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Sébastien Fourey
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Abstract. We present a characterization of topology preservation within
digital axiomatized digital surface structures (gads), a generic theoreti-
cal framework for digital topology introduced in [2]. This characterization
is based on the digital fundamental group that has been classically used
for that purpose. More briefly, we define here simple points within gads
and give the meaning of the words: preserving the topology within gads.

1 Introduction

In [2], a generic framework for digital topology has been introduced. This
framework is in fact a whole axiomatic theory that allows us to prove re-
sults that become valid for any two dimensional digital space that satisfies
the axioms of the theory. Some results such as a generic Jordan theorem
has already been proved within this framework.

In this paper, we address a classical problem of digital topology: the
characterization of topology preservation [15, 12, 18]. The main question
being: When can we say that the deletion of one or several pixels (or
voxels) from an image preserves the topology? In all cases, the answer to
this question comes with the definition of simple pixels/voxels.

On the other hand, the digital fundamental group ([11]) has proved
to be a convenient tool in order to characterize topology preservation in
digital surfaces (see [16, 5]) as well as in the classical three dimensional
digital space Z3 (see [6]). Here, we state in a very straightforward way a
definition of the digital fundamental group of a gads (Generic Axioma-
tized Digital Surface-Structure). Then, we present a characterization of
topology preservation within a gads, by removal of a simple point, based
on the fundamental group.

2 Definition of GADS and pGADS

We recall here the basic notions and definitions from [2]. We should first
summarize the motivation for the definition of a gads. This starts with



an observation: many results in digital topology come with a proof that
depends on the digital space that is considered. For example, a proof of a
Jordan curve theorem exists for the space Z2 with the classical (4, 8) or
(8, 4) pairs of adjacency relations. A similar result holds for the hexago-
nal grid, as well as Z2 with the Khalimsky adjacency relation. What is
unsatisfactory here is that the proof of such a result has to be written for
each of the considered spaces. The axiomatic definition of what actually
is an admissible digital space is a response to this observation. The pur-
pose of gads as introduced in [2] is to define a generic framework that
allows to state and prove results of digital topology which becomes valid
for any admissible digital space. Thus, a single result would no longer
need (sometimes similar) multiple proofs.

2.1 Basic Concepts and Notations

For any set P we denote by P {2} the set of all unordered pairs of distinct
elements of P (equivalently, the set of all subsets of P with exactly two
elements). Let P be any set and let ρ ⊆ P {2}.1 Two elements a and b of
P [respectively, two subsets A and B of P ] are said to be ρ-adjacent if
{a, b} ∈ ρ [respectively, if there exist a ∈ A and b ∈ B with {a, b} ∈ ρ]. If
x ∈ P we denote by Nρ(x) the set of elements of P which are ρ-adjacent
to x; these elements are also called the ρ-neighbors of x. We call Nρ(x)
the punctured ρ-neighborhood of x.

A ρ-path from a ∈ P to b ∈ P is a finite sequence (x0, . . . , xl) of one or
more elements of P such that x0 = a, xl = b and, for all i ∈ {0, . . . , l−1},
{xi, xi+1} ∈ ρ. The nonnegative integer l is the length of the path. A ρ-
path of length 0 is called a one-point path. For all integers m,n, 0 ≤ m ≤
n ≤ l, the subsequence (xm, . . . , xn) of (x0, . . . , xl) is called an interval or
segment of the path. For all i ∈ {1, . . . , l} we say that the elements xi−1

and xi are consecutive on the path, and also that xi−1 precedes xi and xi

follows xi−1 on the path. Note that consecutive elements of a ρ-path can
never be equal.

