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Abstract—We address here the problem of supervised classifi-
cation using belief functions. In particular, we study the combina-
tion of non-independent sources of information. In a companion
paper [1], we showed that the cautious rule of combination
[2], [3] may be best suited than the widely used Dempster’s
Rule to combine classifiers in the case of real data. Then, we
considered combination rules intermediate between the cautious
rule and Dempster’s rule. We proposed a method for choosing the
combination rule that optimizes the classification accuracy over
a set of data. Eventually, we mentioned a generalized approach,
in which a refined combination rule best suited to complex
dependencies of the sources to combine is learnt.

Here, we extensively study this latter approach. It consists in
clustering the sources according to some measure of similarity;
then, one rule is learnt for combining the sources within the
clusters, and another for combining the results thus obtained.
We conduct experiments on various real data sets that show the
interest of this approach.
Keywords: Classification, classifier combination, information
fusion, theory of belief functions, Dempster-Shafer theory.

I. I NTRODUCTION

The theory of belief functions [4], [5] has been accepted as
a powerful tool for solving classification problems [6]–[8]. In
this framework, experts express their belief on the value taken
by an unknown variable using belief functions. Mathematical
tools have been proposed for manipulating and aggregating
such items. Dempster’s rule of combination, also known as
the conjunctive rule of combination (CoRC) [4], [5], [9] plays
a central role in the theory of belief functions.

As pointed out in [3], this rule requires that the belief
functions combined be distinct. Hence, a cautious rule of
combination (CaRC) was proposed in [2], [3], allowing the
combination of information coming from non distinct sources,
by counting each elementary piece of information only once
during the combination. It was also pointed out that both the
CoRC and the CaRC may be seen as elements of infinite
families of combination rules.

In a companion paper [1], we considered a supervised
classification problem. Given a set of classifiersC1, . . . Cp

giving partial information on the actual class of a test pattern
x, we proposed a method to learn the rule of combination
that gives the best classification results over a set of patterns.
We then proposed to generalize this method, by clustering
and combining sources according to their dependency. We
showed the interest of this approach on a series of synthetic
toy problems.

In this paper, we focus on this latter approach. We consider
a set of classifiers that provide information on a pattern to
be classified. We propose a measure of similarity between
these sources; using this measure, clusters of sources may be
identified. Then, we learn two rules of combination: one is
used to combine information within the clusters; the other,to
combine together the results obtained in the previous step.

In Section II, we recall the notions on belief functions that
will be needed, and fix the notations. In Section III, we detail
our method for clustering the sources and learning adequate
combination rules. Results on real data sets are reported and
commented in Section IV. Section V concludes the paper.

II. FUNDAMENTALS OF BELIEF FUNCTIONS

In this article, we adopt the Transferable Belief Model
(TBM) [4], [5], [10] as an interpretation of the theory of belief
functions. The main notions are recalled in this section.

A. Basic Definitions

1) Representing Items of Evidence with Belief Functions:
Let C be a classifier giving information on the actual class of a
test patternx. This information may be represented by a basic
belief assignment (bba)m, defined as a mapping from2Ω to
[0; 1] satisfying

∑
A⊆Ω m(A) = 1 (the notation2Ω denotes

the powerset ofΩ). A subsetA ⊆ Ω such thatm(A) > 0
is called a focal set ofm, and the basic belief mass (bbm)
m(A) quantifies the belief that the actual class ofx is in A:
this belief cannot be given to more precise hypothesesB ⊆ A

due to lack of information. The bbmm(∅) quantifies the belief
that x belongs to none of the classes of the setΩ. A bba is
said to be:

• dogmatic, ifΩ is not a focal set;
• simple, if it has at most two focal sets, includingΩ;
• categorical, if it is simple and dogmatic (therefore, if it

has only one focal element that is notΩ);
• normal, if ∅ is not a focal set, and subnormal otherwise;
• consonant, if all its focal setsA1, . . . , AN are nested:

∅ ⊆ A1 ⊆ · · · ⊆ AN ⊆ Ω.

Any subnormal bbam can be normalized; the normalization
operation is defined by:

m∗(A) =
m(A)

1 − m(∅)
, ∀A ⊆ Ω. (1)



A bba m may also be represented by its associated plausi-
bility, belief, commonality, or implicability functions,denoted
by pl, bel, q, and b, respectively. Note that these functions
are in one-to-one correspondence; they may be obtained from
each other through linear transformations.

