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Abstract

First, we show that Sturm algorithm and Sylvester algorithm, which compute the number
of real roots of a given univariate polynomial, lead to two dual tridiagonal determinantal
representations of the polynomial. Next, we show that the number of real roots of a
polynomial given by a tridiagonal determinantal representation is greater than the signature
of this representation.

Introduction

There are several methods to count the number of real roots of an univariate polynomial
p(x) ∈ R[x] of degree n (for details we refer to [BPR]). Among them, the Sturm algorithm
says that the number of real roots of p(x) is equal to the number of Permanence minus the
number of variations of signs which appears in the leading coefficients of the signed remainders
sequence of p(x) and p′(x).

Another method is the Sylvester algorithm which says that the number of real roots of p(x)
is equal to the signature of the symmetric matrix whose (i, j)-th entry is the i + j-th Newton
sums of the roots of the polynomial p(x).

One purpose of the paper is to point out, at least in the generic situation, that these two
classical algorithms can be viewed as dual.

In section 1, we introduce signed remainders sequences of two given monic polynomials p(x)
and q(x) of respective degrees n and n − 1. With some conventions of signs and others, we
give a presentation of this sequence through a tridiagonal matrix Td(p, q). Next, we give a
decomposition of this tridiagonal matrix as Td(p, q) = LCT

p L−1 where L is lower triangular and

CT
p is the transposed of the companion matrix associated to p(x).
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In section 2, we introduce the duality between the Sturm and Sylvester algorithm, first when
the polynomial p(x) has only single and real roots, and then in Theorem 2.5 we generalize it to
the generic case.

More precisely, on one hand we have

{

p(x) = det(xIdn − Td(p, q))
q(x) = det(xIdn−1 − Td(p, q)n−1)

with the conventions that Idn (or Id in short) denotes the identity matrix of R
n×n and Ak ∈ R

k×k

(respectively Ak ∈ R
k×k) denotes the k-th principal submatrix (respectively the k-th antiprincipal

submatrix) of A which corresponds to extracting the first k (respectively the last k) rows and
columns in the matrix A ∈ R

n×n.
On the other hand, we consider a natural Hankel (hence symmetric) matrix H(q/p) ∈ R

n×n

associated to p(x) and q(x). Generically it admits an LU decomposition of the form H(q/p) =
KJKT where J is a signature matrix (a diagonal matrix with coefficients ±1 onto the diagonal)
and K is lower triangular. Then, we introduce the tridiagonal matrix Td = K−1CT

p K, which is

such that p(x) = det(xIdn − Td).
If we consider that the matrices Td(p, q) and Td represent linear mappings in some basis,

then the duality Theorem 2.5 means that one matrix can be deduced from the other simply by
reversing the ordering of the basis.

We shall mention that, in the case when all the roots of p(x) are real, the existence
of a tridiagonal symmetric matrix Td given by the signed remainders sequence of p(x) and
q(x) together with the identity p(x) = det(xIdn − Td) corresponds to the Routh-Lanczos
algorithm which answers a structured Jacobi inverse problem. Namely, the question to find a
real symmetric tridiagonal matrix A with a given characteristic polynomial p(x) and such that
the characteristic polynomial of its principal minor An−1, of size n− 1, is proportional to p′(x).
We refer to [EP] for a survey on the subject.

In section 3, we focus on the relation of the question of real roots counting and the question of
determinantal representation. We say that p(x) = det(J−xA) is a determinantal representation
of the polynomial p(x) if J ∈ R

n×n is a signature matrix and A ∈ R
n×n is a symmetric matrix.

Remark that we may transform the identity p(x) = det(J − xA) into p∗(x) = det(xJ − A)
where p∗(x) is the reciprocal polynomial of p(x). If we write

p∗(x) = det(J) × det(xId− AJ),

it shows a connexion with the results of section 2 when the matrix AJ is tridiagonal. More
precisely, we establish that such a determinantal representation is always possible : we may
even find a family of representations for a given polynomial p(x). We show also that, given such
a determinantal representation for a polynomial p(x), its number of real roots is at least equal
to the signature of the signature matrix J .

Finally, in section 4 we end with some worked examples.
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1 Tridiagonal representation of signed remainders sequences

1.1 Definitions

Let α = (α1, . . . , αn), β = (β1, . . . , βn−1) and γ = (γ1, . . . , γn−1) be three sequences of real
numbers. We set the tridiagonal matrix Td(α, β, γ) to be :

Td(α, β, γ) =



















αn γn−1 0 . . . 0

βn−1 αn−1 γn−2
. . .

...

0 βn−2
. . .

. . . 0
...

. . .
. . .

. . . γ1

0 . . . 0 β1 α1



















Let p(x) and q(x) be two monic polynomials of respective degrees n and n − 1. We set
SRemS(p, q) = (pk(x))k to be the signed remainders sequence of p(x) and q(x) defined in the
following way :







p0(x) = p(x)
p1(x) = q(x)
pk(x) = qk+1(x)pk+1(x) − ǫk+1β

2
k+1pk+2(x)

(1)

where














pk(x), qk+1(x) ∈ R[x],
ǫk+1 ∈ {−1,+1},
βk+1 is a positive real number,
pk+2(x) is monic and deg pk+2 < deg pk+1.

(2)

This is a finite sequence which stops at the step just before we reach the zero polynomial as
remainder. With these conventions, the signed remainders sequence SRemS(p, q) that we obtain
is also called the Sturm-Habicht sequence of p(x) and q(x).

Let us assume that there is no degree breakdown in SRemS(p, q). Namely :

(∀k ∈ {0, . . . , n}) (deg pk = n − k)(3)

Then, qk+1(x) is a degree one polynomial which we write qk+1(x) = (x − αk+1) with αk+1 ∈ R.
Another consequence is that gcd(p, q) = 1.

