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Abstract—We address here the problem of supervised classifi-  In this paper, we focus on this latter approach. We consider
cation using belief functions. In particular, we study the ombina- g set of classifiers that provide information on a pattern to
tion of non-independent sources of information. In a compaion e cjassified. We propose a measure of similarity between
paper [1], we showed that the cautious rule of combination o .

[2], [3] may be best suited than the widely used Dempster's _thesg sources; using this measure, clusters of sources enay b
Rule to combine classifiers in the case of real data. Then, we identified. Then, we learn two rules of combination: one is
considered combination rules intermediate between the cdious used to combine information within the clusters; the other,
rule and Dempster’s rule. We proposed a method for choosinge  combine together the results obtained in the previous step.
combination rule that optimizes the classification accurag over 1, gection 11, we recall the notions on belief functions that
a set of data. Eventually, we mentioned a generalized apprah, . . . - .

in which a refined combination rule best suited to complex will be needed, and fix the notations. In Section Ill, we detai
dependencies of the sources to combine is learnt. our method for clustering the sources and learning adequate

Here, we extensively study this latter approach. It consistin combination rules. Results on real data sets are reportgd an

clustering the sources according to some measure of simii®&;  commented in Section IV. Section V concludes the paper.
then, one rule is learnt for combining the sources within the
clusters, and another for combining the results thus obtaied.
We conduct experiments on various real data sets that show &

interest of this approach. In this article, we adopt the Transferable Belief Model

Keywords: Classification, classifier combination, informatior*(TBM) [4], [5], [10] as an interpretation of the theory of k|
fusion, theory of belief functions, Dempster-Shafer thyeor  ¢,nctions. The main notions are recalled in this section.

Il. FUNDAMENTALS OF BELIEF FUNCTIONS

I. INTRODUCTION

The theory of belief functions [4], [5] has been accepted éA‘s' Basic Definitions

a powerful tool for solving classification problems [6]-[&} 1) Representing ltems of Evidence with Belief Functions:

this framework, experts express their belief on the valikeria LetC be a classifier giving information on the actual class of a

by an unknown variable using belief functions. Mathematicéest patternx. This information may be represented by a basic

tools have been proposed for manipulating and aggregatijief assignment (bba), defined as a mapping froaf’ to

such items. Dempster’s rule of combination, also known & 1] satisfying)_ ,-om(4) = 1 (the notation2® denotes

the conjunctive rule of combination (CoRC) [4], [5], [9] pla the powerset of2). A subsetA C Q such thatm(A) > 0

a central role in the theory of belief functions. is called a focal set ofn, and the basic belief mass (bbm)
As pointed out in [3], this rule requires that the beliefn(A) quantifies the belief that the actual classxofs in A:

functions combined be distinct. Hence, a cautious rule #fis belief cannot be given to more precise hypothdses A

combination (CaRC) was proposed in [2], [3], allowing thélue to lack of information. The bbm((}) quantifies the belief

combination of information coming from non distinct sowsce thatx belongs to none of the classes of the QetA bba is

by counting each elementary piece of information only on&&id to be:

during the combination. It was also pointed out that both the, dogmatic, if(2 is not a focal set;

CoRC and the CaRC may be seen as elements of infinitg, simple, if it has at most two focal sets, includifig

families of combination rules. . categorical, if it is simple and dogmatic (therefore, if it
In a companion paper [1], we considered a supervised has only one focal element that is r@j;

classification problem. Given a set of classifigts ...C, « normal, if @ is not a focal set, and subnormal otherwise;

giving partial information on the actual class of a test@att  , consonant, if all its focal setg!;,..., Ay are nested:

x, we proposed a method to learn the rule of combination ¢ cC A, C...C Ay C Q.
that gives the best classn‘lcano_n resu_lts over a set of mte_Any subnormal bban can be normalized; the normalization
We then proposed to generalize this method, by clusteri s : )

- : . \%%eratlon is defined by:
and combining sources according to their dependency.
showed the interest of this approach on a series of synthetic
toy problems.