A ρ-path (x0, . . . , xl) is said to be simple if xi 6= xj for all distinct i
and j in {0, . . . , l}. It is said to be closed if x0 = xl, so that x0 follows
xl−1. It is called a ρ-cycle if it is closed and xi 6= xj for all distinct i and
j in {1, . . . , l}. One-point paths are the simplest ρ-cycles. Two ρ-cycles
c1 = (x0, . . . , xl) and c2 = (y0, . . . , yl) are said to be equivalent if there
exists an integer k, 0 ≤ k ≤ l − 1, such that xi = y(i+k)mod l for all
i ∈ {0, . . . , l}.
1 ρ can be viewed as a binary, symmetric and irreflexive relation on P , and (P, ρ) as

an undirected simple graph.
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If S ⊆ P , two elements a and b of S are said to be ρ-connected in S
if there exists a ρ-path from a to b that consists only of points in S. ρ-
connectedness in S is an equivalence relation on S; its equivalence classes
are called the ρ-components of S. The set S is said to be ρ-connected if
there is just one ρ-component of S.

Given two sequences c1 = (x0, . . . , xm) and c2 = (y0, . . . , yn) such that
xm = y0, we denote by c1.c2 the sequence (x0, . . . , xm, y1, . . . , yn), which
we call the concatenation of c1 and c2. Whenever we use the notation
c1.c2, we are also implicitly saying that the last element of c1 is the same
as the first element of c2. It is clear that if c1 and c2 are ρ-paths of lengths
l1 and l2, then c1.c2 is a ρ-path of length l1 + l2.

For any sequence c = (x0, . . . , xm), the reverse of c, denoted by c−1,
is the sequence (y0, . . . , ym) such that yk = xm−k for all k ∈ {0, . . . ,m}.
It is clear that if c is a ρ-path of length l then so is c−1.

A simple closed ρ-curve is a nonempty finite ρ-connected set C such
that each element of C has exactly two ρ-neighbors in C. (Note that a sim-
ple closed ρ-curve must have at least three elements.) A ρ-cycle c of length
|C| that contains every element of a simple closed ρ-curve C is called a
ρ-parameterization of C. Note that if c and c′ are ρ-parameterizations of
a simple closed ρ-curve C, then c′ is equivalent to c or to c−1.

If x and y are ρ-adjacent elements of a simple closed ρ-curve C, then
we may say that x and y are ρ-consecutive on C. If x and y are distinct
elements of a simple closed ρ-curve C that are not ρ-consecutive on C,
then each of the two ρ-components of C \ {x, y} is called a ρ-cut-interval
(of C) associated with x and y.

2.2 Definition of a gads

Definition 1 (2D digital complex) A 2D digital complex is an or-
dered triple (V, π,L), where

– V is a set whose elements are called vertices or spels,
– π ⊆ V {2}, and the pairs of vertices in π are called proto-edges,
– L is a set of simple closed π-curves whose members are called loops,

and the following four conditions hold:

(i) V is π-connected and contains more than one vertex.
(ii) For any two distinct loops L1 and L2, L1 ∩ L2 is either empty, or

consists of a single vertex, or is a proto-edge.
(iii) No proto-edge is included in more than two loops.
(iv) Each vertex belongs to only a finite number of proto-edges.

3



When specifying a 2D digital complex whose vertex set is the set of
points of a grid in Rn, a positive integer k (such as 4, 8 or 6) may be
used to denote the set of all unordered pairs of k-adjacent vertices. We
write L2×2 to denote the set of all unit lattice squares in Z2. The triple
(Z2, 4,L2×2) is a simple example of a 2D digital complex.

Definition 2 (GADS) A generic axiomatized digital surface-structure,
or gads, is a pair G = ((V, π,L), (κ, λ)) where (V, π,L) is a 2D digital
complex (whose vertices, proto-edges and loops are also referred to as
vertices, proto-edges and loops of G) and where κ and λ are subsets of
V {2} that satisfy Axioms 1, 2 and 3 below. The pairs of vertices in κ
and λ are called κ-edges and λ-edges, respectively. (V, π,L) is called the
underlying complex of G.

Axiom 1 Every proto-edge is both a κ-edge and a λ-edge: π ⊆ κ ∩ λ.

Axiom 2 For all e ∈ (κ ∪ λ) \ π, some loop contains both vertices of e.

Axiom 3 If x, y ∈ L ∈ L, but x and y are not π-consecutive on L, then

(a) {x, y} is a λ-edge if and only if L \ {x, y} is not κ-connected.
(b) {x, y} is a κ-edge if and only if L \ {x, y} is not λ-connected.