Let γk+1 = ǫk+1βk+1 and consider the following tridiagonal matrix :

Td(p, q) = Td(α, β, γ)

We may read on this matrix all the informations about the signed remainders sequence
SRemS(p, q).

For a given tridiagonal matrix Td = Td(α, β, γ) ∈ R
n×n, we define the first principal

lower diagonal (respectively the first principal upper diagonal) of Td to be the sequence
β = (β1, . . . , βn−1) (respectively γ = (γ1, . . . , γn−1)). We will say that these first principal
diagonals are non-singular if all the coefficients βi (respectively γi) are different from zero.

Note that the no degree breakdown assumption (3) implies that the principal diagonals of
Td(p, q) are non-singular.
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Proposition 1.1 (i) To any tridiagonal matrix Td = Td(α, β, γ) with non-singular principal
diagonals, we may canonically associate a (unique) couple of monic polynomials p(x) and
q(x) of respective degrees n and n − 1 such that the sequence SRemS(p, q) has no degree
breakdown and the characteristic polynomial of Tdk is equal to pn−k(x) :

det(xIdk − Tdk) = pn−k(x).

(ii) To any couple of monic polynomials p(x) and q(x) of respective degrees n and n − 1 such
that SRemS(p, q) has no degree breakdown, we may associate a unique tridiagonal matrix
with non-singular principal diagonals Td(p, q) = Td(α, β, γ) satisfying for all k, βk > 0
and γk = ǫkβk where ǫk = ±1.

(iii) When we have (i) and (ii), the matrix Td(p, q)) × P is tridiagonal and symmetric, where
we have set

P =















ǫn−1 × . . . × ǫ1

. . .

ǫ2 × ǫ1

ǫ1

1















.

(iv) When we have (i) and (ii), the sequence of signs in the leading coefficients of the signed
remainders sequence SRemS(p, q) is :

(1, 1, ǫ1, ǫ2, ǫ1 × ǫ3, ǫ2 × ǫ4, ǫ1 × ǫ3 × ǫ5, . . . , ǫn−1 mod 2 × . . . × ǫn−3 × ǫn−1)

Proof : Concerning (i), the polynomials p(x) and q(x) are taken to be p(x) = det(xIdn − Td)
and q(x) = det(xIdn−1 − Tdn−1). Then, we set for all k,

δn−k(x) = det(xIdk − Tdk)

(where Tdk is the k-th principal submatrix of Td) and we develop the determinant

δ0(x) = det(xIdn − Td)

with respect to the last row. We get

δ0(x) = (x − α1)δ1(x) − (β1γ1)δ2(x)

Repeating the process, we obtain the same recurrence relation as the one defining the sequence
(pk(x))k in (1). Since δ0(x) = p0(x) and δ1(x) = p1(x), we get the wanted identity.

Point (ii) follows straightforward from the beginning of the section, whereas points (iii) and
(iv) follows from elementary computation. ⊓⊔

We may note that to the tridiagonal matrix Td(p, q), we may associate also another natural
polynomial remainder sequence : SRemS(p, q) = SRemS(p, q̄) where

p(x) = det(xIdn − Td)

and
q̄(x) = det(xIdn−1 − Tdn−1),
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with the convention that Tdk is the k-th antiprincipal submatrix of Td. The signed remainders
sequence SRemS(p, q) will be considered as the dual signed remainders sequence of SRemS(p, q).
This only means that we may read on a tridiagonal matrix from the top left rather than from
the bottom right !

For cosmetic reasons we will write Td(p, q) in place of Td(p, q̄). We obviously have :

Td(p, q) = Ad× Td(p, q) × Ad(4)

where Adn ∈ R
n×n (Ad in short) stand for the anti-identity matrix of size n :

Adn =













0 . . . 0 1
... . .

.
. .

.
0

0 . .
.

. .
. ...

1 0 . . . 0













1.2 Companion matrix

We denote by AT the transposed of the matrix A ∈ R
n×n and we define the companion matrix

of the polynomial p(x) = xn + an−1x
n−1 + . . . + a0 to be

Cp =



















0 . . . . . . 0 −a0

1
. . .

... −a1

0
. . .

. . .
...

...
...

. . .
. . . 0 −an−2

0 . . . 0 1 −an−1



















We recall a well-know identity (see for instance [EP]) :

Proposition 1.2 Let p(x) and q(x) be two monic polynomials of respective degrees n and n− 1
such that SRemS(p, q) has no degree breakdown.

Then, there is a lower triangular matrix L such that

Td(p, q) = LCT
p L−1(5)

Proof : With the notation of Subsection 1.1, let P(x) = (γ1 . . . γn−1pn(x), . . . , γ1p2(x), p1(x)).
A direct computation gives

P(x) (Td(p, q))T = xP(x) + (0, . . . , 0,−p(x))

Let U be the upper triangular matrix whose columns are the coefficients of the polynomials of
P(x) in the canonical basis C(x) = (1, x, . . . , xn−1). In other words :

C(x)U = P(x)

Besides, we have
C(x)Cp = xC(x) + (0, . . . , 0,−p(x))
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Thus
C(x)CpU = xC(x)U + (0, . . . , 0,−p(x)) since p1(x) is monic

= P(x) (Td(p, q))T

= C(x)U (Td(p, q))T

We deduce the identity

V (x1, . . . , xn)CpU = V (x1, . . . , xn)U (Td(p, q))T

for any Vandermonde matrix V (x1, . . . , xn) whose lines are (1, xi, . . . , x
n−1
i ) for i = 1 . . . n. If we

choose the n reals x1, . . . , xn to be distinct, then V (x1, . . . , xn) becomes invertible and we get :

Td(p, q) = LCT
p L−1

where L is the lower triangular matrix defined by L = UT . ⊓⊔

The following result says that the decomposition generically exists for any tridiagonal matrix,
and also it is unique :

Proposition 1.3 Any tridiagonal matrix Td with non-singular principal diagonals can be
written Td = LCT

p L−1 where p(x) = det(xId − Td) and L is a lower triangular matrix.
Moreover the matrix L is unique up to a multiplication by a real number.

