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A Concise Characterization of

3D Simple Points

Sébastien Fourey Rémy Malgouyres 1

GREYC, ISMRA, 6 bd Maréchal Juin 14000 Caen - France.

Abstract

We recall a possible definition of a simple point which uses the digital fundamental
group introduced by T.Y. Kong in [1]. Then, we prove that a more concise but
not less restrictive definition can be given. Indeed, we prove that there is no need
to consider the fundamental group of the complement of an object in order to
characterize its simple points. In order to prove this result, we do not use the fact
that “the number of tunnels of X is equal to the number of tunnels in X” but we
use the linking number defined in [2]. In so doing, we formalize the proofs of several
results stated without proof in the literature (Bertrand, Kong, Morgenthaler).

Key words: Simple point, topology preservation, thinning, fundamental group,
linking number.

Introduction

The definition of a simple point is the key notion in the context of thinning
algorithms. Indeed, this definition leads to the most commonly admitted cri-
terion for checking that a given thinning algorithm preserves the topology of
a digital image. Usually, one says that an image I1 is topologically equivalent
to an image I2 if I1 can be obtained from I2 by sequential additions or dele-
tions of simple points. Thus, we obtain a convenient definition of topological
equivalence 2 in the digital context as soon as we have defined the meaning of
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2 topological equivalence is used here with a different meaning than the one of
homeomorphism as in classical topology.
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“preserving the topology by removing or adding a single point” (a so called
simple point). One problem with topology preservation in 3D is that taking
care not to change the number of connected components in the image as well
as in its background is not sufficient as in the 2D case. In 3D, one must also
take care not to change the number and the location of the tunnels as donuts
have. Thus, we say that a simple closed curve in Z3 has a tunnel, and this
cannot be stated using only connectivity considerations like in the 2D case.
Now, different characterizations have been proposed by several authors which
all lead to equivalent local characterizations. A first set of characterizations
makes use of the Euler characteristic in order to count the number of tunnels,
but even if this kind of characterization leads to a good local characterization
it is limited by the fact that no information about the localization of the tun-
nels is provided by the Euler characteristic (see Figure 4). Another definition
for the words topology preservation in the digital case has been proposed by
Kong in [3] which is based on remarks made by Morgenthaler in [4], with a
new formalism which involves the digital fundamental group [1]. In this latter
definition, topology preservation is expressed in terms of the existence of a
canonical isomorphism between the fundamental group of the object and the
fundamental group of the object without the point to be removed; a similar
isomorphism being required for the background of the image. In this paper,
we prove that this second condition is in fact implied by the first one. In
other words, we show that preserving the tunnels of an object will imply the
preservation of the tunnels in its background. In order to prove that such a
more concise characterization can be given, we use the linking number be-
tween paths of voxels as defined in [2] which provides an efficient way to prove
that a given path cannot be homotopic to a degenerated path. Theorem 12
(Section 2) comes with its complete justification and some parts of the proofs
given here are the direct answers to some open questions left by Morgenthaler
in [4] such as: do any two paths which can be be continuously deformed one
into each other in an object X keep this property after removal of a simple
point of X?

1 Definitions

1.1 Digital image, paths, connectivity

In this paper, we consider objects as subsets of the 3 dimensional space Z3.
The set of points which do not belong to an object O ⊂ Z3 constitutes the
complement of the object and is denoted by O. Any point v = (i, j, k) ∈ Z3 is
identified with a unit cube in R3 centered at this point: a voxel (short for “vol-
ume elements”). Now, we can define some binary symmetric and anti-reflexive
relations between points by analogy with the following relations between vox-
els. Two voxels are said 6−adjacent if they share a face, 18−adjacent if they
share an edge and 26−adjacent if they share a vertex. By transitive closure
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of these adjacency relations, we can define another one: connectivity between
points. We first define an n-path π with a length l from a point a to a point
b in O ⊂ Z3 as a sequence of points (yi)i=0...l such that for 0 ≤ i < l the
point yi is n-adjacent or equal to yi+1, with y0 = a and yl = b. The path π
is a closed path if y0 = yl and is called a simple path if yi ̸= yj when i ̸= j
(except for y0 and yl if the path is closed). The points y0 and yl are called the
extremities of π even in the case when the path is closed and we denote by π∗

the set of points of π. An n−connected set of points C such that any point
x ∈ C has exactly two n−neighbors in C is called a simple closed n−curve.
An simple closed path π such that π∗ is a simple closed n−curve is called a
parameterized simple closed n−curve. A closed path (x, x) with a length 1 for
x ∈ Z3 is called a trivial path. If x is a point of Z3 and n ∈ {6, 18, 26} then we
denote by Nn(x) the set of points of Z3 which are n−adjacent to x. We call
Nn(x) the n−neighborhood of x.

Given a path π = (yk)k=0,...,l, we denote by π−1 the sequence (y′k)k=0,...,l such
that yk = y′l−k for k ∈ {0, . . . , l}.
Now we can define the connectivity relation: two points a and b are said n-
connected in an object O if there exists an n-path π from a to b in O. This is
an equivalence relation between points of O, and the n−connected components
of an object O are the equivalence classes of points according to this relation.
Using this relation on the complement of an object we can define a background
component of O as an n−connected component of O.

In order to avoid topological paradoxes, we always study the topology of
an object using an n−adjacency for the object and a complementary adja-
cency n for its complement. We sum up this by the use of a pair (n, n) ∈
{(6, 26), (6+, 18), (18, 6+), (26, 6)}. The notation 6+ is used in order to distin-
guish the 6−connectivity associated to the 26−connectivity from the (6+)−
connectivity associated to the 18−connectivity.

If π = (yi)i=0,...,p and π′ = (y′k)k=0,...,p′ are two n−paths such that yp = y′0 then
we denote by π.π′ the path (y0, . . . , yp−1, y

′
0, . . . , y

′
p′) which is the concatenation

of the two paths π and π′.

1.2 Geodesic neighborhoods and topological numbers

The geodesic neighborhoods have been introduced by Bertrand ([5]) in order
to formulate a local characterization of simple points.

Definition 1 (geodesic neighborhood) Let x ∈ X ⊂ Z3. The geodesic
neighborhood of x in X, denoted by Gn(x,X), is defined as follows:

• G6(x,X) = (N6(x) ∩ X) ∪ {y ∈ N18(x)| y is 6−adjacent to a point of
N6(x) ∩X}.

• G26(x,X) = N26(x) ∩X.

Definition 2 (topological numbers) Let X ⊂ Z3 and x ∈ Z3.
The topological number associated to x and X, denoted by Tn(x,X) for
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(n, n) ∈ {(6, 26), (26, 6)}, is defined as the number of n−connected compo-
nents of Gn(x,X) (see Figure 1).

(a) T6(x,X) = 3 (b) T6(x,X) = 1

: x

: X

: G6(x,X)

Fig. 1. Two examples of geodesic neighborhoods and topological numbers.

1.3 Digital fundamental group

In this section, we define the digital fundamental group of a subset X of Z3

following the definition of Kong in [1] and [6].