m(A)

m*(A) = 1—7771((/))’

VA C Q. (1)



A bbam may also be represented by its associated plausi-The @-combination of two weight functions; and w»
bility, belief, commonality, or implicability functiongjenoted may be processed by:
by pl, bel, q, and b, respectively. Note that these functions
are in one-to-one correspondence; they may be obtained from wi@2(4) = wi(Awz(4), VA CQ. (6)
each other through linear transformations. _ It becomes here obvious that the CoRC is commutative
2) Conjunctive Combination and Decision Makingwo  ang associative. However, it is not idempotent: in parsicul
bbasm, andms, provided by distinct sources of informationcombining a separable wf with itself results in decreasilg a
¢y an_d Cg_, may be combined using the conjunctive rgle Ofhe weightsw(A) # 1. More generally,@-combining the
combination (CoRCID) [9], also known as (the unnormalized)oytputs of two non-independent classifiers generally tesul
Dempster’s rule: in counting several times the identical items of evidence.
mi@2(A) = Z my(X)ma(Y), VA C Q. ) 1) Partial Orderings on BbasThe informational content of
vl two bodies of evidence may be partially ordered by comparing
The resulting bbam;@2 summarizes all the information ghew co_rrespondmg wis [3]. Leml. and m; be twp non-

. L ogmatic bbasin; is w-more committed tham,, which we
provided byC; andC,. Several other combination rules haV(\aNrite e e i
been defined [11], [12]; however, although these rules may 1 =w 702 T
prove useful in a variety of practical applications, theyéa wy (A) < wy(A),for all A c Q.
often been criticized for lacking theoretical justificatio

When a decision needs to be taken, the hithat quantifies This property is satisfied iff there exists a separable bha
knowledge of the actual class of is transformed into a Such thatm, = my@ms [3].
pignistic probability distribution [5]m is first normalized, and ~ The g-ordering [14] is obtained by replacing with ¢: m;
then each bbmn*(A) is divided equally between the, € A: IS g-more committed tham, (m1 £, ma) iff q1(A) < ¢2(A),
. for all A C Q. It is weaker than thev-ordering, as we have
BetP(wy) = Z m/(lA), Ywy € . (3) ™1 Cuw ma = my £, my while the converse is generally not
wreA A true.
Let us define the operatdBet by: BetP = Bet(m). This _2) The Cautious Rule of Combinatianwo b_odies of
operator is clearly nonlinear. It should also be remarked theV|d¢nce may proceed frqm_ common information; thus_, a
a sameBet P generally corresponds to various bbas; we maf}ﬁutmus approach to combining them should count each item
then define: nly once [3], [1_5], [1_6]. In the most extreme case Wherg the
two bodies are identical, the result should be the bodyfitsel
Bet ! (BetP) = {m : Bet(m) = BetP} . — equivalently, the combination rule should be idempotent.

In Section 1I-C, we will present a method for selecting a bba The cautious rule of combination (CaR@) consists in

in the setBet ~! (Bet P), according to additional requirements.‘fmplylng themin to the wfs, instead of the product [3]:

B. Weights of Belief wiP2(A4) = wi(A) Nwz(4), VACQ, (7
Any non dogmatic bba may be represented bywtsght wherea/b stands fomin(a, b), and wherev;®)2 = w1 @ws.

function (wf)w [4], [13]. Transforming any representation ofThus, it is straightforward thab, ()2 is the leasto-committed
m into w is non-linear: for exampley may be computed from of the weight functions that are mote-committed than both

q by: w; andws.
w(d) = ][ g(B)=VPIT (4)  The CaRC is associative, commutative, and idempotent,
ACB as is themin operator. Whereas [)2(A4) depends on both

w1 (A) andws(A), the CaRC retains only the smallest weight
Eo computew;R)2(A) (thatis, for separable bbas, the strongest
support toA).