2) Conjunctive Combination and Decision Making:Two
bbasm1 andm2, provided by distinct sources of information
C1 and C2, may be combined using the conjunctive rule of
combination (CoRC)∩© [9], also known as (the unnormalized)
Dempster’s rule:

m1 ∩©2(A) =
∑

X∩Y =A

m1(X)m2(Y ), ∀A ⊆ Ω. (2)

The resulting bbam1 ∩©2 summarizes all the information
provided byC1 andC2. Several other combination rules have
been defined [11], [12]; however, although these rules may
prove useful in a variety of practical applications, they have
often been criticized for lacking theoretical justification.

When a decision needs to be taken, the bbam that quantifies
knowledge of the actual class ofx is transformed into a
pignistic probability distribution [5]:m is first normalized, and
then each bbmm∗(A) is divided equally between theωk ∈ A:

BetP (ωk) =
∑

ωk∈A

m∗(A)

|A|
, ∀ωk ∈ Ω. (3)

Let us define the operatorBet by: BetP = Bet(m). This
operator is clearly nonlinear. It should also be remarked that
a sameBetP generally corresponds to various bbas; we may
then define:

Bet−1(BetP ) = {m : Bet(m) = BetP} .

In Section II-C, we will present a method for selecting a bba
in the setBet−1(BetP ), according to additional requirements.

B. Weights of Belief

Any non dogmatic bba may be represented by itsweight
function (wf)w [4], [13]. Transforming any representation of
m into w is non-linear: for example,w may be computed from
q by:

w(A) =
∏

A⊆B

q(B)(−1)|B|−|A|+1

. (4)

The weights of belief satisfyw(A) ≥ 0, for all A ⊂ Ω. If
w(A) ≤ 1, ∀A ⊂ Ω, the bba is said to be separable. The
smaller is the weightw(A) < 1, the higher our confidence
in A; weights w(A) > 1 may be interpreted as degrees of
diffidence toA. In the case of consonant bbas, computing the
wf becomes simpler [3]. Let the valuesplk = pl({ωk}) be
ordered by decreasing order:1 ≥ pl1 ≥ pl2 ≥ · · · ≥ plK > 0.
Then, using notationsAk = {ω1, . . . , ωk}, we have:

w(A) =






pl1 A = ∅,
plk+1

plk
A = Ak, 1 ≤ k < K

1 otherwise.

(5)

Only the subsetsAk (1 ≤ k ≤ K) and∅ may be focal elements
of the resulting weight function: thus, it is consonant.

The ∩©-combination of two weight functionsw1 and w2

may be processed by:

w1 ∩©2(A) = w1(A)w2(A), ∀A ⊂ Ω. (6)

It becomes here obvious that the CoRC is commutative
and associative. However, it is not idempotent: in particular,
combining a separable wf with itself results in decreasing all
the weightsw(A) 6= 1. More generally, ∩©-combining the
outputs of two non-independent classifiers generally results
in counting several times the identical items of evidence.

1) Partial Orderings on Bbas:The informational content of
two bodies of evidence may be partially ordered by comparing
their corresponding wfs [3]. Letm1 and m2 be two non-
dogmatic bbas;m1 is w-more committed thanm2, which we
write m1 ⊑w m2, iff:

w1(A) ≤ w2(A), for all A ⊂ Ω.

This property is satisfied iff there exists a separable bbam3

such thatm1 = m2 ∩©m3 [3].
The q-ordering [14] is obtained by replacingw with q: m1

is q-more committed thanm2 (m1 ⊑q m2) iff q1(A) ≤ q2(A),
for all A ⊂ Ω. It is weaker than thew-ordering, as we have
m1 ⊑w m2 ⇒ m1 ⊑q m2 while the converse is generally not
true.

2) The Cautious Rule of Combination:Two bodies of
evidence may proceed from common information; thus, a
cautious approach to combining them should count each item
only once [3], [15], [16]. In the most extreme case where the
two bodies are identical, the result should be the body itself
— equivalently, the combination rule should be idempotent.