First, we need to introduce the n−homotopy relation between n−paths in
X. Intuitively, a path π is homotopic to a path π′ if π can be “continuously
deformed” into π′. Let us consider X ⊂ Z3. We introduce the notion of an
elementary n−deformation: two closed n−paths π and π′ in X having the
same extremities are the same up to an elementary n−deformation (with fixed
extremities) in X, and we denote π ∼n π′, if they are of the form π = π1.γ.π2

and π = π1.γ
′.π2, the n−paths γ and γ′ having the same extremities and

being both included in a 2×2×2 cube if (n, n) = (26, 6), in a 2×2 square if
(n, n) = (6, 26). Then, the two n−paths π and π′ are said to be n−homotopic
(with fixed extremities) in X if there exists a finite sequence of n−paths π =
π0, . . . , πm = π′ such that for i = 0, . . . ,m − 1 the n−paths πi and πi+1 are
the same up to an elementary n−deformation (with fixed extremities). In this
case, we denote π ≃n π′. A closed n−path π = (x0, . . . , xq = x0) in X is said
to be n−reducible in X if π ≃n (x0, x0) in X.

Let B ∈ X be a fixed point of X called the base point. We denote by An
B(X)

the set of all closed n−paths π = (x0, . . . , xp) which are included in X and
such that x0 = xp = B. The n−homotopy relation is an equivalence relation
on An

B(X), and we denote by Πn
1 (X,B) the set of the equivalence classes of this

equivalence relation. If π ∈ An
B(X), we denote by [π]Πn

1 (X,B) the equivalence
class of π under this relation.

The concatenation of closed n−paths is compatible with the n−homotopy
relation, hence it defines an operation on Πn

1 (X,B), which to the class of π1 and
the class of π2 associates the class of π1.π2. This operation provides Πn

1 (X,B)
with a group structure. We call this group the n−fundamental group of X with
base point B. The n−fundamental group defined using a point B′ ∈ X as the
base point is isomorphic to the n−fundamental group defined using another
point B ∈ X as the base point if X is n−connected.

Now, let X and Y be such that Y ⊂ X ⊂ Z3 and let B ∈ Y a the base point.
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A closed n−path in Y is a particular case of a closed n−path in X. In partic-
ular, if two closed n−paths of Y are n−homotopic (with fixed extremities) in
Y , then they are n−homotopic (with fixed extremities) in X. These two prop-
erties enable us to define a canonical morphism i∗ : Πn

1 (Y,B) −→ Πn
1 (X,B),

which we call the morphism induced by the inclusion map i : Y −→ X. To the
class of a closed n−path α ∈ An

B(Y ) in Πn
1 (Y,B) the morphism i∗ associates

the class of the same n−path in Πn
1 (X,B).

1.4 The digital linking number

The digital linking number, denoted by Lπ,κ, has been defined in [2] for a
couple (π, κ) of closed paths of Z3 which do not intersect each other. It
is the digital analogue of the linking number defined in knot theory (see
for example [7]) and it is immediately computable (see [2]) for any couple
(π, κ) of disjoint paths such that π is an n−path and κ is an n−path with
(n, n) ∈ {(6, 26), (26, 6), (6+, 18), (18, 6+)} (following the terminology used in
knot theory, we call such a couple of paths a link). This number counts the
number of times two digital closed paths are interlaced one in the other, as
illustrated in Figure 2. In this subsection, we recall both the definition of the
linking number and the two main theorems from [2].

(a) Lπ,κ = ±1. (b) Lπ,κ = ±2. (c) The Whitehead’s link:
Lπ,κ = 0.

Fig. 2. Three different links between a 6−path π in black and a 18−path κ in white.

Notation 1 We will denote by P the following map:

P : Z3 −→ Z2

(i, j, k) 7−→ (i, j)

Definition 3 (Pred and Succ) Let κ = (xi)i=0,...,q be a closed n−path and
xi be a point of κ for i ∈ {0, . . . , q}. Then, Succκ(i) is the smallest integer l
greater than i such that P(xi) ̸= P(xl); if such an integer l does not exist then
Succκ(i) is the smallest l < i such that P(xi) ̸= P(xl). If in turn such an l
does not exist then, clearly P(xi) = P(xl) for all l ∈ {0, . . . , q} and we define
Succκ(i) = i.

Similarly, Predκ(i) is the subscript l which precedes i in the cyclic parameter-
ization of κ and such that P(xi) ̸= P(xl), or Predκ(i) = i if P(xi) = P(xl) for
all l ∈ {0, . . . , q}.
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Definition 4 (projective movement) Let κ = (xi)i=0,...,q be an n−path
and i ∈ {0, . . . , q}. Let V be the 8−neighborhood of (0, 0) in the digital plane,
i.e. V = ({−1, 0, 1}×{−1, 0, 1})\{(0, 0)}. We define the projective movement
Pκ(i) ∈ V × V associated to the subscript i of κ by:

Pκ(i) = ((x1
Predπ(i)

− x1
i , x

2
Predπ(i)

− x2
i ), (x

1
Succπ(i)

− x1
i , x

2
Succπ(i)

− x2
i ))

We also denote: Pκ(i)
Pred = (x1

Predπ(i)
− x1

i , x
2
Predπ(i)

− x2
i ) and

Pκ(i)
Succ = (x1

Succπ(i)
− x1

i , x
2
Succπ(i)

− x2
i ).

The projective movement represents the position of the preceding and the fol-
lowing points of xi in κ whose projections do not coincide with the projection
of xi. These positions are normalized in a 3×3 grid centered at the point (0, 0)
which is associated to the projection of xi. Note that this projective movement
will be essentially used when Predκ(i) = i− 1.

Definition 5 (left and right) Let κ = (xi)i=0,...,q be an n−path and V be
the set introduced in Definition 4. One can parameterize the points of V using
the counterclockwise order around the point (0, 0). Then, given a projective
movement P = Pκ(i), we define the two sets Left(P) and Right(P) as follows:

Right(P) is the set of points met when looking after points of V from PPred to
PSucc following the counterclockwise order on V , excluding PSucc and PPred .

Left(P) is the set of points met when looking after points of V from PSucc to
PPred following the counterclockwise order on V , excluding PSucc and PPred .

Example: If P = ((−1, 0), (1,−1)) then Right(P) = {(−1,−1), (0,−1)} and
Left(P) = {(1, 0), (1, 1), (0, 1), (−1, 1)}.
Notation 2 In the sequel we say that two paths π and κ satisfy the property
H(π, κ) if π is a closed n−path for n ∈ {6, 6+} and κ is closed n−path such
that κ∗ ∩ π∗ = ∅.
Definition 6 (contribution to the linking number) Let π = (yk)k=0,...,p

and κ = (xi)i=0,...,q be two closed paths such that H(π, κ) holds. We define as
follows Wπ,κ(k, i), the contribution to the linking number of a couple (k, i),
where 0 ≤ k ≤ p and 0 ≤ i ≤ q.
• If the third coordinate of yk is greater than the third coordinate of xi, or if
P(yk) ̸= P(xi) or P(yk) = P(yk−1) or P(xi) = P(xi−1) then Wπ,κ(k, i) = 0,
• otherwise, let Pπ = Pπ(k) and Pκ = Pκ(i) be the projective movements
associated to the subscripts i and k (note that in this case Predπ(k) = k − 1
and Predκ(i) = i− 1):

– If PPred
π = PSucc

π then Wπ,κ(k, i) = 0,
– otherwise Wπ,κ(k, i) = W−

π,κ(k, i) +W+
π,κ(k, i) where

W−
π,κ(k, i) = −0.5 if PPred

κ ∈ Left(Pπ), W+
π,κ(k, i) = 0.5 if PSucc

κ ∈ Left(Pπ),

W−
π,κ(k, i) = 0.5 if PPred

κ ∈ Right(Pπ), W+
π,κ(k, i) = −0.5 if PSucc

κ ∈ Right(Pπ),

W−
π,κ(k, i) = 0 otherwise. W+

π,κ(k, i) = 0 otherwise.