The weights of belief satisfyv(A) > 0, for all A C Q. If
w(A) < 1, VA C Q, the bba is said to be separable. Th
smaller is the weightv(A) < 1, the higher our confidence
in A; weightsw(A) > 1 may be interpreted as degrees of . | east;-committed Bba Induced by a Probability Distribu-
diffidence toA. In the case of consonant bbas, computing thgn

wf becomes simpler [3]. Let the valugg, = pl({wy}) be

ordered by decreasing order= ply > ply > -+ > plx > 0. The g-ordering may be used to reverse the pignistic trans-

form. To avoid giving unjustified support to any C €, we

Then, using notationsl;, = {w1, ..., w;}, we have: may selecti — Bet 1 (BetP), the least-informative bba
plll A=10, in Bet™!(BetP):
Pik
w(A) = pzzl A=AL1<k<K () 7 € Bet~(BetP),
1 otherwise. m C, m, for all m € Bet™*(BetP).

Only the subsetd;, (1 < k < K) and) may be focal elements In [17], it was shown thatn is a consonant bba. It may be
of the resulting weight function: thus, it is consonant. obtained by first computing!({w;}) for all 1 < i < K and



then deducingl(A), for all A C Q with |A| > 1: A. Fitting a Single Combination Rule to Training Data

K In a companion paper [1], we proposed a simple procedure
plfwl) = Z min (ps, p; ) ®) for learning a combination rule that gives the best clasgific
— I results over a set of data. It consists in parameterizing the
! combination rule, and then mining the parameter space for a
value that minimizes some error criterion. We briefly ddseri
) ) _this procedure in the following.
Remark that using (5), the wf may be computed directly with Gjyen a set of training patterns, we train a classifier on each
(8): we need not use (9). of the ¢ variables. For each pattesbeing classified, we thus
This transformation will help us build bbas from probahaveq bbasm;{x}. Combining them,{x} for any parameter
bilistic classifiers. |ndeed, interpreting the output otlswa values gives a bban{x}' from which the p|gn|st|c probab|||ty
classifier as a pignistic probability distribution o¥érwe may distribution Bet P{x} used to classify is then obtained.
then defineim = Bet_,; (BetP) as its credal output. Given a value of;, we compute the average squared differ-
ence between the pignistic probabilities and binary indica
I1l. L EARNING THE COMBINATION RULE variables encoding class membership:

pl(4) = maxpl({wi}). 9)

Wk

Both the CoRC and the CaRC may be seen as “extremal” E= Z |betp{x;} — 6{x;}|*; (11)
rules of combination: the former combines distinct evidenc J=1

_the Iatte_r evidence that could have_been mduced by the Saffe. for any patters; from a validation set, pignistic prob-

information. We stress here that information may be Nolyiiities betp{x;} = '(BetP{x»}(wl) ..., BetP{x;}(wi))

distinct without being exactly the same. Thus, one coulddel ;.o optained fl’(;mn{x-}, and the cr’isp 7membersjhips af

a combination rule that best suits a set of data. to the classes are gi\;en Bx;} = (61{x,},...,06{x;})
Both the product and the min operator &iangular norms (we haves,{x;} = 1 if x; € wi, and0 otherwise). We thus

(t-norms) on0; 1] [18]. Let us consider a parameterized familg|ect the valug that minimizesS using a dichotomic search

of t-norms counting both these operators as members [lgorithm, stopping the search when the width of the interva
Thus, in the case of separable bbas, selecting a t-norm {B¥search is less than some constant (hewe0).

picking a parameter value defines implicitly a combination . o
rule that is intermediate between the CoRC and the CaRC.Bn Refined Combination of the Sources

this article, we consider Frank’s family: The method presented in Section IlI-A consists in learning
a single rule to combine classifiers with the best classifinat
r T, y=log, <1 + (8" —1)(s¥ — 1)> ’ (10) accuracy. It relies on the implicit assumption that all the
s—1 sources share the same pairwise dependency. However, this