The cautious rule of combination (CaRC)∧© consists in
applying themin to the wfs, instead of the product [3]:

w1 ∧©2(A) = w1(A) ∧ w2(A), ∀A ⊂ Ω, (7)

wherea∧b stands formin(a, b), and wherew1 ∧©2 = w1 ∧©w2.
Thus, it is straightforward thatw1 ∧©2 is the leastw-committed
of the weight functions that are morew-committed than both
w1 andw2.

The CaRC is associative, commutative, and idempotent,
as is themin operator. Whereasw1 ∩©2(A) depends on both
w1(A) andw2(A), the CaRC retains only the smallest weight
to computew1 ∧©2(A) (that is, for separable bbas, the strongest
support toA).

C. Leastq-committed Bba Induced by a Probability Distribu-
tion

The q-ordering may be used to reverse the pignistic trans-
form. To avoid giving unjustified support to anyA ⊆ Ω, we
may select̂m = Bet−1

qlc(BetP ), the leastq-informative bbam̂
in Bet−1(BetP ):

{
m̂ ∈ Bet−1(BetP ),

m ⊑q m̂, for all m ∈ Bet−1(BetP ).

In [17], it was shown that̂m is a consonant bba. It may be
obtained by first computingpl({ωi}) for all 1 ≤ i ≤ K and



then deducingpl(A), for all A ⊆ Ω with |A| > 1:

pl({ωi}) =

K∑

j=1

min (pi, pj) , (8)

pl(A) = max
ωk∈A

pl({ωk}). (9)

Remark that using (5), the wf may be computed directly with
(8): we need not use (9).

This transformation will help us build bbas from proba-
bilistic classifiers. Indeed, interpreting the output of such a
classifier as a pignistic probability distribution overΩ, we may
then definem̂ = Bet−1

qlc(BetP ) as its credal output.

III. L EARNING THE COMBINATION RULE

Both the CoRC and the CaRC may be seen as “extremal”
rules of combination: the former combines distinct evidence,
the latter evidence that could have been induced by the same
information. We stress here that information may be non-
distinct without being exactly the same. Thus, one could select
a combination rule that best suits a set of data.

Both the product and the min operator aretriangular norms
(t-norms) on[0; 1] [18]. Let us consider a parameterized family
of t-norms counting both these operators as members [3].
Thus, in the case of separable bbas, selecting a t-norm by
picking a parameter value defines implicitly a combination
rule that is intermediate between the CoRC and the CaRC. In
this article, we consider Frank’s family:

x ⊤s y = logs

(
1 +

(sx − 1) (sy − 1)

s − 1

)
, (10)

wherelogs defines the logarithm function with bases. Here,
parameters defines the t-norm: themin operator is retrieved
ass → 0, and the product ass = 1.

Remark that the parameters does not represent a degree
of dependency between the information to be merged. Thus,
fitting the combination rule to the sources necessits first
to estimate their degree of dependency, and then to find
a corresponding parameter value. The relationship between
both may be complex, and obviously depends on the t-norm
used. We stress that the notion of dependency depends on
the information considered. It is well known that estimating
the degree of dependency between variables may be delicate:
one should first identify its nature, and then evaluate the
degree using a proper measure. For example, the correlation
coefficient is inefficient for modelling nonlinear dependency.

In this paper, we consider supervised classification prob-
lems. Therefore, rather than considering the inputs of the
classifiers (the variables), we propose to fit parameter values
by maximizing the classification accuracy achieved after com-
bination of their outputs. Thus, our method allows to find the
combination rule that will give the best classification results,
even if the dependency between the information sources is
arbitrarily complex.

A. Fitting a Single Combination Rule to Training Data

In a companion paper [1], we proposed a simple procedure
for learning a combination rule that gives the best classification
results over a set of data. It consists in parameterizing the
combination rule, and then mining the parameter space for a
value that minimizes some error criterion. We briefly describe
this procedure in the following.

Given a set of training patterns, we train a classifier on each
of theq variables. For each patternx being classified, we thus
haveq bbasmi{x}. Combining themi{x} for any parameter
values gives a bbam{x}, from which the pignistic probability
distributionBetP{x} used to classifyx is then obtained.