An illustration of the “otherwise” part of the latter definition is given by
Figure 3.

Definition 7 (linking number) Let π = (yk)k=0,...,p and κ = (xi)i=0,...,q be
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0 0

+0.5 -0.5 -0.5 +0.5

-1+1 n−path π

n−path κ

Fig. 3. Contributions associated with points where the two paths of a link overlap
in a 2D projection of the link.

two closed paths such that H(π, κ) holds. We define the digital linking number
of π and κ (denoted by Lπ,κ) by:

Lπ,κ =
p−1∑
k=0

q−1∑
i=0

Wπ,κ(k, i)

The two following theorems have been proved in [2] and allows to say that the
linking number is a new topological invariant in the field of digital topology.

Theorem 8 Let π and π′ be two closed n−path (n ∈ {6, 6+}) and κ be a
closed n−path of Z3 such that π∗∩κ∗ = ∅ and π′∗∩κ∗ = ∅. If π is n−homotopic
to π′ in Z3 \ κ∗ then Lπ,κ = Lπ′,κ.

Theorem 9 Let π be a closed n−path (n ∈ {6, 6+}), let κ and κ′ be two closed
n−path of Z3 such that π∗ ∩ κ∗ = ∅ and π∗ ∩ κ′∗ = ∅. If κ is n−homotopic to
κ′ in Z3 \ π∗ then Lπ,κ′ = Lπ,κ′.

Remark 1 It is clear that the linking number can be defined using any 2D
projection of a digital link in Z3. Now, even if the equality (up to the sign)
between two linking numbers of a given link computed using two distinct pro-
jections has not been proved, it is obvious that the invariance of the linking
number can be proved for any projection plane orthogonal to a coordinate axis
which one could consider.

The latter remark allows us to treat configurations of points up to rotations
and symmetries

Remark 2 If κ is a trivial path, then Lκ,π = 0 for any closed n−path such
that κ∗∩π∗ = ∅. It follows that if a closed n−path κ in X ⊂ Z3 is n−reducible
in X, then Lκ,π = 0 for all closed n−path π in κ∗.

1.5 Characterization of simple points

A simple point for X ⊂ Z3 is a point the deletion of which does not change
the topology of X. Now, topology preservation in 3D is not as simple to ex-
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press as in the 2D case because of the existence of tunnels. A few authors have
used two main tools to study topology preservation: the Euler characteristic
which allows to count the number of tunnels of an object (see [8]), and the
digital fundamental group ([1]) which allows to “localize” the tunnels. Indeed,
as depicted in Figure 4, counting the number of tunnels is not sufficient to
characterize the fact that the topology is preserved. In this paper, we are in-
terested by a definition of simple points which uses the digital fundamental
group and which avoids the problem previously mentioned. The following def-
inition appears as one of the most convenient for the property “the deletion of
x preserves topology of X”. It comes from the criterion given in [1] for saying
that a thinning algorithm preserves the topology.

Fig. 4. When (n, n) ∈ {(6, 18), (6, 26)}, the gray point can be removed without
changing the number of tunnels in the object which is equal to 1 in both sets.
However, this point is obviously not simple.

Definition 10 Let X ⊂ Z3 and x ∈ X. The point x is said to be n−simple
if:

i) X and X \ {x} have the same number of n−connected components.
ii) X and X ∪ {x} have the same number of n−connected components.
iii) For each point B in X \{x}, the group morphism i∗ : Π

n
1 (X \{x}, B) −→

Πn
1 (X,B) induced by the inclusion map i : X \ {x} −→ X is an isomor-

phism.
iv) For each point B′ in X, the group morphism i′∗ : Π

n
1 (X,B′)X −→ Πn

1 (X∪
{x}, B′) induced by the inclusion map i′ : X −→ X ∪ {x} is an isomor-
phism.

Bertrand, in [9], gave a local characterization for 3D simple points in term of
the number of connected components in geodesic neighborhoods. However, the
definition of simple point given in [9] differs from the definition used here since
it does not consider any morphism between digital fundamental groups but
just require the preservation of cavities and “tunnels”. An intermediate pur-
pose of this paper is to prove that the local characterization given by Bertrand
is a consequence of the three first conditions of Definition 10 and conversely
that the four conditions of this definition are themselves consequences of the
local characterization by the topological numbers.

We recall here the characterization given by Bertrand in [9]. Note that the
definition of simple points used in this proposition slightly differs from Defi-
nition 10.
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Proposition 11 ([9]) Let x ∈ X and (n, n) ∈ {(6, 26), (26, 6)}. The point x
is a n−simple point if and only if Tn(x,X) = 1 and Tn(x,X) = 1.

2 A new characterization of 3D simple points

In the sequel of this paper (n, n) ∈ {(6, 26), (26, 6)}.
In this section, we state the main result of this paper which is that a not less
restrictive criterion for topology preservation is obtained using the only con-
ditions i), ii) and iii) of Definition 10. In other words, we prove the following
theorem:

Theorem 12 Let X ⊂ Z3 and x ∈ X. The point x is n−simple if and only
if:

i) X and X \ {x} have the same number of connected components.
ii) X and X ∪ {x} have the same number of connected components.
iii) For each point B in X \{x}, the group morphism i∗ : Π

n
1 (X \{x}, B) −→

Πn
1 (X,B) induced by the inclusion map i : X \ {x} −→ X is an isomor-

phism.

In order to prove this theorem, we first prove (Subsection 2.1) that a point
which satisfies the three conditions of Theorem 12 also satisfies the local char-
acterization given by Proposition 11 and then, we show (Subsection 2.2) that
this characterization itself implies that the four conditions of Definition 10 are
satisfied.

In the sequel, we may suppose without loss of generality that X is an n−
connected subset of Z3; and that x and B are two distinct points of X whereas
B′ is a point of X. Furthermore, i∗ : Π

n
1 (X\{x}, B) −→ Πn

1 (X,B) is the group
morphism induced by the inclusion of X \ {x} in X; and i′∗ : Πn

1 (X,B′) −→
Πn

1 (X ∪ {x}, B′) is the group morphism induced by the inclusion of X in
X ∪ {x}.
Remark 3 We shall admit the basic property that, if Y ⊂ X are n−connected
subsets of Z3, the group morphism from Πn

1 (Y,B) to Πn
1 (X,B) induced by the

inclusion of Y in X for a base point B ∈ Y is an isomorphism if and only if
the group morphism between Πn

1 (Y,B
′) and Πn

1 (X,B′) is an isomorphism for
any base point B′ ∈ Y .

2.1 First step of the proof of Theorem 12

The purpose of this section is to prove the following proposition.

Proposition 13 If the conditions i), ii) and iii) of Definition 10 are satisfied,
then Tn(x,X) = 1 and Tn(x,X) = 1.

In order to prove this proposition, we introduce several other propositions
and lemmas. The proof of the following proposition is adapted from [9] to the
formalism used here which involves the digital fundamental group.
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Proposition 14 If Tn(x,X) ≥ 2, then either an n−connected component of
X is created by deletion of x, or the morphism i∗ is not onto.

The proof of Proposition 14 will use the following number ν.