] ) ) ) assumption may be too simplistic. Indeed, some sofiyeeay
wherelog, defines the logarithm f”'?Ct'On with baseHere, haye 4 'tendency to be highly redundant with some other source
parameters defines the t-norm: thenin operator is retrieved C, yet being uncorrelated with another soutée Choosing
ass — 0, and the product as = 1. a single rule close to the CoRC could imply giving too much

Remark that the parameterdoes not represent a degregeight to the outputs af,, while being too close to the CaRC
of dependency between the information to be merged. Thigg,id lead to ignore important information provided 8.
fitting the combination rule to the sources necessits firstTg evaluate the dependency between two sources, we pro-
to estimate their degree of dependency, and then to figgse to compute a measure of discrepancy between their

a corresponding parameter value. The relationship betwegitputs. A distancel; between two (normal) bbas:; and
both may be complex, and obviously depends on the t-notm, was defined in [19], by:

used. We stress that the notion of dependency depends on

the information considered. It is well known that estimgtin (., 1,) — > (ma1(A) —ma(A)) (mi(B) — ma(B))
the degree of dependency between variables may be delicate: Aco 2/pa,B
one should first identify its nature, and then evaluate the BLo

degree using a proper measure. For example, the correlagv%n (12)

coefficient is inefficient for modelling nonlinear dependgn ere the weightp 4 5 are defined by:

In this paper, we consider supervised classification prob- _ AN B| VA B 13
lems. Therefore, rather than considering the inputs of the Pa.B |[AUB|’ #0,B7#0. (13)
classifiers (the variables), we propose to fit parameteregaluye propose to define the distarg,; between two classifiers
by maximizing the classification accuracy achieved aften<o ¢, and C, as the average distance between the (paired) bbas

combination rule that will give the best classification fesu

even if_the dependency between the information sources is D, = Zdj(mi{Xk},mj{Xk})- (14)
arbitrarily complex. 1



Thus, D; ; may be used as an indicator of the redundancynzero belief mass. Methods for reducing the combination
between the outputs of; and C;. Remark that although complexity may be found in [20] and in the references therein
d; appears to be perfectly suited to our purpose — as it

was defined for evaluating the performance of a classifioatio IV. RESULTS

algorithm, other distances between two bbas may be used. WVeDescription of the Data

did not evaluatel;)ur methodfusllng i.UCh other mehaSlljres..f- We ran experiments on various real datasets, whose charac-

WeL:f/;lU’E.lt.e. ’aC”q tra?n(i)r:jg; ;Z:tgrncsa;ldl(\e/\rlz CZ%SSE t;eajjit;ergeristics (.number qf .classes, of features, and the numb‘ers o]
' patterns in the training and test sets) are presented ireTabl

I. These datasets may be found in the UCI Machine Learning

) L . . 'Ahository ahttp://archive.ics.uci.edu/ml/. We simplified the
representing this hierarchy, for teeoli dataset (Section I1V-B2 IeEt}er ogtdigitsp and pendigits datasets by sellaecting Six

details how we generated this dendrogram). We then Cho%?gsses in the former case (the 4th, 5th, 12th, 21st, 22nd and

24th ones), and five classes in the two latter (the 1st, 2, 5t
6th and 10th).