Proof : The existence is given by Proposition 1.1 and Proposition 1.2.
We come now to the unicity. Assume that L1C

T
p L−1

1 = L2C
T
p L−1

2 where L1 and L2 are lower

triangular. Then, L = L−1
2 L1 is a lower triangular matrix which commute with CT

p .
If L = (ti,j)1≤i,j≤n, then

LCT
p =

















0 t1,1 0 . . . 0
... t2,1 t2,2

. . .
...

...
...

. . . 0
0 tn−1,1 . . . . . . tn−1,n−1

? . . . . . . . . . ?

















and

CT
p L =

















t2,1 t2,2 0 . . . 0

t3,1 t3,2 t3,3
. . .

...
...

. . .
. . . 0

tn,1 . . . . . . tn,n−1 tn,n

? . . . . . . . . . ?

















Thus t1,1 = t2,2 = . . . = tn,n and t2,1 = t3,2 = . . . = tn,n−1 = 0 and t3,1 = t4,2 = . . . =
tn,n−2 = 0, and so on until tn,1 = 0. We deduce that L = λId and we are done. ⊓⊔
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1.3 Sturm algorithm

As a particularly important case of signed remainders sequences, we shall mention the Sturm
sequence which is SRemS(p, q) where q is taken to be the derivative of the polynomial p(x) up
to normalization, i.e. q = p′/deg (p).

For a given finite sequence ν = (ν1, . . . , νk) of elements in {−1,+1}, we recall the Permanence
minus Variations number :

PmV(ν1, . . . , νk) =

k−1
∑

i=1

νiνi+1.

Here the sequence ν will be for the sequence of signs of leading coefficients in SRemS(p, q). Then,
the Sturm Theorem [BPR, Theorem 2.50] says that the number PmV(ν) is exactly the number
of real roots of p(x).

If we assume that the polynomial p(x) has n distinct real roots, then the Sturm sequence
has no degree breakdown and for all k we have νk = 1. Hence we get a symmetric tridiagonal
matrix Td(p, q) which has the decomposition Td(p, q) = LCT

p L−1 where L is the lower triangular
matrix defined as in subsection 1.2. In particular, the last row of L gives the list of coefficients
of the polynomial q(x) in the canonical basis.

2 Duality between Sturm and Sylvester algorithms

2.1 Sylvester algorithm

Let us introduce the symmetric matrix Newtp(n) = (ni,j)0≤i,j≤n−1 define as

ni,j = Trace (Ci+j
p ) = Ni+j

which is nothing but the i + j-th Newton sum of the polynomial p(x). To be more explicit, if
α1, . . . , αn denote all the complex roots of the polynomial p(x), then the k-th Newton sum is
the real number Nk = αk

1 + . . . + αk
n.

Recall that the signature sign(A) of a real symmetric matrix A ∈ R
n×n, is defined to be the

number p−q, where p is the number of positive eigenvalues of A (counted with multiplicity) and
q the number of negative eigenvalues of A (counted with multiplicity). The Sylvester Theorem
(which has been generalized later by Hermite : [BPR, Theorem 4.57]) says that the matrix
Newtp(n) is invertible if and only if p(x) has only single roots, and also that sgn(Newtp(n)) is
exactly the number of distinct real roots of p(x).

In particular, if the polynomial p(x) has n distinct real roots, then the matrix Newtp(n) is
positive definite. Thus, by the Choleski decomposition algorithm, we can find a lower triangular
matrix K such that Newtp(n) = KKT . Le us show how to exploit this decomposition.

First, we write
p(x) = det(xId− CT

p )

Then, we introduce a useful identity (which will be discussed in more details in the forthcoming
section) :

Newtp(n)Cp = CT
p Newtp(n),

So, we get :
p(x) = det(xId− K−1CT

p K)
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Note that the matrix K−1CT
p K is tridiagonal. Our purpose in the following is to establish a

connexion with the identity
p(x) = det(xId− LCT

p L−1)

obtained in Proposition 1.3.
More generally, we will point out a connexion between tridiagonal representations associated

to signed remainders sequences on one hand, and tridiagonal representations derived from
decompositions of some Hankel matrices on the other hand.

2.2 Hankel matrices and Intertwinning relation

Roughly speaking, the idea of previous section is to start with the canonical companion identity

p(x) = det(xId− CT
p )

and then to use a symmetric invertible matrix H satisfying the so-called intertwinning relation

HCp = CT
p H(6)

Since H is supposed to be symmetric invertible, Equation (6) only says that the matrix HCp

is symmetric. It is a classical and elementary result that a matrix H satisfying equation (6) is
necessarily an Hankel matrix.

Definition 2.1 We say that the matrix H = (hi,j)0≤i,j≤n−1 ∈ R
n×n is an Hankel matrix if

hi,j = hi′,j′ whenever i + j = i′ + j′. Then, it makes sense to introduce the real numbers
ai+j = hi,j which allow to write in short H = (ai+j)0≤i,j≤n−1.

Let s = (sk) be a sequence of real numbers. We denote by Hn(s) or by H(s0, . . . , s2n−2) the
following Hankel matrix of R

n×n :

Hn(s) = (si+j)0≤i,j≤n−1 =











s0 s1 . . . sn

s1 . .
.

sn+1
... . .

.
. .