Definition 15 Let C be an n−connected component of Gn(x,X) and let α be
an n−path in X. We define νn(x, α, C) as the number of times α goes from C
to x minus the number of time α goes from x to C.

Lemma 16 Let C be an n−connected component of Gn(x,X) and let α and
α′ be two closed n−paths from p to p in X where p ∈ X \ {x}. If α ≃n α′ then
νn(x, α, C) = νn(x, α

′, C).

Proof of Lemma 16. It is sufficient to prove this lemma when α and α′ are
the same up to an elementary n−deformation. Then, we have α = π1.γ.π2 and
α′ = π1.γ

′.π2 where γ and γ′ have the same extremities and are included in a
common 2×2×2 cube C if (n, n) = (26, 6), in a 2×2 square if (n, n) = (6, 26).
It is obvious that νn(x, α, C)− νn(x, α

′, C) = νn(x, γ, C)− νn(x, γ
′, C).

• Case (6, 26): In this case, C is a 2×2 square. If x /∈ C then it is clear that
ν6(x, γ, C) = ν6(x, γ

′, C) = 0. If x ∈ C and C ∩ C = ∅ then ν6(x, γ, C) =
ν6(x, γ

′, C) = 0.

Now, if x ∈ C and C∩C ̸= ∅ then let a and b be the two extremities of γ and
γ′.

If one point of X ∩ C is 6−adjacent to x, then since C ∩ C ̸= ∅ it follows
that this point belongs to C. In this case, ν6(x, γ, C) = ν6(x, γ

′, C) = 0 if
a = b = x or {a, b} ⊂ C; ν6(x, γ, C) = ν6(x, γ

′, C) = +1 if a ∈ C and b = x;
and ν6(x, γ, C) = ν6(x, γ

′, C) = −1 if a = x and b ∈ C.

If two points of X ∩ C are 6−adjacent to x and these two points belong
to C then ν6(x, γ, C) = ν6(x, γ

′, C) = −1 if a ∈ C and b = x; ν6(x, γ, C) =
ν6(x, γ

′, C) = +1 if a = x and b ∈ C; ν6(x, γ, C) = ν6(x, γ
′, C) = 0 if a = b = x

or {a, b} ∈ C.

If two points of X ∩ C are 6−adjacent to x and only one of these points, say
d, belongs to C, then the remaining point r of C which is 18−adjacent but
not 6−adjacent to x cannot be in X and so nor in C. It follows that γ and
γ′ are both included in {x, d, r} and that ν6(x, γ, C) = ν6(x, γ

′, C). Finally, in
all case we have ν6(x, γ, C) = ν6(x, γ

′, C) so that ν6(x, α, C) = ν6(x, α
′, C).

• Case (26, 6) If x /∈ C then it is clear that ν26(x, γ, C) = ν26(x, γ
′, C) = 0. If

x ∈ C and C ∩ C = ∅ then ν26(x, γ, C) = ν26(x, γ
′, C) = 0. Now, if x ∈ C and

C∩C ̸= ∅ then (C∩X) ⊂ C so γ,γ′ are contained in C ∪ {x}. Let a and b be
the two extremities of γ and γ′.

If a = b = x then ν26(x, γ, C) = ν26(x, γ
′, C) = 0. In the case when a = x

and b ∈ C we have ν26(x, γ, C) = ν26(x, γ
′, C) = −1. If a ∈ C and b = x then

ν26(x, γ, C) = ν26(x, γ
′, C) = +1. And, if {a, b} ⊂ C we have ν26(x, γ, C) =

ν26(x, γ
′, C) = 0. Eventually, in all case we have ν26(x, γ, C) = ν26(x, γ

′, C) so
that ν26(x, α, C) = ν26(x, α

′, C). 2

10



Proof of Proposition 14. Let C1 and C2 be two n−connected components
of Gn(x,X) which are n−adjacent to x. If C1 and C2 are not n−connected in
X\{x}, since they are n−connected in X then a new n−connected component
is created by deletion of x.

Now, suppose that C1 and C2 are n−connected in X \ {x}. Let a and b
be two points of X which are n−adjacent to x and such that a ∈ C1 and
b ∈ C2. Thus, there exists an n−path π from a to b in X \ {x}. Now, let
π′ be the closed n−path (a).π.(b, x, a) (see an example of such a path π′

and component C1 in Figure 5(a)). It is clear that νn(x, π
′, C1) = +1 since

x /∈ π∗. Suppose that there exists in Aa
n(X \{x}) a closed n−path α such that

i∗([α]Πn
1 (X\{x},a)) = [α]Πn

1 (X,a) = [π′]Πn
1 (X,a). Then, α would be n−homotopic to

π′ in X, but since α ∈ Aa
n(X \ {x}) it follows that νn(x, α, C1) = 0 whereas

νn(x, π
′, C1) = +1 from the very construction of the path π′. From Lemma 16

it follows that α cannot be n−homotopic to π′ and then the morphism j∗ :
Πn

1 (X \ {x}, a) −→ Πn
1 (X, a) induced by the inclusion of X \ {x} in X is not

onto. Finally, following Remark 3, the morphism i∗ cannot be onto. 2

X x X

C1

π’

a b

(a) ν(x, π′, C1) = ±1

C

π

1

(b) ν(x, π′, C1) = ±1

Fig. 5. Illustrations of the proofs of Propositions 14
and 19

β

κ

Lκ,β = ±1

Fig. 6. Idea of the proof
of Proposition 18

Proposition 17 If Tn(x,X) = 0 then an n−connected component of X is
created by deletion of x.

Proof. If Tn(x,X) = 0, then no point of X is n−adjacent to x so that x
becomes an n−connected component of X \ {x}. 2

Proposition 18 If Tn(x,X) = 1 and Tn(x,X) ≥ 2 then two n−connected
component of X are merged by deletion of x or i∗ is not one to one.

The main idea of this paper is to use the linking number in order to prove
Proposition 18. Indeed, until this paper and the possible use of the linking
number, one could prove that when Tn(x,X) = 1 and Tn(x,X) ≥ 2 and no
n−connected component of X are merged by deletion of x then the morphism
i∗

′ is not onto. In other words, “a tunnel is created inX∪{x}”. Indeed, a similar
proof to Proposition 14 leads to the following proposition (see Figure 5(b)).

11



Proposition 19 If Tn(x,X) = 1 and Tn(x,X) ≥ 2 then two n−connected
component of X are merged by deletion of x or the morphism i′∗ is not onto.

In this paper, we show that in this case “a tunnel is created in X \ {x}” or
more formally, i∗ is not one to one. This is proved using the linking number
as illustrated in Figure 6. In this figure, the closed path κ is reducible in X
(Lemma 26 below) whereas it is not reducible in X \ {x} since Lκ,β = ±1
(Remark 2). This shows that a condition on the preservation of tunnels in the
object (Condition iii of Definition 10) is sufficient to ensure that tunnels of the
complement are also left unchanged. And the proof of this result is obtained
with the only formalism provided by the use of the digital fundamental group.
Before proving Proposition 18, we must state several lemmas.

Definition 20 (6−extremity point) Let x be a point of Z ⊂ Z3, then x is
called a 6−extremity point of Z if x has exactly one 6−neighbor in Z.