Regarding Axiom 2, note that if e ∈ (κ ∪ λ) \ π (i.e., e is a κ- or
λ-edge that is not a proto-edge) then there can only be one loop that
contains both vertices of e, by condition (ii) in the definition of a 2D
digital complex.

As illustrations of Axiom 3, observe that both ((Z2, 4,L2×2), (4, 8))
and ((Z2, 4,L2×2), (8, 4)) satisfy Axiom 3, but ((Z2, 4,L2×2), (4, 4)) vio-
lates the “if” parts of the axiom, while ((Z2, 4,L2×2), (8, 8)) violates the
“only if” parts of the axiom.

A gads is said to be finite if it has finitely many vertices; otherwise
it is said to be infinite. The set of all gads can be ordered as follows:

Definition 3 (⊆ order, subGADS) Let G = ((V, π,L), (κ, λ)) and G′ =
((V ′, π′,L′), (κ′, λ′)) be gads such that

– V ⊆ V ′, π ⊆ π′ and L ⊆ L′.
– For all L ∈ L, κ ∩ L{2} = κ′ ∩ L{2} and λ ∩ L{2} = λ′ ∩ L{2}.

Then we write G ⊆ G′ and say that G is a subGADS of G′. We write
G ( G′ to mean G ⊆ G′ and G 6= G′. We write G < G′ to mean G ( G′ and
L 6= L′.
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The following simple but important property of gads is an immediate
consequence of the symmetry of Axioms 1, 2 and 3 with respect to κ and
λ:

Property 1 If ((V, π,L), (κ, λ)) is a gads then ((V, π,L), (λ, κ)) is also
a gads. So any statement which is true of every gads ((V, π,L), (κ, λ))
remains true when κ is replaced by λ and λ by κ.

2.3 Interior Vertices and pgads

We are particularly interested in those gads that model a surface without
boundary. The next definition gives a name for any such gads.

Definition 4 (pGADS) A pgads is a gads in which every proto-edge
is included in two loops. (The p in pgads stands for pseudomanifold.)

A finite pgads models a closed surface. A pgads that models the
Euclidean plane must be infinite.

A vertex v of a gads G is called an interior vertex of G if every proto-
edge of G that contains v is included in two loops of G. If follows that a
gads G is a pgads if and only if every vertex of G is an interior vertex.

Below are pictures of some pgads.

Example 1 Z2 with the 4- and 8-adjacency relations

G = ((Z2, 4,L2×2), (4, 8))

Example 2 Z2 with Khalimsky’s adjacency relation

G = ((Z2, 4,L2×2), (κ2, κ2)), where κ2 consists of all
unordered pairs of 4-adjacent points and all unordered
pairs of 8-adjacent pure points.

Example 3 A torus-like pgads
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G = ((V, κ,L), (κ, λ))
V = {a, b, c, d, e, f, g, h, i}
κ = {{a, b}, {b, c}, {c, a}, {d, f}, {f, g}, {g, d},

{e, h}, {h, i}, {i, e}, {b, f}, {c, g}, {a, d},
{f, h}, {g, i}, {d, e}, {h, b}, {i, c}, {e, a}}

λ = {{x, y} | ∃L ∈ L, x, y ∈ L} (not shown)
L = {{a, b, f, d}, {d, f, h, e}, {e, h, b, a},

{b, c, g, f}, {f, g, i, h}, {h, i, c, b},
{c, a, d, g}, {g, d, e, i}, {i, e, a, c}}

In the sequel of this paper, G = ((V, π,L), (κ, λ)) is a gads.

3 Simple points in a GADS

In this section, we will define simple points in a gads. In the classical
meaning, simple points are points that can be deleted while preserving the
topology of an image. By “preserving the topology” we mean preserving
connectivity and holes. Proving that our definition is suitable in this sense
will be the purpose of Section 5.

Several definitions and characterizations have been given for simple
points in classical (2D or 3D) digital spaces. See for example [17, 1, 15, 19]
for an overview. Our purpose here is to state a definition and a charac-
terization within the generic framework of GADS, thus generalizing this
classical notion for any admissible “surface like” digital space.