. ...
sn sn+1 . . . s2n−2











We get from [BPR, Theorem 9.17] :

Proposition 2.2 Let p(x) = xn + an−1x
n−1 + . . . + a0 and s = (sk) be a sequence of real

numbers. The following assertions are equivalent

(i) (∀k ≥ n) (sk = −an−1sk−1 − . . . − a0sk−n)

(ii) There is a polynomial q(x) of degree deg q < deg p such that

q(x)

p(x)
=

∞
∑

j=0

sj

xj+1

(iii) There is an integer r ≤ n such that det(Hr(s)) 6= 0, and for all k > r, det(Hk(s)) = 0.
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Whenever these conditions are fulfilled, we denote by Hn(q/p) the Hankel matrix Hn(s).

Back to the intertwinning relation (6) : it is immediate that an Hankel matrix H is a
solution if and only if the (finite) sequence (s0, . . . , s2n−2) satisfies the linear recurrence relation
of Proposition 2.2(i), for k = n, . . . , 2n − 2.

For further details and developments about the intertwinning relation, we refer to [HV].

The vector subspace of Hankel matrices in R
n×n satisfying relation (6) has dimension n, and

contains a remarkable element : the Hankel matrix Newtp(n) that was considered in subsection
2.1 about Sylvester algorithm. Indeed, it is a well-known and elementary fact that the Nk’s are
real numbers which verify the Newton identities :

(∀k ≥ n) (Nk + an−1Nk−1 + . . . + a0Nk−n = 0)

2.3 Barnett formula

First, recall that if p(x) = xn + an−1x
n−1 + . . . + a0 and q(x) is a (non-necessarily monic)

polynomial in R[x] whose degree is equal to n − 1, the Bezoutian of p(x) and q(x) is defined as
the two-variables polynomial :

Bez(p, q) =
q(y)p(x) − q(x)p(y)

x − y
∈ R[x, y]

Let B(z) be any basis of the n-dimentional vector space R[z]/p(z) over R. We denote by
BezB(p, q) the symmetric matrix of the coefficients of Bez(p, q) with respect to the basis B(x)
and B(y).

Among all the basis of R[z]/p(z) that will be interesting for the following, let us mention
the canonical basis C = (1, z, . . . , zn−1) and also the (degree decreasing) Horner basis H(z) =
(h0, . . . , hn−1) associated to the polynomial p(z) and which is defined by :







































h0(z) = zn−1 + an−1z
n−2 + . . . + a1

...
hi(z) = zn−1−i + an−1z

n−2−i + . . . + ai+1 = zhi+1(z) + ai+1
...

hn−2(z) = z + an−1

hn−1(z) = 1

We recall from [BPR, Proposition 9.20] :

Proposition 2.3 Let p(x) and q(x) be two polynomials such that deg q < deg p = n. Let s be
the sequence of real numbers defined by

q(x)

p(x)
=

∞
∑

j=0

sj

xj+1

Then, BezH(p, q) = Hn(s) = Hn(q/p).
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We come to a central proposition which is a consequence of the Barnett formula [Ba].

Proposition 2.4 Let p(x) and q(x) be two polynomials such that deg q < deg p = n and let PCH

be the change of basis matrix from the canonical basis C to the Horner basis H. We have

q(Cp) = P T
CH × Hn(q/p)

Proof : The Barnett formula has been established in [Ba] using direct matrix computations.
For the convenience of the reader, we give here another proof (which may be found at various
places in the literature).

The obvious identity

q(y)(p(x) − p(y)) = q(y)p(x) − p(y)q(x) + p(y)(q(x) − q(y))

implies, by definition of the Bezoutian B(p, q), that :

q(y)
p(x) − p(y)

x − y
≡ Bez(p, q) mod p(y)

Noticing that p(x)−p(y)
x−y

=
∑n−1

j=0 hj(y)xj , we get

q(y)

n−1
∑

j=0

hj(y)xj ≡ C(y)BezC(p, q)C(x)T mod p(y)

In other words, if we denote by M the matrix whose columns are the coefficients of q(y)hj(y)
in the basis C(y), we get the identity

C(y)MC(x)T ≡ C(y)BezC(p, q)C(x)T mod p(y)

Since Cp is the matrix of the multiplication by y mod p(y) with respect to the canonical
basis C(y), we have also the identity

M = q(Cp)PCH

where the change of basis matrix PCH is in fact the following Hankel matrix

PCH = H(a0, a1, . . . , an−1, 1, 0, . . . , 0) ∈ R
n×n

with the usual notation p(x) = xn + an−1x
n−1 + . . . + a0. Hence, we get the Barnett Formula

BezC(p, q) = q(Cp)PCH

Finally, by Proposition 2.3, we derive the wanted relation :

BezC(p, q) = P T
CHBezH(p, q)PCH = P T

CHHn(q/p)PCH

Which concludes the proof. ⊓⊔

To end the section, we show how Sturm and Sylvester algorithms can be considered as
dual, in the case where all the roots of p(x) are real and simple, say x1 < . . . < xn. Then,
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q(x) = p′(x)/n has also n − 1 simple real roots y1 < . . . < yn−1 which are interlacing those of
p(x). Namely

x1 < y1 < x2 < y2 < . . . < yn−1 < xn

We may repeat the argument to see that this interlacing property of real roots remains for
any two consecutive polynomials pk(x) and pk+1(x) of the sequence SRemS(p, q). In particular,
SRemS(p, q) does not have any degree breakdown, all the ǫk are equal to +1, and N(q/p) is
positive definite.

We have, by Proposition 2.4
q(CT

p ) = Hn(q/p)PCH

Since Hn(q/p) is positive definite, the Cholesky algorithm gives a decomposition

Hn(q/p) = KKT

where K ∈ R
n×n is lower triangular. So that we can write

p(x) = det(xId− K−1CT
p K)

We shall remark at this point that the matrix K−1CT
p K is tridiagonal and symmetric.