dendrogram, Ecoli dataset

Table |
DESCRIPTION OF THE DATASETS EMPLOYED IN THE EXPERIMENT.S

o
>
T

% dataset # classes| # features| number of patterng
£ training test

2 05T ecoli 8 7 201 135

g glass 6 9 139 75

2 0ul letter 6 16 1800 | 2400

g optdigits 5 64 1910 903

£ pageblocks 5 10 3284 2189

g 031 pendigits 5 16 3778 1762

z waveform 3 21 1491 3509
202f

o
[
T

B. Learning the Classifiers and the Refined Combination
3 2 5 1 2 s 7 Rules

indices of the classifiers

1) Training the Classifiers:For each dataset, we trained
Figure 1. Dendrogram: distances between classifesli data set. a classifier (logistic regression) on each variable. Fortasy
pointx, we are thus able to providgprobability distributions
a cut value to cluster the set of classifiers. For instance, pp on €. Then, we computed theg-least committed bbas
Figure 1, cutting at a levél.4 would give 3 clusters{C;,C2}, m; whose pignistic probabilities arg;, using (5) and (8).
{C3,C4,Cs5}, and {Cs,C7}. Remark that this clustering stepThese bbas were combined using the CoRC, the CaRC, an
may be automated. intermediate rule learnt as defined in Section llI-A, and a
After the classifiers have been clustered according to theséined combination involving two rules such as described in
distances, we propose to first combine their outputs in ti&ection IlI-B.
various clusters, and then to combine the resulting bbas?) Clustering the SourcesThe dendrograms representing
together. Thus, two combination rules have now to be leartite hierarchies between classifiers were built upon thevisser
a within-cluster rule for processing the combination withiaverage distance®; ; using Ward's aggregation criterion.
the clusters, defined by a parameter vadypand a between- They are reported in Figures 1 to 7. The set of classifiers
cluster rule for computing the final bba, defined by a parametgas then clustered: Table Il provides the cut levels thatewer
values,. We propose to use a method similar to that describetiosen by the user, in order to form between 3 and 5 clusters.
in Section IlI-A; except that we now select the pair of values Basically, the dendrograms provide information about the
(51, $2) that minimize<£. Taking theecoli data as an example,relative pairwise dependencies of the classifiers. Takirg t
the outputs of’; andC» would first be combined using;, as pageblocks dataset as an example, it may be remarked that
well as those of’3, C4, andCs, and those ofg andCr; the all the classifiers excely, and&s have a tendency to provide
three resulting bbas would then be combined usihg bbas that are very close to each other. On the other hand, the
Our method necessits to combine the bbas for variodependencies between the classifiers ofi¢fter or optdigits
parameter values; hence, the overall complexity depericis prdatasets are quite varied.
pally on the size of the bbas, which is generally exponeirtial Note that interpreting the average distance between two
the numberK of classes. However, the bbas considered heckassifiers remains delicate: indeed, the bbas they provide
being consonant, they have + 1 focal elements. Although obviously depend on the classification algorithm employed.
this is not the case after the combination step, the contglexMoreover,d; may suffer (just like any other distance) from
may be limitated by considering only the subsetstofvith the curse of dimensionality, as the size of the framgrows.



dendrogram, Glass dataset
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Figure 4. Dendrogram: distances between classif@pt]igits data set.
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Table I

CUT LEVELS USED, NUMBER OF CLUSTERS THUS OBTAINED TOTAL
NUMBER OF SOURCES

refined combination strategy: they are generally the best ov
the four combination rules evaluated (the only exceptiandpe

dataset | cut level | # clusters| # sources the pendigits dataset). This suggests that the dependency
ecoli 0.4 3 7 between the combined classifiers may be complex enough
?;?tzf 8:2 i 196 to justify learning a complex, refined combination strategy
optdigits 07 5 64 involving determining a within-cluster and a between-tdus
pageblocks 0.05 3 10 rule instead of a single one.
pendigits 05 4 16 The CoRC gives the best classification results for the
waveform 0.45 4 21

pendigits dataset only, and it does not perform significantly
worse that the best rule for tHetter and optdigits datasets.
Let us further remark that learning the combination rule (be
3) Learning the Within-Cluster and Between-Cluster Ruleg:a single rule or a pair of within-cluster and between-tdus
The valuess; and s; were then determined as follows. Forules) never yielded the CoRC. This should draw attention to
each dataset; x 1 cross-validation was used to form trainthe fact that assuming independence between classifiers may
ing/validation sets from the original training set. Caradel be unreasonable. Henceforth, other fusion strategies may b
values were picked fos; and so; for each pair(s1, s2), the preferable to Dempster’s rule when combining information
error criterion defined by Eq (11) was computed over the doming from various sources.
validation sets and averaged. The valdeands; minimizing In addition, we may observe that the combination rules
this average were chosen. They are reported in Table Ill. learnt for theecoli, glass, andpageblocks datasets are very
close to the cautious rule. Quite surprisingly, in the cake o
the pendigits and optdigits datasets, the within-cluster com-
Error rates obtained with the CoRC, the CaRC, the intefination rule is closer to the CoRC than the between-cluster
mediate combination rule (INRC) described in Section Ill-Aombination rule (in the former case, the within-clusteleru
corresponding to the optimal parameter vaduand the refined is the CoRC, and the between-cluster rule is the CaRC). This
combination strategy (ReRC) obtained with valugsand phenomenon is not yet entirely clear; a possible explanatio
53, are provided in Table Ill, together with 95% confidenceould be that information combined within the clusters are
intervals. The best result is underlined, and printed ird@s rich and diverse, and hence the information resulting of the
well as results that were not judged significantly differbpt various within-cluster combinations are close to eachrothe
a McNemar test [21] at level 5%.

