x−1

j,b xj,b occurs in wn(cn(s), X), then more precisely and from Definition 25,
xk,ux−1

j,b xj,bxk′,t occurs for some k and k′ in {1, . . . , l}, u in {1, . . . , o(xk)} and t in
{1, . . . , o(xk′)}. It means that there exists in cn(s) a subsequence (cp, . . . , cp+q) such
that :
– wn((c

p, . . . , cp+q), X) = (wn((c
p, cp+1), X) . . . wn((c

p+q−1, cp+q), X) = x−1
j,b xj,b.

– cp = xk belongs to the bth element of Cxj
n [Gn(xj, X)], and xj belongs to the uth element

of Cxk
n [Gn(xk, X)].

– cp+q = xk′ belongs to the bth element of Cxj
n [Gn(xj, X)]; and xj belongs to the tth

element of Cxk′
n [Gn(xk′ , X)].

– ck = xj for all k ∈ {p + 1, . . . , p + q}
In other words, the parameterized border comes from an n

i
−connected component of

Gn(xi, X) to xi and exits from xi to the same nxi
−connected component of Gn(xi, X). It

is then immediate that Gn(xi, X) has a single nxi
−connected component (see Figure 12)

n−adjacent to xi which is itself n−adjacent to a surfel of X (Remark 11). Then, xi is
n−simple for X. 2
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s

?

?

?

X

x

?
either X or X

Fig. 12. If the two grey surfels belong to the same vx−connected of Gv(x, X) it is clear that
Card(Cx

v [Gv(x, X)]) = 1 and Card(Cx
e [Ge(x, X)]) = 1.

Proof of Lemma 40: Since cn(s) is closed and has a length greater then 1 it follows
that wn(cn(s), X) is a word on AX with a length (number of symbols) greater or equal
to 4 (see Definition 25). Now, since cn(s) is n−homotopic to a trivial path in Y , it
follows from Proposition 35 and Definition 25 for a word associated to a trivial path, that
wn(cn(s), X) = 12m. Then, wn(cn(s), X), having a length greater than 1, must necessarily
contain a pair x−1

j,b xj,b associated to a surfel xj and the bth nxj
−connected component of

Gn(xj, X) n−adjacent to xj. Indeed, from the very definition of the word wn(cn(s), X),
no pair of the form xj,bx

−1
j,b can occur in this word for any j ∈ {0, . . . , l}.

But, from Lemma 40, this implies that cn(s) contains a surfel which is n−simple for X.
2

Definition 27 (border edgels associated with an element of Cx
n[Gn(x, X)]) Let

x be an n−simple surfel of Z ⊂ Σ, and let C and D be the only elements of respectively
Cx

n[Gn(x, Z)] and Cx
n[Gn(x, Z)] (see Definition 4 and Remark 2). The two edgels of the

form (a, b) and (a′, b′), where {a, a′} ⊂ C and {b, b′} ⊂ D, are called the two border
edgels associated to the component C (see Figure 13).

: Nv(x) ∩ X : x

������
������
������

������
������
������

(a) For (n, n) = (e, v)

������
������
������

������
������
������

(b) (n, n) = (e, v) or (v, e)

������
������
������

������
������
������

(c) (n, n) = (v, e)

Fig. 13. Border edgels associated with an nx−connected component of Gn(x, X).

Lemma 42 Let x be a surfel of cn(s) which is n−simple for Y . Let f and f ′ be the two
border edgels associated with the unique connected component N0 of Gn(x, Y ). Let s′ be a
parameterized border of Y \ {x} which contains the two border edgels f and f ′ and such
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that cn(s
′) is a path from x′ to x′ where x′ ̸= x. Then the surfel path cn(s

′) is reducible in
Y \ {x}.
Sketch of proof: First, cn(s)

∗ must have more than one surfel since x is simple. It
follows that it is possible to find an edgel path s2 such that cn(s) and cn(s2) are the
same up to a cyclic permutation but the extremity of cn(s2) is different from x. Now, it
is readily seen that if cn(s) is reducible, then cn(s2) is reducible too.
Now, let s′ be the s−path obtained by removing in s2 the edgels between f and f ′ which
contain x (maybe such edgels do not exist as in the case of Figure 13(a)) and possibly
replacing them with edgels of the form (x, q) where q belongs to N0. If f = (b, d) and
f ′ = (b′, d′) then let γ be the sub-path of cn(s2) from b to b′ associated with the s−path
from f to f ′ in s2, and let γ′ be the sub-path from b to b′ of cn(s

′) associated with the
s−path from f to f ′ in s′. These two paths have the same extremities and are included
in C ∪ {x} where C is the only nx−connected component of Cx

n[Gn(x, Y )]. Then, it is
easily seen that γ is n−homotopic to γ′ in Y , so that the paths cn(s2) and cn(s

′) are
n−homotopic too. It follows that cn(s2) is reducible in Y . 2

Proof of Proposition 39: We show the existence of a sequence of deletion of n−simple
surfels which leads to {y} from Y where y is a surfel of Y .
Let s0 = ((a, x0), (b, x0), (c, x0), (d, x0)) be the s−curve of Proposition 39 and we set
Y 0 = Y . Now, if m ≥ 0 and if sm is a parameterized border of a set Y m with at least
2 surfels such that cn(s

m) is n−homotopic to the trivial path in Y m, then, Lemma 40
shows that cn(s

m) contains an n−simple surfel for Y m which we denote by ym. So, let
Nm

0 be the connected component of Gn(y
m, Y m) n−adjacent to ym and let f and f ′ be

the two border edgels associated with Nm
0 . Then, let Y m+1 = Y m \ {ym} and sm+1 be the

parameterized border of Y m+1 which contains the two border edgels f and f ′ as defined
in Lemma 42, and let bm+1 be the basepoint of cn(s

m+1) (distinct from ym following
Lemma 42).
From Lemma 42, the path cn(s

m) is n−homotopic to cn(s
m+1) in Y m and cn(s

m+1) is
reducible in Y m.
Now, let im

∗ : Πn
1 (Y

m+1, bm+1) −→ Πn
1 (Y

m, bm+1) be the morphism induced by the inclu-
sion of Y m+1 in Y m. Since ym is n−simple for Y , Lemma 28 implies that the morphism
im
∗ is a group isomorphism, in particular im