We get q(CT
p ) = KAdL where L = AdKT PCH. Then, we observe that L is a lower triangular

matrix (since PCHAd is upper triangular) and KAdL commute with CT
p . Thus, we have the

identity :
LCT

p L−1 = Ad(K−1CT
p K)Ad

We denote by Td this tridiagonal matrix. Let (pk(x)) be the signed remainders sequence
associated to Td as given in Proposition 1.1 (i). The first row of KAdL is proportional to
the last row of the matrix L which is proportional to p1(x). It remains to observe that the first
row of KAdL = q(CT

p ) gives exactly the coefficients of the polynomial q(x) in the canonical
basis. Then, p1(x) = q(x).

In summary, we have shown that, if p(x) has n simple real roots and q(x) = p′(x)/n, then
Hn(q/p) is positive definite with Cholesky decomposition Hn(q/p) = KKT , and if we denote
by q̃(x) the monic polynomial whose coefficients are proportional to the last row of K−1, then
Td(p, q̃) = Td(p, q). Which settle the announced duality.

2.4 Generic case

We turn now to the generic situation. Let p(x) and q(x) be monic polynomials of respective
degrees n and n − 1 and such that SRemS(p, q) does not have any degree breakdown. This
condition is equivalent to saying that all the principal minors of the Hankel matrix Hn(q/p) do
not vanish. We refer to [BPR] for this point. One way to see this is to figure out the connexion
with the subresultants of p(x) and q(x).

A little bit more precisely, the j-th signed subresultant coefficient of p(x) and q(x) is denoted
by sResj(p, q) for j = 0 . . . n − 1. If for all j, sResj(p, q) 6= 0, we say that the sequence of
subresultants is non-defective. Then, by [BPR, Corollary 8.33] and Proposition 1.1 (iv), we
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deduce that the non-defective condition is equivalent to the fact that SRemS(p, q) has no degree
breakdown. Moreover, from [BPR, Lemma 9.26] we know that

(∀j ∈ {1 . . . n}) (sResn−j(p, q) = det(Hj(q/p))) .

In conclusion, our no degree breakdown assumption means also that all the principal minors of
the Hankel matrix Hn(q/p) do not vanish.

At this point, we may add another equivalent condition, which will be essential for the
following. Indeed, the condition that all the principal minors of the Hankel matrix Hn(q/p)
do not vanish is also equivalent to saying that the matrix Hn(q/p) admits an invertible
LU decomposition. Namely, it exists a lower triangular matrix L with 1 entries onto the
diagonal, and an upper invertible triangular matrix U such that Hn(q/p) = LU . Moreover this
decomposition is unique and since Hn(q/p) is symmetric we may write it as Hn(q/p) = LDLT

where D is diagonal. In fact, for our purpose, we will prefer the unique decomposition
Hn(q/p) = KJKT where K is lower triangular and J is a signature matrix.

Generalizing the previous section, we get :

Theorem 2.5 Let p(x) and q(x) be two monic polynomials of respective degrees n and n − 1
such that SRemS(p, q) does not have any degree breakdown. Consider the symmetric LU-
decomposition of the Hankel matrix Hn(q/p) = KJKT , where J is a signature matrix and
K a lower triangular matrix, and denote by q̃(x) the monic polynomials whose coefficients in
the canonical basis are proportional to the last row of K−1. Then,

Td(p, q̃) = Td(p, q).

Proof : We start with the companion identity :

p(x) = det(xId− CT
p )

Next, because of Proposition 2.2(i), we notice that the matrix Hn(q/p) verifies the intertwinning
relation :

Hn(q/p)Cp = CT
p Hn(q/p)

Then, we write the symmetric LU -decomposition of Hn(q/p) :

Hn(q/p) = KJKT

Which gives the identity

p(x) = det(xId− K−1CT
p K).

We have, by Proposition 2.4

q(CT
p ) = Hn(q/p)PCH = KAdL

where
L = AdJKTPCH
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We observe first that L is a lower triangular matrix (since PCHAd is upper triangular), and
second that KAdL commute with CT

p . Thus, we have the identity :

LCT
p L−1 = Ad(K−1CT

p K)Ad

Proposition 1.3 gives
Td(p, q̃) = Ad(K−1CT

p K)Ad

Moreover, the first row of KAdL is proportional to the last row of the matrix L. It remains
to observe that the first row of KAdL = q(CT

p ) gives exactly the coefficients of the polynomial
q(x) in the canonical basis. Thus, by Proposition 1.3 we get

LCT
p L−1 = Td(p, q)

Which concludes the proof. ⊓⊔

Remark 2.6 Note that K−1CT
p KJ is symmetric and hence also the matrix LCT

p L−1J̄ , where
J̄ = AdJAd.

3 Tridiagonal determinantal representations

3.1 Notations

We say that an univariate polynomial p(x) ∈ R[x] of degree n such that p(0) 6= 0 has a
determinantal representation if

(DR) p(x) = α det(J − Ax)

where α ∈ R
∗, J is a signature matrix in R

n×n, and A is a symmetric matrix in R
n×n (we

obviously have α = det(J)p(0)).
Likewise, we say that p(x) has a weak determinantal representation if

(WDR) p(x) = α det(S − Ax)

where α ∈ R
∗, S is symmetric invertible and A is symmetric.

Of course the existence of (DR) is obvious for univariate polynomials, but we will focus on
the problem of effectivity. Namely, we want an algorithm (say of polynomial complexity with
respect to the coefficients and the degree of p(x)) which produces the representation. Typically,
we do want to avoid the use of the roots of p(x).

One result in that direction can be found in [Qz2] (which is inspired from [Fi]). It uses arrow
matrices as a “model”, whereas in the present article we make use of tridiagonal matrices.