C. Numerical Results

V. CONCLUSIONS

Table il

ERROR RATES OF THE CONJUNCTIVECORC),INTERMEDIATE (INRC), In this paper, we addressed the problem of supervised

REFINED (RERC),AND CAUTIOUS (CARC)RULES OF COMBINATION,
TOGETHER WITH95% CONFIDENCE INTERVALS BEST RESULTS ARE

UNDERLINED; RESULTS THAT ARE NOT SIGNIFICANTLY DIFFERENT ARE

PRINTED IN BOLD.

classification by classifier fusion, in the framework of be-

lief functions theory. We presented a method for adapting
a combination rule to a set of data. First, the discrepancy
between each pair of classifiers was measured by computing

dota CoRC '”R(S)@ Re(%i,gll’5§2) CaRe the average distance between their outputs. Then, classifie
ecoli 44.44 37.04 37.04 37.04 are clustered based on these average pairwise distanaes. Th
[36.06:52.83] [28'8%45'18] [2%8f?4i'518] [28.89:4518]|  (lassifiers within the various clusters are combined using a
glass 49.33 4(5_)33 (4’14;_30-0 ) 45.33 within-cluster rule, and within-cluster combined outpuai®
[38.02;60.65] | [34.07;56.60] | [32.77;55.23] | [34.07,56.60]| then pooled using a between-cluster rule. Both rules aratlea
ettor 1654 (16&% (1?55.’35'2) 1683 by minimizing an error criterion over validation data.
(15.06:18.03] | [14.97:17.94] | [14.45:17.38] | [15.34:18.33] We evaluated four combination rules on seven real data sets:
(6.25e-2) (1e-2,0) the conjunctive rule of combination (also known as the uanor
optdg. 5.43 5.09 4.87 4.98 malized Dempster’s rule), the cautious rule of combination
[3.956.90] | [3.666.53] [3.47;6.28] [3.56;6.40] . . .
) 0.0) a single rule learnt to fit the data processed, and the refined
pageb. 10.23 8.54 8.54 8.54 combination scheme presented in this paper. Numericaltsesu
[8.96,11.50] | [7.379.71] [7.37,9.71] [7.37,9.71] obtained show the interest of learning a complex combinatio
pend. 18.73 2(()?219 {é’_% 20.49 strategy adapted to the dependency of the data.
[16.91;20.55] | [18.60;22.37]| [16.96;20.61] | [18.60;22.37] Future work may focus on three points. First of all, the
(2.5e-1) (1e-3,1e-2) impact of the clustering phase on the classification resudtg
wavef. 16.93 16.13 15.25 16.53 be studied, and the clustering step may be automated. Learn-
[15.69;18.17] | [14.91;17.35] | [14.06,16.44] | [15.30,17.76] '

ing the coefficients defining the combination rules requires
searching the parameter space. Although this learningephas

Analyzing the results presented in Table Ill yields theeeds to be done only once, a fast procedure for determining
following remarks. The interest of learning the rule of comaccurately these values would be a plus. Eventually, onklcou
bination is clearly assessed by the good results given by tso imagine refining further the combination strategy, by
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