Definition 21 (set K6(y,X,C)) Let y ∈ X such that T6(y,X) = 1 and
T26(y,X) ≥ 2. Let A = G6(y,X), which is 6−connected, and C be one of
the 26−connected components of G26(y,X). Then, K0

6(y,X,C) is the set of
points of A which are 26−adjacent to a point of C. We define K6(y,X,C) as
the set obtained after recursive deletions of 6−extremity points in K0

6 .

Definition 22 (26−bold point) Let y be a point of X, then y is a 26−bold
point in X if all the points of X which are 26−adjacent to y are included in
a common 2×2×2 cube.

Definition 23 (set K26(y,X,C)) Let y ∈ X such that T26(y,X) = 1 and
T6(y,X) ≥ 2. Let A = G26(y,X), which is 26−connected, and C be one of the
6−connected components of G6(y,X). Then, K0

26(y,X,C) is the set of points
of A which are 6−adjacent to a point of C. We define K26(y,X,C) as the set
obtained after iterative deletions of 26−bold points in K0

26.

Lemma 24 If Tn(x,X) = 1 and Tn(x,X) ≥ 2, then there exists an
n−connected component C of Gn(x,X) such that Kn(x,X,C) is a simple
closed n−curve.

Proof. In order to prove this Lemma, we have investigated using a computer
all the 226 possible configurations of N26(x). For each configuration such that
Tn(x,X) = 1 and Tn(x,X) ≥ 2 (there are 34653792 such configurations if
(n, n) = (26, 6) and 4398983 for the case (n, n) = (6, 26)), we have computed
the different n−connected components Ci of Gn(x,X) and checked that for
at least one of them, the set Kn(x,X,Ci), which can be computed following
Definition 21 or Definition 23, was a simple closed n−curve. 2

Lemma 25 Let x ∈ X such that Tn(x,X) = 1 and Tn(x,X) ≥ 2 and let
A = Gn(x,X). Then there exists a parameterized simple closed n−curve κ in
A and a closed n−path β = (a).β′.(b, x, a) such that:

• β∗ ⊂ N26(x) ∩X,
• a and b are the only points of β′ in N26(x),
• If (n, n) = (6, 26) then Lκ,β = ±1 and if (n, n) = (26, 6) then Lβ,κ = ±1.

12



Proof of Lemma 25 in the case (6, 26). From Lemma 24, if Tn(x,X) = 1
and Tn(x,X) ≥ 2 one can find a simple closed 6−curve κ = K6(x,X,C)
in G6(x,X) for come C. Furthermore, from the very definition of the set
K6(x,X,C), each point of this curve is 26−adjacent the 26−connected com-
ponent C of G26(x,X). In Figure 7, we have depicted up to rotations and
symmetries all the possible simple closed 6−curve κ in the 26−neighborhood
of a point x. We should investigate here each kind of curve and show that
for each one a convenient simple closed 6−curve can be found in G6(x,X)
together with a closed 26−path β in X ∪ {x} which satisfy the properties of
Lemma 25. However, due to length considerations, we only give here the way
to find such a path β in the case of Figure 7(a). The remaining cases are left
to the reader which can check them easily using similar considerations.

Case of Figure 7(a)

From the definition of K6(x,X,C), each point of κ must be 26−adjacent to
C. Then, two cases may occur: either C is constituted by the unique point z
or not. If C is reduced to the point z, then since Tn(x,X) ≥ 2, at least one of
the remaining “not black” points must belong to some connected component
of G26(x,X) = N26(x) ∩ X different from C = {z}. Let u be such a point,
then it is clear that u and z can be connected by a 26−path β′ in N26(x) ∩X
such that Lκ,(x,u).β′.(z,x) = ±1 as depicted in Figure 8(a) where κ is the set
of black points of Figure 7(a). In this figure, it is clear that the only couple
of subscripts of κ and β = (x, u).β′.(z, x) which have a contribution (see
Definition 6) different from 0 is the couple corresponding to the point x in β
and a in κ (the projection plane being orthogonal to the vector a− x). Now,
from the definition of this contribution, we have Lκ,β = ±1.

If z /∈ C and z /∈ X then z constitutes a 26−connected component ofG26(x,X)
and in this case it can be linked to any point of C by a path β′ such that the
path β = (x, u).β′.(z, x) satisfies the properties of Lemma 25 with the simple
closed 6−curve κ made of the black points of Figure 7(a).

Finally the case when z /∈ C and z ∈ X remains. In this case, since any point
of K6(x,X,C) must be 26−adjacent to C, and from the fact that G26(x,X)
must have two connected components, one of the connected components must
be reduced to the point t of Figure 7(a). Now, it follows that all the points
of N26(x) ∩ N18(t) must belong to X. Otherwise, it is clear that t would be
26−adjacent to C; indeed for any point v of N26(x)∩N18(t) it is possible to find
a point w of the 6−path κ such that any point of N26(x) \ (κ∗ ∪ {z}) which
is 26−adjacent to w is also 26−adjacent to v. We obtain the configuration
depicted in Figure 8(b). Now, let κ′ be the simple closed 6−curve constituted
by the 18−neighbors of t, this curve is included in C since C is connected and
all its points belong to G6(x,X). Furthermore, some of the points represented
in dotted lines in Figure 8(b) must not be in X (otherwise, T26(x,X) would
be equal to 1). Let u be one of these points; similarly with the previous case,
one can construct a 26−path β′ between t and u such that the path β =
(x, t).β′.(u, x) satisfies the properties of Lemma 25 with κ′.

13
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ta

Fig. 7. The possible simple closed 6−curves (in black
points) in N18(x) up to rotations and symmetries.

u

x
a

κ

(a) Lκ,β = ±1

t

κ ’

(b)

Fig. 8.

2

Proof of Lemma 25 in the case (26, 6). From Lemma 24, if T26(x,X) = 1
and T6(x,X) ≥ 2 one can find a simple closed 26−curve κ = K26(x,X,C) in
G26(x,X). In fact, from the very definition of K26(x,X,C), it is clear that the
curve K26(x,X,C) is included in N18(x). Indeed, κ cannot contain any point
of N26(x) \ N18(x) since obviously such a point would be a bold 26−point
which cannot occur in K26(x,X,C).

Furthermore, from the very definition of the set K26(x,X,C), each point of
this curve is 6−adjacent to some 6−connected component of G6(x,X). In
Figure 9, we have depicted up to rotations and symmetries all the possible
simple closed 26−curve κ in the 18−neighborhood of a point x. Like in the
case (6, 26), we should investigate each kind of curve and show that for each
one a convenient simple closed 26−curve can be found in G26(x,X) together
with a closed 6−path β in X ∪{x} which satisfy the properties of Lemma 25.
The proof is then similar to the case (6, 26). 2

Lemma 26 Let x be a point of X such that Tn(x,X) = 1. Any closed n−path
κ in Gn(x,X) is n−reducible in X.

Proof. Let κ = (y0, . . . , yp) with y0 = yp. If (n, n) = (26, 6), then let κ′

be the closed path obtained after insertion of the point x in κ between any
two consecutive points of κ. It is clear that κ ≃26 κ′ in X since for any two
consecutive points of κ, x belongs to a 2×2×2 cube which contains these two
points. Now, κ′ is of the following form: κ′ = (y0, x, y1, x, . . . , x, yn). In κ′,
each sequence of the form (x, yi, x) can be reduced to (x) by an elementary
26−deformation. It follows that κ ≃26 κ

′ ≃26 (y0, x, yn) ≃26 (y0, yn).