When all the roots of p(x) are real, the effective existence of determinantal representation
for univariate real polynomials exists even if we add the condition that J = Id. It has
been discussed in several places, although not exactly with the determinantal representation
formulation. Indeed, in place of looking for DR we may consider the equivalent problem of the
research of a symmetric matrix whose characteristic polynomial is given. Indeed, if the size of
the matrix A is equal to the degree n of the polynomial, the condition

p(x) = det(Id− xA)
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is equivalent to
p∗(x) = det(xId− A)

where p∗(x) is the reciprocal polynomial of p(x). In [Fi], arrow matrices are used to answer
this last problem. On the other hand, the Routh-Lanczos algorithm (which can be viewed as
Proposition 1.1) gives also an answer, using tridiagonal model. Note that the problem may also
be reformulated as a structured Jacobi inverse problem (confer [EP] for a survey).

In the following, we generalize the tridiagonal model to any polynomial p(x), possibly having
non real roots. Doing that, general signature matrices J appear, whose entries depend on the
number of real roots of p(x).

3.2 Over a general field

A lot of identities in Section 2 are still valid over a general field k. For instance, if p(x) and
q(x) are monic polynomials of respective degrees n− 1 and n, we may still associate the Hankel
matrix H(q/p) = (si+j)0≤i,j≤n−1 ∈ kn×n defined by the identity

q(x)

p(x)
=

∞
∑

j=0

sj

xj+1

Then, we have the following :

Theorem 3.1 Let p(x) ∈ k[x], q(x) ∈ k[x] be two monic polynomials of respective degrees n
and n − 1, and set H = H(q/p). Then, the matrix CT

p H is symmetric and we have the WDR :

det(H) × p(x) = det(xH − CT
p H)

Moreover, if H admits the LU-decomposition H = KDKT where K ∈ kn×n is lower triangular
with entries 1 onto the diagonal and D ∈ kn×n a diagonal matrix, then we have :

p(x) = det(xD − Td)

where Td = K−1CT
p KD is a tridiagonal symmetric matrix.

Proof : We exactly follow the proof of Theorem 2.5. ⊓⊔

Note that the condition for H to be invertible is equivalent to the fact that the polynomials
p(x) and q(x) are coprime, since we have

rk(Bez(q, p)) = deg (p) − deg (gcd(p, q)).

To see this, we may refer to the first assertion of [BPR, Theorem 9.4] whose proof is valid over
any field.

The WDR of Theorem 3.1 has the advantage that the considered matrices have entries in
the ring generated by the coefficients of the polynomial p(x). This point is not satisfied in the
methods proposed in [Qz2] or in the Routh-Lanczos algorithm.

In fact, the use of Hankel matrices satisfying the intertwinning relation seems to be more
convenient since we are able to “stop the algorithm at an earlier stage”, namely before having
to compute a square root of the matrix H (or of the matrix D).
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Of course, at the time we want to derive a DR, then we have to add some conditions on the
field k, for instance we shall work over an ordered field where square roots of positive elements
exist.

To end the section, we may summarize that, for a given polynomial p(x), we have an obvious
but non effective (i.e. using factorization) DR with entries in the splitting field of p(x) over k, to
compare with an effective WDR given by Theorem 3.1 where entries are in the field generated
by the coefficients of p(x).

3.3 Symmetric tridiagonal representation and real roots counting

If p(x) and r(x) are two real polynomials, we recall the number known as the Tarski Query :

TaQ(r, p) = #{x ∈ R | p(x) = 0 ∧ r(x) > 0} − #{x ∈ R | p(x) = 0 ∧ r(x) < 0}.

We also recall the definition of the Permanences minus variations number of a given sequence
of signs ν = (ν1, . . . , νk) :

PmV(ν) =

k−1
∑

i=1

νiνi+1.

We summarize, from [BPR, Theorem 4.32, Proposition 9.25, Corollary 9.8] some useful
properties of these numbers,

Proposition 3.2 Let p(x) and q(x) be two monic polynomials of respective degrees n and n−1,
and such that the sequence SRemS(p, q) has no degree breakdown. Let r(x) be another polynomial
such that q(x) is the remainder of p′(x)r(x) modulo p(x). Then,

PmV(ν) = sgn(Bez(p, q)) = sgn(Hn(q/p)) = TaQ(r, p)

where ν is the sequence of signs of the leading coefficients in the signed remainders sequence
SRemS(p, q).

We come now to our main result about real roots counting :

Theorem 3.3 Let Td ∈ R
n×n be a tridiagonal symmetric matrix with non-singular first

principal diagonals. Let also p(x) ∈ R[x] be a real polynomial with no multiple root and such
that

p(x) = det(J) det(xJ − Td),

where J is a signature matrix whose last entry onto the diagonal is +1.
Then, the number of real roots of p(x) is greater than sgn(J).

Proof : We have
p(x) = det(xIdn − Td × J)

and we set
q(x) = det

(

xIdn−1 − (Td × J)n−1

)

.

The matrix Td × J is still tridiagonal with non-singular first principal diagonals. Then, we
consider the sequence SRemS(p, q) and denote by ν the associated sequence of signs of leading
coefficients.
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Since gcd(p, p′) = 1, we set r(x) to be the unique polynomial of degree < n such that

r ≡ q

p′
mod p.

Then,
p′r ≡ q mod p

and from Proposition 3.2, we get :

PmV(ν) = TaQ(r, p) ≤ #{x ∈ R | p(x) = 0}

Let us introduce some notations at this step. First, let Td = Td(α, β, γ), next denote by
ǫ(a) the sign in {−1,+1} of the non zero real number a, and finally let

J =











θn−1

. . .

θ1

1











.

Then, we can write

p(x) = det
(

xIdn − P (Td × J)P−1
)

where

P =











(θn−1 . . . θ1) × (ǫ(γn−1) . . . ǫ(γ1))
. . .