We can give in intuitive words a first definition of a simple point.
Indeed, a point x ∈ X ⊂ V is said to be κ-simple for X if and only if:

– X and X \ {x} have the same number of κ-connected components;
– X and X ∪ {x} have the same number of λ-connected components;
– X and X \ {x} have the same holes.

We will now define a few notations that will allow us to state a formal
definition of a simple point.

For any vertex v of G, the punctured loop neighborhood of v in G,
denoted by NL(v), is defined to be the union of all the loops of G which
contain v, minus the vertex v itself.

Let x ∈ V . The axioms given in Section 2 somehow guarantee that
loops are topological disks. However, NL(x) needs not to be a topolog-
ical disk (see the punctured loop neighborhood of any of the points in
Example 3). Thus, we need to define a topology on NL(x) under which
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it is a topological disk. Let y and y′ be two points of NL(x) ∪ {x}. We
say that y and y′ are κx-adjacent (respectively λx-adjacent) if {y, y′} ∈ κ
(respectively {y, y′} ∈ λ) and y and y′ are both contained in a loop con-
taining x. If X ⊂ V , we denote by Gκ(x,X) (resp. Gλ(x,X)) the graph
whose vertices are the points of NL(x) ∩X and whose edges are pairs of
κx-adjacent points (resp. λx-adjacent points) of NL(x) ∩ X. Let ρ = κ
or ρ = λ. We denote by Cx

ρ (Gρ(x,X)) the set of connected components
of Gρ(x,X) that are ρ-adjacent to x. Note that Cx

ρ (Gρ(x, X)) is a set of
subsets of points of V and not a set of points.

Definition 5 We call x a ρ-isolated point of X if Nρ(x) ∩X = ∅ and a
ρ-interior point if Nρ(x) ∩X = ∅.

We can now state our definition of a simple point, which is also a local
characterization.

Definition 6 (Simple point) A point x is said to be κ-simple in X if
and only if the number Card(Cx

κ(Gκ(x,X))) of connected components of
Gκ(x,X) which are κ-adjacent to x is equal to 1 and x is not interior to
X.

The following Lemma is a first step towards the justification of Defi-
nition 6.

Lemma 1 Let X ⊂ V and x ∈ X be a κ-simple point of X. Then:

– X and X \ {x} have the same number of κ-connected components;
– X and X ∪ {x} have the same number of λ-connected components.

We just give here the main argument for the proof of this Lemma. In
order to prove that no κ-connected component is created, just consider
two κ-connected points in X that are no longer connected in X \ {x}. If
c is a shortest κ-path in X between the two points, then the point a that
precedes x in c and the point b that follows x in c are both contained in
C, the only connected component of Gκ(x,X) which is κ-adjacent to x.
Therefore, a and b are κ-connected in X \ {x}, like the two initial points.

It remains to be proved that the removal of a simple point preserves
holes. This will be the purpose of Section 5.

4 Homotopic Paths and the Digital Fundamental Group
of a GADS

In this section, ρ is a subset of V {2} such that ρ ∈ {κ, λ, π}, and X is a
ρ-connected subset of V .
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Loosely speaking, two ρ-paths in X with the same initial and the same
final vertices are said to be ρ-homotopic within X in G if one of the paths
can be transformed into the other by a sequence of small local deforma-
tions within X. The initial and final vertices of the path must remain
fixed throughout the deformation process. The next two definitions make
this notion precise.

Definition 7 (elementary G-deformation) Two finite vertex sequences
c and c′ of G with the same initial and the same final vertices are said
to be the same up to an elementary G-deformation if there exist vertex
sequences c1, c2, γ and γ′ such that c = c1.γ.c2, c′ = c1.γ

′.c2, and either
there is a proto-edge {x, y} for which one of γ and γ′ is (x) and the other
is (x, y, x), or there is a loop of G that contains all of the vertices in γ
and γ′.