If (n, n) = (6, 26), we first observe that any closed 6−path in N18(x) can be
deformed in X into a path which only contains multiple occurrences of the
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Fig. 9. The possible simple closed 26−curves in N26(x) up to rotations and symme-
tries.

point x and 6−neighbors of x in X. Indeed, any point z of κ which belongs
to N18 \ N6(x) occurs in a sub-sequence (u, z, v) (note that κ can also be
made of a single point of N18(x) ∩ X). Then, u and v are 6−neighbors of x
and the points u, z, v and x are included in a 2×2 square. It follows that
the sequence (u, z, v) can be replaced by the sequence (u, x, v) in κ by an
elementary 6−deformation. Repeating this deformation for any such point z
in κ will lead to a path κ′ such that κ′∗ ⊂ {x} ∪ (N6(x) ∩ X) and it is then
immediate that κ′ ≃6 (y0, yp) in X. 2

Proof of Proposition 18. Let x be a point of X such that Tn(x,X) = 1 and
Tn(x,X) ≥ 2. Let κ, β′ and β be the paths of Lemma 25 and let a and b be
the extremity points of β′ which are the only two points of β′ in N26(x) which
are n−adjacent to x. If a and b are not n−connected in X then it is clear that
they are n−connected in X ∪ {x} so that two n−connected components of X
are merged by deletion of x from X.

In the case when a and b are connected by an n−path α in X, it is ob-
vious that the two n−paths β′ and α are n−homotopic with fixed extrem-
ities in (N26(x) ∩X) ∪ {x}. It follows that β is n−homotopic to the path
α′ = (a).α.(b, x, a) in (N26(x) ∩X). Since (N26(x) ∩X) ⊂ κ∗ and from Theo-
rem 9 then Lκ,β = Lκ,α′ = ±1.

From Theorem 8 (and Remark 2), it follows that the path κ is not n−reducible
in α′∗ and since α′∗ ⊂ X ∪{x} then X \{x} ⊂ α′∗ so that a fortiori α′ cannot
be n−reducible in X \ {x}. Formally, if B is the point of X \ {x} such that κ
is a closed n−path from B to B, we have [κ]Πn

1 (X\{x},B) ̸= [(B,B)]Πn
1 (X\{x},B).

15



Now, from Lemma 26, κ ≃n (B,B) in X so that i∗([κ]Πn
1 (X\{x},B)) = [κ]Πn

1 (X,B)

= [(B,B)]Πn
1 (X,B) = i∗([(B,B)]Πn

1 (X\{x},B)), i.e., i∗ is not one to one. 2

Proof of Proposition 13. Suppose that properties i), ii) and iii) of Defi-
nition 10 are satisfied.

From Proposition 14 we deduce that if i∗ is onto for any point B inX\{x}, and
no n−connected component ofX is created by deletion of x then Tn(x,X) < 2.
Furthermore, if no connected component of X is removed then Tn(x,X) ̸= 0
(indeed, Tn(x,X) = 0 means that x constitutes an n−connected component
of X since no other point of X is n−adjacent to x). Finally, Tn(x,X) = 1.

From Proposition 18 we deduce that if i∗ is one to one and no n−connected
components ofX are merged by addition of x inX then Tn(x,X) < 2. Further-
more, if no connected component of X is created then Tn(x,X) ̸= 0 (indeed,
Tn(x,X) means that no point of X is n−adjacent to x so that x constitutes
an n−connected component of X ∪ {x}). Eventually, Tn(x,X) = 1. 2

2.2 Second step of the proof of Theorem 12

In this section, we prove that properties i), ii), iii) and iv) of Definition 10
are satisfied when Tn(x,X) = Tn(x,X) = 1.

Proposition 27 If Tn(x,X) = 1 and Tn(x,X) = 1, then conditions i), ii),
iii) and iv) of Definition 10 are satified.

In order to prove Proposition 27 we will state several propositions.

Proposition 28 If X has more n−connected components than X \ {x}, then
Tn(x,X) = 0.

Proof. If X has more n−connected components than X \ {x}, then a con-
nected component of X is removed by deletion of x. It follows that no other
point of X can belong to this component. Thus, x has no n−neighbor in X
and Tn(x,X) = 0. 2

Proposition 29 If X \ {x} has more n−connected components than X then
Tn(x,X) ≥ 2.

Proof. If X \ {x} has more n−connected components than X, at least one
connected component of X \ {x} has been created by deletion of x. In other
words, there exist two points a and b in X such that a and b are connected
in X but not in X \ {x}. That is to say, every n−path between a and b in X
contains the point x. Now, suppose that Tn(x,X) < 2, then Tn(x,X) cannot
be equal to zero since in this case no path between a and b in X could contain
x. So, Tn(x,X) = 1. In this case, for any n−path κ between a and b in X,
one can find a path κ′ from a to b in X \ {x}. Indeed, for any sequence of
the form (y, x, z) in κ, the points y and z both belong to Gn(x,X) which
is n−connected, so there is an n−path in X \ {x} between y and z. Then,
any such sequence (y, x, z) in κ can be replaced by an n−path which does not
contain x. Finally, a and b are n−connected inX\{x} which is a contradiction.
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Eventually, Tn(x,X) must be greater or equal to 2. 2

Proposition 30 If X has more n−connected components than X ∪{x}, then
Tn(x,X) ≥ 2.

Proof. This proof is similar to the proof of Proposition 29. 2

Proposition 31 If X ∪{x} has more n−connected components than X, then
Tn(x,X) = 0.

Proof. This proof is similar to the proof of Proposition 28. 2

Proposition 32 If Tn(x,X) = 1 and Tn(x,X) = 1 then i∗ is an isomorphism.

Corollary 33 If Tn(x,X) = 1 and Tn(x,X) = 1 then i′∗ is an isomorphism.

Proof of Corollary 33. Let Y = X∪{x} and (m,m) = (n, n). Furthermore,
let B′ be a point of X. Then Tm(x, Y ) = 1, Tm(x, Y ) = 1 and B′ ∈ Y \ {x}.
From Proposition 32, the morphism j∗ : Πm

1 (Y \ {x}, B′) −→ Πm
1 (Y,B

′)
induced by the inclusion map j : Y \ {x} −→ Y is an isomorphism. But,
Y \ {x} = X and Y = X ∪ {x} so j∗ = i∗ is the morphism induced by the
inclusion of X in X ∪ {x}. 2

In order to prove Proposition 32 we will first state that i∗ is onto by proving
Lemma 35 and then sate Lemma 40 which will allow us two prove that i∗ is
one to one.

Lemma 34 Let a and b be two points of Nn(x)∩X and suppose that Tn(x,X)
= 1. Then there exists a simple n−path γ between a and b in Gn(x,X) such
that (a, x, b) ∼n γ in X.

Proof. Since Gn(x,X) is n−connected, there exists a simple n−path γ =
(y0, . . . , yk) in Gn(x,X) such that y0 = a and yk = b.

If (n, n) = (26, 6), it is clear that the points a = y0, x and y1 are included in
a 2×2×2 cube. Then (a, x, b) ∼26 (a, y1, x, b) and we can repeat this process
since two consecutive points yi and yi+1 in γ are always included in a com-
mon 2×2×2 cube with x. We obtain that (a, x, b) ∼26 (a, y1, x, b) ∼26 . . . ∼26

(a, y1, . . . , yk−1, x, b). Finally, (a, y1, . . . , yk−1, x, b) ∼26 (a = y0, y1, . . . , yk−1, b =
yk).