θ1 × ǫ(γ1)
1











.

We note in fact that P (Td × J)P−1 = Td(p, q). Indeed, all the coefficients onto the first
lower principal diagonal are positive. Moreover, all the coefficients onto the first upper principal
diagonal are given by the sequence

(θn−1 × θn−2, . . . , θ2 × θ1, θ1).

We deduce from Proposition 1.1 (iv) that the sequence of signs of leading coefficients in the
signed remainders sequence SRemS(p, q) is the following :

ν = (θn−1 × . . . × θ1, . . . , θ2 × θ1, θ1, 1, 1).

Thus

PmV(ν) = 1 +
n−1
∑

k=1

θk = sgn(J)

and we are done. ⊓⊔

Another way, maybe less constructive, to prove the result is to use the duality of Theorem
2.5. Indeed, replacing as in the previous proof the matrix Td× J with P (Td× J)P−1, we write
the identity

Td × J = LCT
p L−1
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Then, by duality, we have
LCT

p L−1 = AdK−1CT
p KJ ′Ad

where we have set the LU-decomposition

Hn(q/p) = KJ ′KT .

Let us introduce J̄ ′ = AdJ ′Ad ; we get :

(

LCT
p L−1J

)

× (JJ̄ ′) = AdK−1CpKJ ′Ad

We remark that the matrices LCT
p L−1J and K−1CpKJ ′ are both tridiagonal and symmetric

with non-singular principal diagonals, so that we necessarily have

JJ̄ ′ = ±Id.

Notice that by assumption the last coefficient of J is +1 and that the first coefficient of J ′ is
always +1 (since it is the leading coefficient of q(x)

p(x)). Thus

JJ̄ ′ = Id.

Then, we may conclude by Proposition 3.2.
An alternative way to make use of this computation is to say that we get another proof of

the equality
PmV(ν) = sgn(Bez(p, q))

which appears in the sequence of identities

sgn(Bez(p, q)) = sgn(Hn(q/p)) = sgn(J ′) = sgn(J) = PmV(ν) = TaQ(r, p).

Remark 3.4 It is possible to extend Theorem 3.3 in the case where principal diagonals of
Td = Td(α, β, β) are singular. Namely, for all k such that βk = 0, we have to assume that
the corresponding k-th entry onto the diagonal of J is equal to +1. Then, we get that the
number of real roots of p(x), counted with multiplicity, is greater than sgn(J).

To see this, it suffices to note that the polynomial defined by p(x) = det(J) det(xJ − Td)
factorizes through

p(x) = det(J1) det(xJ1 − Tdk) × det(J2) det(xJ2 − Tdn−k)

Moreover, the matrices Tdk and Tdn−k remain tridiagonal symmetric and J1, J2 remain
signature matrices. If we denote by

⊕

the usual direct sum of matrices, we have J = J1
⊕

J2

and Td = Tdk

⊕

Tdn−k.
Thus, we may proceed by induction on the degree of p(x).

Before stating the converse property of Theorem 3.3, we establish a genericity lemma.

Lemma 3.5 Let p(x) be a monic polynomial of degree n with only single roots and q(x) =
xn−1 + b1x

n−1 + . . . + bn−1. Then, the set of all (n − 1)-tuples (b1, . . . , bn−1) ∈ R
n−1 such that

there is an integer k ∈ {1, . . . , n} satisfying det(Hk(q/p)) = 0, is a proper subvariety of R
n−1.
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Proof : We only have to show that for all k, det(Hk(q/p)), viewed as a polynomial in the
variables b1, . . . , bn−1, is not the zero polynomial.

Let Hn(q/p) = (si+j)0≤i,j≤n−1 where

q(x)

p(x)
=

∞
∑

j=0

sj

xj+1

and denote by α1, . . . , αn the set of all (possibly complex) roots of p(x). Then,

sj =

n
∑

i=1

q(αi)

p′(αi)
αj

i

Let us introduce the real numbers defined as

uj =
n

∑

i=1

αj
i

p′(αi)

We obviously have uj = 0 whenever j ≤ n − 2 and also un−1 = 1 (look at limx→+∞
xjq(x)
p(x) ). So

that we deduce :















s0 = 1
s1 = b1 + un

and more generally
(∀j ∈ {1, . . . , 2n − 2}) (sj = bj + bj−1un + . . . + b1un+j−2 + un+j−1)

Then, it becomes clear that Hk+1(q/p) 6≡ 0 for any k such that k ≤ ⌊n−1
2 ⌋ = r, since

s2k ∈ R[b1, . . . , b2k] has degree 1 in the variable b2k and so is the case for Hk+1(q/p).
Next, for r < k ≤ n, we develop the determinant Hk(q/p) successively according to the first

columns, and we remark that its degree in the variable bn−1 is equal to 2k − n (with leading
coefficient equal to −1). This concludes the proof. ⊓⊔

In other words, the Lemma says that the condition

(∀k ∈ {1, . . . , n}) ( det(Hk(q/p)) = 0)

is generic with respect to the space of coefficients of the polynomial q(x). Because of the relations
between coefficients and roots, the condition is also generic with respect to the (possibly complex)
roots of the polynomial q(x).

Here is our converse statement about real roots counting :

Theorem 3.6 Let p(x) be a monic polynomial of degree n which has exactly s real roots counted
with multiplicity. We can find effectively a generic family of symmetric tridiagonal matrices Td
and signature matrices J with sgn(J) = s, and such that

p(x) = det(J) × det(xJ − Td).

Proof : If p(x) has multiple roots, then we may factorize it by gcd(p, p′) and use the
multiplicative property of the determinant to argue by induction on the degree. Now, we assume
that p(x) has only simple roots.
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We take for q(x) any monic polynomials of degree n − 1 which has exactly s − 1 real roots
interlacing those of p(x). Namely, if we denote by x1 < . . . < xs all the real roots of p(x) and
by y1 < . . . < ys−1 all the real roots of q(x), we ask that x1 < y1 < x1 < y2 < . . . < ys−1 < xs.