Definition 8 (homotopic ρ-paths) Two ρ-paths c and c′ in X with the
same initial and the same final vertices are ρ-homotopic within X in G if
there exists a sequence of ρ-paths c0, . . . , cn in X such that c0 = c, cn = c′

and, for 0 ≤ i ≤ n− 1, ci and ci+1 are the same up to an elementary G-
deformation. Two ρ-paths with the same initial and the same final vertices
are said to be ρ-homotopic in G if they are ρ-homotopic within V in G.

The next proposition states a useful characterization of ρ-homotopy
that is based on a more restrictive kind of local deformation than was
considered above, which allows only the insertion or removal of either a
“ρ-back-and-forth” or a cycle that parameterizes a simple closed ρ-curve
in a loop of G.

Definition 9 (minimal ρ-deformation) Two ρ-paths c and c′ with the
same initial and the same final vertices are said to be the same up to
a minimal ρ-deformation in G if there exist ρ-paths c1, c2 and γ such
that one of c and c′ is c1.γ.c2, the other of c and c′ is c1.c2, and either
γ = (x, y, x) for some ρ-edge {x, y} or γ is a ρ-parameterization of a
simple closed ρ-curve whose vertices are contained in a single loop of G.

This concept of deformation is particularly simple when ρ = π, be-
cause a simple closed π-curve whose vertices are contained in a single
loop of G must in fact be a loop of G, since a loop of G is a simple closed
π-curve.

Proposition 1 Two ρ-paths c and c′ in X with the same initial and the
same final vertices are ρ-homotopic within X in G if and only if there is
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a sequence of ρ-paths c0, . . . , cn in X such that c0 = c, cn = c′ and, for
0 ≤ i ≤ n − 1, ci and ci+1 are the same up to a minimal ρ-deformation
in G.

The proof of this proposition is not particularly difficult, and we leave
it to the interested reader.

Now, let b ∈ X be a point called the base point. We denote by Aρ
b(X)

the set of all closed ρ-paths c = (x0, . . . , xl) which are contained in X
such that x0 = xl = b. The ρ-homotopy relation is an equivalence relation
on Aρ

b(X), and we denote by Πρ
1 (X, b) the set of equivalence classes of

this equivalence relation. The concatenation of paths is compatible with
the ρ-homotpy relation, hence it defines an operation on Πρ

1 (X, b) which
to the class of c1 and c2 associates the class of c1.c2. This operation
provides Πρ

1 (X, b) with a group structure. We call this group the digital
ρ-fundamental group of X.

Now, we consider Y ⊂ X ⊂ V and b ∈ X a base point. Any closed ρ-
path in Y is a particular case of a closed ρ-path in X. Furthermore, if two
closed ρ-paths in Y are ρ-homotopic in Y , then they are also ρ-homotopic
in X. These two properties enable us to define a canonical morphism
i∗ : Πρ

1 (Y, b) −→ Πρ
1 (X, b) induced by the inclusion map i : Y −→ X.

To the class of a closed ρ-path c ∈ Aρ
b(Y ) in Πρ

1 (Y, b) the morphism i∗
associates the class of the same ρ-path in Πρ

1 (X, b).

5 Simple points and the digital fundamental group

Here, we show that simple points have been properly defined. For this
purpose, we use the formalism of the digital fundamental group. Indeed,
it allows us to prove that “holes are preserved” when one removes a simple
point from X, a subset of the set of points of a gads.

In this section, ρ is either equal to κ or equal to λ, and X is a ρ-
connected subset of V .

Lemma 2 Let b ∈ X and let x ∈ X be a ρ-simple point distinct from
b. Then any ρ-path of Aρ

b(X) is ρ-homotopic to a ρ-path contained in
X \ {x}.

Proof: Let c = (x0, . . . , xp) be a ρ-path in X such that x0 6= x and
xp 6= x. We define a ρ-path P (c) as follows: For any maximal sequence
γ = (xk, . . . , xl) with 0 ≤ k ≤ l ≤ p of points of c such that for all
i = k, . . . , l we have xi 6= x, we define s(γ) = γ. For any maximal sequence
γ = (xk, . . . , xl) with 0 ≤ k ≤ l ≤ p of points of c such that for i = k, . . . , l

9



we have xi = x, we define s(γ) as equal to the shortest ρ-path from xl−1

to xk+1 in the single connected component of Gρ(x,X) . Now P (c) is
the concatenation of all s(γ) for all maximal sequences γ = (xk, . . . , xl)
of points of c such that either for i = k, . . . , l we have xi 6= x or for
i = k, . . . , l we have xi = x. Now, it is readily seen that c is ρ-homotopic
to P (c) in X. ¤

Remark 1 If x ∈ X is a ρ-simple point in X and C is the single con-
nected component of Gρ(x,X), then any two ρ-paths in C with the same
extremities are ρ-homotopic in X \ {x}.