If (n, n) = (6, 26) then we first observe that k is necessarily even. Now, a =
y0 ∈ N6(x) ∩X so that y1 ∈ (N18(x) \N6(x)) ∩X and y2 ∈ N6(x) ∩X. Then
the points y0, x, y1 and y2 are included in a 2×2 square so that (a = y0, x) ∼6

(y0, y1, y2, x). This process can be iterated to obtain that (a, x) ∼6 (y0, . . . yk, x)
so that (a, x, b) ≃6 (y0, . . . , yk, x, yk) ∼6 (y0, . . . , yk). 2

Lemma 35 If Tn(x,X) = 1 and Tn(x,X) = 1 then for all n−path κ of
AB

n (X), there exists a path κ′in AB
n (X \ {x}) such that κ ≃n κ′ in X.

Proof. Let κ = (y0, . . . , yq) be a closed n−path from B to B in X (B = y0 =
yl). For any maximal sequence (yi, . . . , yj) such that yi−1 ̸= x, yj+1 ̸= x and
yk = x for k = i, . . . , j it is obvious that κ ≃n (y0, . . . , yi−1, x, yj+1, . . . , yq)
(observe that 0 < i ≤ j < l). Now, from Lemma 34 and since {yi−1, yj+1} ⊂
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Nn(x), then (yi−1, x, yj+1) ≃n γ in X where γ is a path from yi−1 to yj+1

in Gn(x,X) so that x /∈ γ∗. Finally, κ ≃n (y0, . . . , yi−1).γ.(yj+1, . . . , yq). By
repeating such an n−homotopic deformation for any similar maximal sequence
(yi, . . . , yj) in κ, it is clear that κ is n−homotopic in X to a closed n−path κ′

such that x /∈ κ′∗ (i.e., κ′ ∈ AB
n (X \ {x})). 2

Lemma 36 If Tn(x,X) = 1 and Tn(x,X) = 1 then two paths π1 and π2 which
have the same extremities and are included in Gn(x,X) are n−homotopic with
fixed extremities in N26(x) ∩X.

In order to prove Lemma 36 we will use the following lemma.

Lemma 37 If Tn(x,X) = 1 and Tn(x,X) = 1, then any simple closed n−path
in Gn(x,X) is n−reducible in N26(x) ∩X.

Corollary 38 If Tn(x,X) = 1 and Tn(x,X) = 1 then any closed n−path in
Gn(x,X) is n−reducible in N26(x) ∩X.

Proof of Lemma 37 in the (6, 26) case. In this case, any simple closed
6−path in G6(x,X) ⊂ N18(x) ∩ X is in fact a simple closed 6−curve. In
Figure 7 we have depicted up to rotations and symmetries all the possible
simple closed 6−curves in N18(x).

Case of Figure 7(a) Let κ be the set of black points of Figure 7(a). In this
case, either z ∈ X or all points of N26(x) \ (κ∗ ∪ {z}) must belong to X.
Indeed, the case when z ∈ X and some point of N26(x) \ (κ∗ ∪ {z}) belongs
to X contradicts the fact that T26(x,X) = 1.

Now, if z ∈ X it is clear that κ is 6−homotopic in N26(x)∩X to a path reduced
to any of its points, similarly when z /∈ X then N26(x) \ (κ∗ ∪ {z}) ⊂ X and
κ is obviously 6−homotopic to a path reduced to any of its points.

Case of Figure 7(b) In this case, either {r, s, t} ⊂ X or N26(x) \ (κ∗ ∪
{r, s, t}) ⊂ X. In both case, we can conclude as in the previous case.

Cases of Figure 7(c),. . . ,(f) are similar to the previous ones. 2

Lemma 39 Let x ∈ X such that T26(x,X) = 1 and T6(x,X) = 1 and let κ
be the parameterization of a simple closed 26−curve in G26(x,X). Then κ is
26−reducible in G26(x,X).

Proof. In Figure 9 are depicted up to rotations and symmetries all the
possible simple closed 26−curves in N26(x). Now, we must investigate each of
them and prove that, under the hypothesis T26(x,X) = 1 and T6(x,X) = 1, a
parameterization of each simple closed curve is 26−reducible in G26(x,X).

Case of Figure 9(a) In this case, exactly one point of {u, v} must belong
to X, indeed {u, v} ⊂ X contradicts the fact that T6(x,X) = 1 whereas
{u, v} ⊂ X implies that T6(x,X) = 0. If u ∈ X [resp. v ∈ X], it is then
obvious that κ is 26−reducible in G26(x,X).

Case of Figure 9(b) If u ∈ X then it is clear that the curve κ is 26−reducible
in G26(x,X). If u /∈ X then {p, q, r, s, t} ⊂ X. Indeed, otherwise G6(x,X)
would not be 6−connected. As an example, Figure 10 shows a sequence of
elementary 26−deformations in G26(x,X) which leads from κ to the path
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reduced to its extremities when κ is the parameterization of the curve which
starts en ends at this latter point.

~ ~ ~

~~ ~ ~

26 26 26

26 26 26 26

~26

κ

Fig. 10. A 26−homotopic deformation of the closed path κ.

Case of Figure 9(c) Since T6(x,X) = 1 we deduce that either u ∈ X
or {p, s, r, t} ⊂ X. In both cases, any parameterization κ of the curve is
26−reducible in G26(x,X).

Case of Figure 9(d) In this case, either {u, s} ⊂ X or {p, q, r, t} ⊂ X and
we can conclude in both cases that any parameterization κ of the simple closed
curve is 26−reducible in G26(x,X).

Cases of Figures 9(e),. . . ,(n) In all these case, we can separate the set
N6(x) \ κ∗ into two sets A and B such that either A ⊂ X or B ⊂ X. In any
case, the inclusion of one of these sets in X allows the 26−deformation of κ
into a trivial path in G26(x,X) . 2

Proof of Lemma 37 in the (26, 6) case. We prove this Lemma by induction
on the length of κ. Let κ0 = κ and suppose that κi is a simple closed 26−path
with a length l in G26(x,X) which is n−connected.

First, suppose that there exists in κi three consecutive points which are in-
cluded in a 2×2×2 cube C. In other words, κi = κ1.(y, z, t).κ2 where y, z and
t belong to C. Then, κi ∼26 κ

i+1 = κi
1.(y, t).κ

i
2 which has a length of l − 1.

Now, we suppose that for any sequence (y, z, t) in κi, the two points y and t
are not 26−adjacent. Furthermore, suppose that there exists in κi a point y
such that y has more than two 26−adjacent points in κi∗. In other words, there
exists another point z in κi which is neither the successor nor the predecessor
of y in κi but which is 26−adjacent to y. Then, κi = κi

1.(y).κ
i
2.(z).κ

i
3 with

l(κi
2) > 3 (indeed, if l(κi

2) = 3 then κi
2 = (y, u, z) where y is 26−adjacent to

z). We may suppose that the path κi
2 is a shortest such subpath of κi which

can be found satisfying the 26−adjacency property of its extremities. Then, it
follows that any point of κi

2 distinct from y and z has exactly two neighbors in
κi
2
∗
: its predecessor and its successor in κ2. Indeed, the existence of a point of

κi
2 which has more then two 26−adjacent points in κi

2
∗
would contradict the

fact that κi
2 is a shortest subpath of κi whose extremities are 26−adjacent.