Let r(x) be the unique polynomial of degree < n such that r(x) ≡ q(x)
p′(x) mod p(x) (since p′(x)

is invertible modulo p(x)).
From p′r ≡ q mod p and p′(xi) = q(xi) for all real root xi of p(x), we get

TaQ(r, p) = s = #{x ∈ R | p(x) = 0}

At this point, we need that q(x) satisfies another hypothesis : that is SRemS(p, q) shall
not have any degree breakdown, or equivalently that H(q/p) shall admit a LU -decomposition
Hn(q/p) = KJKT . According to Lemma 3.5, this hypothesis is generically satisfied, although
it may not be always satisfied for the natural candidate q(x) = p′(x)/n.

Then, we get from Theorem 2.5

p(x) = det(xJ − K−1CT
p KJ)

where Td = K−1CT
p KJ is tridiagonal symmetric and J is a signature matrix.

By the proof of Proposition 3.3, we get moreover that

sgn(J) = TaQ(r, p) = sgn(Hn(q/p)).

This concludes the proof since TaQ(r, p) = s. ⊓⊔

Remark 3.7 (i) The choice of such polynomials q(x) with the interlacing roots property need
to count and localize the real roots of p(x). It can be done via Sturm sequences for instance.

(ii) Although the polynomial q(x) = p′(x)/n has not necessarily the interlacing property in
general, it is the case when all the roots of p(x) are real and simple. Moreover, in this
case, the interlacing roots condition is equivalent to the no degree breakdown condition.
Indeed, TaQ(p′q mod p, p) = n if and only if p′(x) and q(x) have same signs at each root
of p(x).

4 Some worked examples

In order to get lighter formulas in our examples, we decide to get rid off denominators. That
is why we replace signature matrices by only non-singular diagonal matrices. If one wants to
deduce formulas with signature matrices, it suffices to normalize.

1) Let p(x) = x3 + sx + t with s 6= 0, and q(x) = p′(x) = 3x2 + s. Let us introduce the
discriminant of p(x) as ∆ = −4s3−27t2. Consider the decomposition of the Hankel matrix

H(q/p) =





3 0 −2s
0 −2s −3t

−2s −3t 2s2



 = KJKT
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where

K =





1 0 0
0 1 0

−2s
3

3t
2s

1





and

J =





3 0 0
0 −2s 0

0 0 −∆
6s





We recover the well-known fact that p(x) has three distinct real roots if and only if s < 0
and ∆ > 0, which obviously reduces to the single condition ∆ > 0.

Then, we have the determinantal representation

∆ × p(x) = det(xJ − Td)

where

Td =





0 −2s 0

−2s −3t −∆
6s

0 −∆
6s

t∆
4s2





2) Consider the polynomial p(x) = x5 − 5x3 + 4x, which in fact factorizes through p(x) =
x(x − 1)(x + 1)(x − 2)(x + 2). Let q(x) = p′(x)/5. We have

N(q/p) =













5 0 10 0 34
0 10 0 34 0
10 0 34 0 130
0 34 0 130 0
34 0 130 0 514













Td =





















0
√

2 0 0 0
√

2 0
√

7
5 0 0

0
√

7
5 0

√

36
35

0 0
√

36
35 0

√

4
7

0 0 0
√

4
7 0





















p(x) = det(xId− Td).

In order to get some parametrized identities, let us introduce the following family of
polynomials

qa(x) = (x − a)

(

x +
3

2

)(

x +
1

2

)(

x − 1

2

)

.
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We write the LU-decomposition

H(qa/p) =





























1 3
2 − a −3a

2 + 19
4

57
8 − 19a

4
−57a

8 + 79
4

3
2 − a −3a

2 + 19
4

57
8 − 19a

4
−57a

8 + 79
4

237
8 − 79a

4

−3a
2 + 19

4
57
8 − 19a

4
−57a

8 + 79
4

237
8 − 79a

4
−237a

8 + 319
4

57
8 − 19a

4
−57a

8 + 79
4

237
8 − 79a

4
−237a

8 + 319
4

957
8 − 319a

4

−57a
8 + 79

4
237
8 − 79a

4
−237a

8 + 319
4

957
8 − 319a

4
−957a

8 + 1279
4





























= KaJaK
T
a

where the associated “signature” matrix Ja is equal to














1
−

1
2
(a + 1)(2a − 5)

(

15
16

) (2a−1)(4a2
−a−15)

(a+1)(2a−5)
(

45
128

)

48a4
−16a3

−216a2+58a+105
(2a−1)(4a2

−a−15)
(

315
8

) (a+2)(a+1)a(a−1)(a−2)

48a4
−16a3

−216a2+58a+105















The condition for Ha(q/p) to be positive definite is equivalent to having only positive
coefficients onto the diagonal of Ja.

First, it yields Ja(2, 2) > 0, which means that a ∈] − 1, 5
2 [. Then, we add the condition

Ja(3, 3) > 0 which means that a ∈]12 , 2, 06..[. Then, we add the condition Ja(4, 4) > 0
which means that a ∈]0, 9.., 2, 00..[. And finally, we add the condition Ja(5, 5) > 0, which
means that a ∈]1, 2[ and gives exactly the interlacing property for the polynomial qa(x).

For instance, with a = 3
2 we get p(x) = det

(

xId− Td 3
2

)

where :

Td 3
2

=























0
√

5
2 0 0 0

√

5
2 0

√

9
8 0 0

0
√

9
8 0

√

35
40

0 0
√

35
40 0

√

1
2

0 0 0
√

1
2 0
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