Given a value ofs, we compute the average squared differ-
ence between the pignistic probabilities and binary indicator
variables encoding class membership:

E =
n∑

j=1

‖betp{xj} − δ{xj}‖
2 ; (11)

here, for any patternxj from a validation set, pignistic prob-
abilities betp{xj} = (BetP{xj}(ω1), . . . , BetP{xj}(ωK))
are obtained fromm{xj}, and the crisp memberships ofxj

to the classes are given byδ{xj} = (δ1{xj}, . . . , δK{xj})
(we haveδk{xj} = 1 if xj ∈ ωk, and0 otherwise). We thus
select the valuês that minimizesE using a dichotomic search
algorithm, stopping the search when the width of the interval
to search is less than some constant (here,10−10).

B. Refined Combination of the Sources

The method presented in Section III-A consists in learning
a single rule to combine classifiers with the best classification
accuracy. It relies on the implicit assumption that all the
sources share the same pairwise dependency. However, this
assumption may be too simplistic. Indeed, some sourceC1 may
have a tendency to be highly redundant with some other source
C2, yet being uncorrelated with another sourceC3. Choosing
a single rule close to the CoRC could imply giving too much
weight to the outputs ofC2, while being too close to the CaRC
could lead to ignore important information provided byC3.

To evaluate the dependency between two sources, we pro-
pose to compute a measure of discrepancy between their
outputs. A distancedJ between two (normal) bbasm1 and
m2 was defined in [19], by:

dJ (m1, m2) =

v

u

u

u

t

X

A⊆Ω

B⊆Ω

(m1(A) − m2(A)) (m1(B) − m2(B))

2/pA,B

,

(12)
where the weightspA,B are defined by:

pA,B =
|A ∩ B|

|A ∪ B|
, ∀A 6= ∅, B 6= ∅. (13)

We propose to define the distanceDi,j between two classifiers
Ci and Cj as the average distance between the (paired) bbas
they provided when evaluating a set of patterns:

Di,j =

n∑

k=1

dJ (mi{xk}, mj{xk}). (14)



Thus, Di,j may be used as an indicator of the redundancy
between the outputs ofCi and Cj . Remark that although
dJ appears to be perfectly suited to our purpose — as it
was defined for evaluating the performance of a classification
algorithm, other distances between two bbas may be used. We
did not evaluate our method using such other measures.

Let C1, . . . , Cq be our set of classifiers. For each classifier,
we evaluate all training patterns, and we compute the distance
Di,j for each pair(Ci, Cj). A hierarchy on the classifiers may
be built upon these distances. Figure 1 shows the dendrogram
representing this hierarchy, for theecoli dataset (Section IV-B2
details how we generated this dendrogram). We then choose
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Figure 1. Dendrogram: distances between classifiers,ecoli data set.

a cut value to cluster the set of classifiers. For instance, in
Figure 1, cutting at a level0.4 would give 3 clusters:{C1, C2},
{C3, C4, C5}, and {C6, C7}. Remark that this clustering step
may be automated.

After the classifiers have been clustered according to these
distances, we propose to first combine their outputs in the
various clusters, and then to combine the resulting bbas
together. Thus, two combination rules have now to be learnt:
a within-cluster rule for processing the combination within
the clusters, defined by a parameter values1; and a between-
cluster rule for computing the final bba, defined by a parameter
values2. We propose to use a method similar to that described
in Section III-A; except that we now select the pair of values
(ŝ1, ŝ2) that minimizesE . Taking theecoli data as an example,
the outputs ofC1 andC2 would first be combined usinĝs1, as
well as those ofC3, C4, andC5, and those ofC6 andC7; the
three resulting bbas would then be combined usingŝ2.

Our method necessits to combine the bbas for various
parameter values; hence, the overall complexity depends prici-
pally on the size of the bbas, which is generally exponentialin
the numberK of classes. However, the bbas considered here
being consonant, they haveK + 1 focal elements. Although
this is not the case after the combination step, the complexity
may be limitated by considering only the subsets ofΩ with

nonzero belief mass. Methods for reducing the combination
complexity may be found in [20] and in the references therein.