Lemma 3 Let b ∈ X and let x ∈ X be a ρ-simple point distinct from
b. If two closed ρ-paths c1 and c2 of Aρ

b(X \ {x}) are ρ-homotopic in X,
then they are ρ-homotopic in X \ {x}.

Proof: Let P (c1) and P (c2) be the two paths as defined in the proof
of Lemma 2. Following Proposition 1, it is sufficient to prove that if c1

and c2 are the same up to a minimal ρ-deformation in X, then the two ρ-
paths P (c1) and P (c2) are ρ-homotopic in X \{x}. Thus, we suppose that
c1 = c.γ.c′ and c2 = c.c′ where γ is either equal to (a, b, a) (with {a, b}
being a ρ-edge) or is a simple closed ρ-curve included in a loop L of L.
First, if we suppose that x does not belong to γ, then it is immediate that
P (c1) and P (c2) are ρ-homotopic. Therefore, we may suppose without
loss of generality that x belongs to γ. Furthermore, in order to clarify
the proof, we suppose in the sequel that all paths are such that any two
consecutive points are distincts. Let C be the only connected component
of Gρ(x,X).

In a first case, we suppose that γ = (a, b, a) whith x = a. We write
c1 = µ.(y, x, z).µ′ with c = µ.(y, x) and c′ = (x, z).µ′. Thus, we have
c2 = µ.(y, x, b, x, z).µ′. Now, y, z and b all belong to C. Let α be the
shortest ρ-path from y to b in C and let β be the shortest ρ-path from b
to z in C. Finally, let γ′ be the shortest ρ-path from y to z in C. We have
P (c1) = P (µ).γ′.P (µ′) and P (c2) = P (µ).α.β.P (µ′). From the previous
remark and since γ′ and α.β are ρ-paths in C with the same extremities,
we obtain that P (c1) and P (c2) are ρ-homotopic in X \ {x}.

The proof is similar in the case when γ is a closed ρ-path from the
vertex x to x.

In the case when γ = (a, b, a) with x = b we obtain that P (c1) = P (c2).
Remains the case when γ is a simple closed ρ-curve included in a

loop and containing x (not being an extremity). But in this case, P (γ)
is included in C and therefore ρ-homotopic to the path reduced to its
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extremities. Since in this case P (c1) = P (c).P (γ).P (c′) and P (c2) =
P (c).P (c′), we obtain that P (c1) and P (c2) are ρ-homotopic. ¤

Theorem 1 Let b ∈ X and let x ∈ X be a ρ-simple point of X distinct
from b. The morphism i∗ : Πρ

1 (X \ {x}, b) −→ Πρ
1 (X, b) induced by the

inclusion map of X \ {x} in X is a group isomorphism.

Proof: Lemma 2 implies that i∗ is onto and Lemma 3 implies that i∗ is
one to one. ¤

The latter lemma is the main result of this section. Indeed, it states
that when one removes a simple point (following Definition 6) from a
connected set X, then no hole is created nor removed. This, added to the
fact that the removal of a simple point cannot create some new connected
components nor remove any one (see Lemma 1), leads to the justification
of the following affirmation:

“Removing a simple point preserves the topology.”

This achieves the justification of the local characterization of simple
points in a gads given by Definition 6.

6 Concluding Remarks

We have introduced two new notions in the context of gads: the digi-
tal fundamental group and the notion of simple point. In so doing, we
illustrate the power of this axiomatic theory that allows us to prove very
general results of digital topology. Indeed, the two previously mentionned
notions are now valid for any two dimensional digital space that one can
reasonably consider.
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