Furthermore, y [resp. z] has exactly two neighbors in κi
2
∗
: its successor in
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κi
2 and z [resp. its predecessor in κi

2 and y]. Then, κi
2
∗
is a simple closed

26−curve and κi
2.(z, y) is a parameterization of this curve. From Lemma 39,

we have κi
2.(z, y) ≃26 (y, y) in G26(x,X). On the other hand, it is obvious that

κi ≃26 κ
i
1.(y).κ

i
2.(z, y, z).κ

i
3 in G26(x,X). Finally κi ≃26 κ

i
1.(y, z).κ

i
3 = κi+1 in

G26(x,X) and κi+1 is a simple closed 26−path such that l(κi+1) < l(κi).

In the remaining case, any point of κi has exactly two 26−adjacent points
in κi∗. Then, κi is a parametrization of a simple closed n−curve and from
Lemma 39 is 26−homotopic to a path κi+1 reduced to a single point.

In all cases, κi is 26−homotopic to a simple closed 26−path κi+1 such that
l(κi+1) < l(κi). By induction, there exists a path κj such that l(κj) = 1 and
κ0 ≃26 κ

j. 2

Proof of Corollary 38. If κ is not simple there must exist a simple closed
n−path γ from a point y ∈ κ∗ to y such that κ = κ1.γ.κ2. Then, from
Lemma 37, we have γ ≃n (y, y) in Gn(x,X) so that κ ≃ κ1.κ2 in Gn(x,X).
Now, we can iterate this process to obtain that κ is n−homotopic to a simple
closed path, itself n−homotopic to a path reduced to one point in Gn(x,X).
2

Proof of Lemma 36. Let π and π′ be two n−paths from a point a to a point
b in Gn(x,X). From Corollary 38, (b, b) ≃n π−1

1 .π2 so that π1 ≃n π1.π
−1
1 .π2.

Now, it is clear that π1.π
−1
1 ≃n (a, a), then π1.π

−1
1 .π2 ≃n π2. Finally, π1 ≃n π2

in Gn(x,X). 2

Lemma 40 If Tn(x,X) = 1 and Tn(x,X) = 1 then two closed n−paths κ and
κ′ of AB

n (X \{x}) which are n−homotopic in X are n−homotopic in X \{x}.
Proof. Given a closed n−path κ in AB

n (X), we denote by σ(κ) the n−path of
AB

n (X\{x}) which is n−homotopic to κ inX following the proof of Lemma 35.
It is sufficient to prove that if κ and κ′ are the same up to an elementary
n−deformation in X then the two paths σ(κ) and σ(κ′) are n−homotopic
in X \ {x}. We suppose that κ = κ1.γ.κ2 and κ′ = κ1.γ

′.κ2 where γ and γ′

are two n−path with the same extremities and included in a 2×2×2 cube if
(n, n) = (26, 6), in a 2×2 square if (n, n) = (6, 26).

If x /∈ γ∗∪γ′∗ we observe that σ(κ) = σ(κ1).γ.σ(κ2) and σ(κ′) = σ(κ1).γ
′.σ(κ2)

and then κ ∼n κ′ in X \ {x}.
If x ∈ γ∗∪γ′∗ let a be the last point of κ1 distinct from x and let b be the first
point of κ2 distinct from x. Then, let δ be the sub-path of κ from a to b and δ′

be the sub-path of κ′ between a and b. We denote by π1 the sub-path of κ from
its first point to a and by π2 the sub-path of κ from b to its last point. Finally,
we have κ = π1.δ.π2 and κ′ = π1.δ

′.π2. Since a and b, the two extremities
of δ and δ′, are distinct from x, it follows that: σ(κ) = σ(π1).σ(δ).σ(π2) and
σ(κ′) = σ(π1).σ(δ

′).σ(π2).

Now, since x ∈ γ∗ ∪ γ′∗ and since γ and γ′ are 6−paths [resp. 26−paths] in-
cluded in a 2×2 square which contains x [resp. a 2×2×2 cube], it is straight-
forward that γ and γ′ are paths included in G6(x,X) ∪ {x} [resp. G26(x,X)]
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and from their construction so are δ and δ′. Now, from the very definition of
σ(δ) and σ(δ′) (see the proof of Lemma 35) it is straightforward that σ(δ) and
σ(δ′) are two n−paths in Gn(x,X) with same extremities. From Lemma 36, we
conclude that σ(δ) ≃n σ(δ′) in N26(x) ∩X ⊂ X \ {x}. Finally, σ(κ) ≃n σ(κ′)
in X \ {x}. 2

Proof of Proposition 32. Let B be a point of X \{x}. From Lemma 35, for
any closed path κ′ ∈ AB

n (X) (thus for any homotopic class of path [κ′]Πn
1 (X,B))

there exists a path κ ∈ AB
n (X \ {x}) such that κ ≃n κ′ in X, so that

i∗([κ]Πn
1 (X\{x},B)) = [κ]Πn

1 (X,B) = [κ′]Πn
1 (X,B), i.e, the morphism i∗ is onto.

Now, suppose that κ1 and κ2 are two closed paths of AB
n (X \ {x}) such that

[κ1]Πn
1 (X,B) = [κ2]Πn

1 (X,B), where [κ1]Πn
1 (X,B) = i∗([κ1]Πn

1 (X\{x},B)) and [κ2]Πn
1 (X,B)

= i∗([κ2]Πn
1 (X\{x},B)). Then, κ1 ≃n κ2 in X and from Lemma 40 it follows that

κ1 ≃n κ2 in X \ {x}. Finally, we have [κ1]Πn
1 (X\{x},B) = [κ2]Πn

1 (X\{x},B) so that
i∗ is one to one. 2

Proof of Proposition 27. Suppose that Tn(x,X) and Tn(x,X) = 1. Follow-
ing Proposition 28 and Proposition 29, Tn(x,X) = 1 implies that condition i)
of Definition 10 is satisfied. Furthermore, from Proposition 30 and Proposi-
tion 31, Tn(x,X) = 1 implies the condition ii) of Definition 10. Finally, from
Proposition 32 and Corollary 33, we have Tn(x,X) = 1 and Tn(x,X) = 1 ⇒
iii) and iv). 2

Proof of Theorem 12. Following Definition 10, a simple point obviously
satisfies the three conditions of Theorem 12. Now, from Proposition 13, a point
which satisfies the three conditions of Theorem 12 is such that Tn(x,X) =
Tn(x,X) = 1. Finally, from Proposition 27, if Tn(x,X) = Tn(x,X) = 1 then
x satisfies the four conditions of Definition 10. 2

Conclusion

The digital linking number allowed us to formalize in a comprehensive way
the characterization of 3D simple points for the complementary adjacency
couples (6, 26) and (26, 6). The new theorem which was proved here shows the
usefulness of the linking number in order to prove new theorems which involve
the digital fundamental group in Z3.

Now, even if the linking number is well defined for (n, n) ∈ {(6+, 18), (18, 6+)},
it has not been used yet to provide a characterization of 3D simple points, sim-
ilar to Theorem 12, for the latter couples of adjacency relations. This, because
an open question remains about the existence of a simple closed curve, ana-
logue to the curves K6(x,X,C) and K26(x,X,C) (Definitions 21 and 23), in
this case. Nevertheless, further investigations should allow us to provide a sim-
ple process (such as “recursive deletion of 26−bold points”) which leads to the
construction of the convenient curve, given a local configuration.
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