IV. RESULTS

A. Description of the Data

We ran experiments on various real datasets, whose charac-
teristics (number of classes, of features, and the numbers of
patterns in the training and test sets) are presented in Table
I. These datasets may be found in the UCI Machine Learning
repository athttp://archive.ics.uci.edu/ml/. We simplified the
letter, optdigits, and pendigits datasets by selecting six
classes in the former case (the 4th, 5th, 12th, 21st, 22nd and
24th ones), and five classes in the two latter (the 1st, 2nd, 5th,
6th and 10th).

Table I
DESCRIPTION OF THE DATASETS EMPLOYED IN THE EXPERIMENTS.

dataset # classes # features number of patterns
training test

ecoli 8 7 201 135
glass 6 9 139 75
letter 6 16 1800 2400

optdigits 5 64 1910 903
pageblocks 5 10 3284 2189
pendigits 5 16 3778 1762
waveform 3 21 1491 3509

B. Learning the Classifiers and the Refined Combination
Rules

1) Training the Classifiers:For each dataset, we trained
a classifier (logistic regression) on each variable. For anytest
pointx, we are thus able to provideq probability distributions
pi on Ω. Then, we computed theq-least committed bbas
mi whose pignistic probabilities arepi, using (5) and (8).
These bbas were combined using the CoRC, the CaRC, an
intermediate rule learnt as defined in Section III-A, and a
refined combination involving two rules such as described in
Section III-B.

2) Clustering the Sources:The dendrograms representing
the hierarchies between classifiers were built upon the pairwise
average distancesDi,j using Ward’s aggregation criterion.
They are reported in Figures 1 to 7. The set of classifiers
was then clustered: Table II provides the cut levels that were
chosen by the user, in order to form between 3 and 5 clusters.

Basically, the dendrograms provide information about the
relative pairwise dependencies of the classifiers. Taking the
pageblocks dataset as an example, it may be remarked that
all the classifiers exceptE4 andE5 have a tendency to provide
bbas that are very close to each other. On the other hand, the
dependencies between the classifiers of theletter or optdigits
datasets are quite varied.

Note that interpreting the average distance between two
classifiers remains delicate: indeed, the bbas they provide
obviously depend on the classification algorithm employed.
Moreover,dJ may suffer (just like any other distance) from
the curse of dimensionality, as the size of the frameΩ grows.
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Figure 2. Dendrogram: distances between classifiers,glass data set.
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Figure 3. Dendrogram: distances between classifiers,letter data set.
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Figure 4. Dendrogram: distances between classifiers,optdigits data set.
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Figure 5. Dendrogram: distances between classifiers,pageblocks data set.
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Figure 6. Dendrogram: distances between classifiers,pendigits data set.
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Figure 7. Dendrogram: distances between classifiers,waveform data set.



Table II
CUT LEVELS USED; NUMBER OF CLUSTERS THUS OBTAINED; TOTAL

NUMBER OF SOURCES.

dataset cut level # clusters # sources
ecoli 0.4 3 7
glass 0.3 3 9
letter 0.5 4 16

optdigits 0.7 5 64
pageblocks 0.05 3 10
pendigits 0.5 4 16
waveform 0.45 4 21

3) Learning the Within-Cluster and Between-Cluster Rules:
The valuesŝ1 and ŝ2 were then determined as follows. For
each dataset,5 × 1 cross-validation was used to form train-
ing/validation sets from the original training set. Candidate
values were picked fors1 and s2; for each pair(s1, s2), the
error criterion defined by Eq (11) was computed over the 5
validation sets and averaged. The valuesŝ1 andŝ2 minimizing
this average were chosen. They are reported in Table III.

C. Numerical Results

Error rates obtained with the CoRC, the CaRC, the inter-
mediate combination rule (InRC) described in Section III-A
corresponding to the optimal parameter valueŝ, and the refined
combination strategy (ReRC) obtained with valuesŝ1 and
ŝ2, are provided in Table III, together with 95% confidence
intervals. The best result is underlined, and printed in bold as
well as results that were not judged significantly differentby
a McNemar test [21] at level 5%.