∗ is one to one.
Then, im

∗ ([cn(s
m+1)]Πn

1 (Y
m+1,bm+1)) = [cn(s

m+1)]Πn
1 (Y

m,bm+1) but since the path cn(s
m+1) is

n−reducible in Y m, it follows that im
∗ ([cn(s

m+1)]Πn
1 (Y

m+1,bm+1)) = [1]Πn
1 (Y

m,bm+1). On the
other hand, we have im

∗ ([1]Πn
1 (Y

m+1,bm+1)) = [1]Πn
1 (Y

m,bm+1). Then, since im
∗ is one to one

we obtain that [1]Πn
1 (Y

m+1,bm+1) = [cn(s
m+1)]Πn

1 (Y
m+1,bm+1). In other words, the n−path

cn(s
m+1) is reducible in Y m+1, so Y m+1 and sm+1 still satisfy conditions of Lemma 40.

By induction on the integer m we prove that while the set Y m has more than two surfels,
we can find a surfel ym ∈ Y m which is n−simple for Y m and so a set Y m+1 = Y m \ {ym}
which is lower n−homotopic to Y m and strictly included in Y m. Finally, there must exist
an integer k such that Y k is reduced to a single surfel {y}. It is clear from its construction
that Y k = {y} is lower n−homotopic to Y 0 = Y , so that Y is a topological disk. 2
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7 Proof of Theorem 5

Proof of Theorem 5:
We use Theorem 4 and prove that Condition 2 is implied by Condition 1 except in a
very particular case. So, we suppose that Condition 1 is satisfied and that there exists a
n−connected component A of Y which is included in X (i.e. A contains no surfel of X).
From Lemma 31 there exists a surfel x0 in A such that Y is lower n−homotopic to
Y ∪(A\{x0}). Then, since i∗ and i′′

∗ : Πn
1 (Y, B) −→ Πn

1 (Y ∪(A\{x0}), B) are isomorphisms
for all B ∈ Y , the group morphism i′

∗ : Πn
1 (Y ∪ (A \ {x0}), B) −→ Πn

1 (X, B) induced by
the inclusion map i′ : Y ∪(A\{x0}) −→ X satisfying i∗ = i′

∗ ◦ i′′
∗ is an isomorphism. Since

x0 belongs to the n−connected component A of Y , the surfel x0 is an n−isolated surfel
of Y ∪ (A \ {x0}) and let s be a parameterization of the border between Y ∪ (A \ {x0})
and {x0}. Let cn(s) be the n−path associated with the s−path s.
First, we suppose that cn(s) is not reducible in Y ∪ (A \ {x0}). It is clear that the same
path cn(s) is reducible in Y ∪ A and so in X. Thus, let z0 be the base surfel of cn(s) and
j∗ be the morphism from Πn

1 (Y ∪ (A \ {x0}), z0) to Πn
1 (X, z0) induced by the inclusion of

Y ∪ (A \ {x0}) in X. Then, j∗ cannot be one to one and from Lemma 30 the morphism i′
∗

cannot be an isomorphism since B and z0 are n−connected in Y ∪ (A \ {x0}). It follows
that i∗ is not an isomorphism and we get a contradiction.
Therefore cn(s) is n−homotopic to the path reduced to a single surfel in Y ∪ (A \ {x0}).
Then, by Proposition 39 we know that Y ∪(A\{x0}) is a topological disk. From Lemma 31,
Y is lower n−homotopic to Y ∪ (A \ {x0}) so we have χn(Y ) = χn(Y ∪ (A \ {x0}) = 1.
Since Y ̸= Σ, the set Y is a topological disk (Definition 19). Condition 2 of Lemma 29
shows that Y has a single n−connected component so Y = A. From Lemma 31 it is
straightforward that {x0} is lower n−homotopic to A, so that A is a topological disk.
Then, Y ∪A = Σ and Y ∪A ⊂ X ⊂ Σ so X = Σ. Since χn(Y ) = 1 and χn(Y ) = χn(A) = 1,
then χn(Σ) = χn(Y ) + χn(Y ) = 2. This ends to prove that Condition 1 of Theorem 4 is
implied by Condition 2 of Theorem 4 except in the particular case when X is the whole
surface Σ which is a sphere and Y is a topological disk as well as Y . And we obtain
Theorem 5. 2

Conclusion

The intersection number, which was initially used in order to prove a basic Jordan theorem
for digital curves lying on a digital surface (see [FM99]), has been used here among
other tools to prove that the fundamental group can be used to completely characterize
homotopy between subsets of a digital surface. Thus, the intersection number appears as
a good tool for proving theorems of topology within digital surfaces.
Now, we have achieved to show that topology preservation within digital surfaces is
strictly related to properties involving fundamental groups of objects. The framework of
digital surfaces appears as an intermediate framework for digital topology between the
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2D and 3D digital spaces. However, characterizing the homotopy between subsets of Z3 is
still a difficult and open problem. Indeed, the digital fundamental group is not sufficient
in this case. Further works should investigate this open problem.
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