Table III
ERROR RATES OF THE CONJUNCTIVE(CORC), INTERMEDIATE (INRC),
REFINED (RERC),AND CAUTIOUS (CARC) RULES OF COMBINATION,
TOGETHER WITH95% CONFIDENCE INTERVALS. BEST RESULTS ARE

UNDERLINED; RESULTS THAT ARE NOT SIGNIFICANTLY DIFFERENT ARE

PRINTED IN BOLD.

data CoRC InRC (bs) ReRC (bs1, bs2) CaRC
(0) (0,1e-15)

ecoli 44.44 37.04 37.04 37.04
[36.06;52.83] [28.89;45.18] [28.89;45.18] [28.89;45.18]

(0) (0,1e-15)
glass 49.33 45.33 44.00 45.33

[38.02;60.65] [34.07;56.60] [32.77;55.23] [34.07;56.60]
(6e-1) (1e-5,1e-2)

letter 16.54 16.46 15.92 16.83
[15.06;18.03] [14.97;17.94] [14.45;17.38] [15.34;18.33]

(6.25e-2) (1e-2,0)
optdg. 5.43 5.09 4.87 4.98

[3.95;6.90] [3.66;6.53] [3.47;6.28] [3.56;6.40]
(0) (0,0)

pageb. 10.23 8.54 8.54 8.54
[8.96;11.50] [7.37;9.71] [7.37;9.71] [7.37;9.71]

(0) (1,0)
pendg. 18.73 20.49 18.79 20.49

[16.91;20.55] [18.60;22.37] [16.96;20.61] [18.60;22.37]
(2.5e-1) (1e-3,1e-2)

wavef. 16.93 16.13 15.25 16.53
[15.69;18.17] [14.91;17.35] [14.06;16.44] [15.30;17.76]

Analyzing the results presented in Table III yields the
following remarks. The interest of learning the rule of com-
bination is clearly assessed by the good results given by the

refined combination strategy: they are generally the best over
the four combination rules evaluated (the only exception being
the pendigits dataset). This suggests that the dependency
between the combined classifiers may be complex enough
to justify learning a complex, refined combination strategy,
involving determining a within-cluster and a between-cluster
rule instead of a single one.

The CoRC gives the best classification results for the
pendigits dataset only, and it does not perform significantly
worse that the best rule for theletter and optdigits datasets.
Let us further remark that learning the combination rule (be
it a single rule or a pair of within-cluster and between-cluster
rules) never yielded the CoRC. This should draw attention to
the fact that assuming independence between classifiers may
be unreasonable. Henceforth, other fusion strategies may be
preferable to Dempster’s rule when combining information
coming from various sources.

In addition, we may observe that the combination rules
learnt for theecoli, glass, andpageblocks datasets are very
close to the cautious rule. Quite surprisingly, in the case of
the pendigits andoptdigits datasets, the within-cluster com-
bination rule is closer to the CoRC than the between-cluster
combination rule (in the former case, the within-cluster rule
is the CoRC, and the between-cluster rule is the CaRC). This
phenomenon is not yet entirely clear; a possible explanation
could be that information combined within the clusters are
rich and diverse, and hence the information resulting of the
various within-cluster combinations are close to each other.

V. CONCLUSIONS

In this paper, we addressed the problem of supervised
classification by classifier fusion, in the framework of be-
lief functions theory. We presented a method for adapting
a combination rule to a set of data. First, the discrepancy
between each pair of classifiers was measured by computing
the average distance between their outputs. Then, classifiers
are clustered based on these average pairwise distances. The
classifiers within the various clusters are combined using a
within-cluster rule, and within-cluster combined outputsare
then pooled using a between-cluster rule. Both rules are learnt
by minimizing an error criterion over validation data.

We evaluated four combination rules on seven real data sets:
the conjunctive rule of combination (also known as the unnor-
malized Dempster’s rule), the cautious rule of combination,
a single rule learnt to fit the data processed, and the refined
combination scheme presented in this paper. Numerical results
obtained show the interest of learning a complex combination
strategy adapted to the dependency of the data.

Future work may focus on three points. First of all, the
impact of the clustering phase on the classification resultsmay
be studied, and the clustering step may be automated. Learn-
ing the coefficients defining the combination rules requires
searching the parameter space. Although this learning phase
needs to be done only once, a fast procedure for determining
accurately these values would be a plus. Eventually, one could
also imagine refining further the combination strategy, by



proposing a hierarchy between the classifiers: at each level
of the hierarchy, classifiers could then be combined using
an adequate combination rule. Such a combination strategy
should allow fitting even more precisely the dependency of
the classifiers.
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