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We use a recent result concerning the eigenvalues of a generic (non Hermitian) complex perturbation of a bounded Hermitian sequence of matrices to prove that the asymptotic spectrum of the product of Toeplitz sequences, whose symbols have a real-valued essentially bounded product h, is described by the function h in the "Szegö way". Then, using Mergelyan's theorem, we extend the result to the more general case where h belongs to the Tilli class. The same technique gives us the analogous result for sequences belonging to the algebra generated by Toeplitz sequences, if the symbols associated with the sequences are bounded and the global symbol h belongs to the Tilli class. A generalization to the case of multilevel matrix-valued symbols and a study of the case of Laurent polynomials not necessarily belonging to the Tilli class are also given.

Introduction and basic notations

Let L 2 (T) be the usual Hilbert space of square-integrable functions on the circle T = {z ∈ C : |z| = 1} and let H 2 be the Hardy space composed of those functions in L 2 (T) whose negative Fourier coefficients are equal to zero. The Toeplitz operator with "symbol" the function f is the operator T f : H 2 -→ H 2 defined by T f (g) = P (f g) where P is orthogonal projection from L 2 to H 2 . Such an operator is bounded if and only if f ∈ L ∞ (T) = the space of (essentially) bounded functions on the circle, and its infinite matrix T (f ) in the canonical orthonormal basis B = {1, z, z 2 , . . .} is constant along the diagonals, that is, it is of the form T (f ) = [ fj-r ] ∞ r,j=1 , fk being the Fourier coefficients of f defined by equation [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF] in Section 1.2; see [START_REF] Brown | Algebraic properties of Toeplitz operators[END_REF]. Now, let f be any integrable function on T and, for each n ∈ N, let T n (f ) be the n × n matrix [ fj-r ] n r,j=1 . The sequence of operators on H 2 associated with the sequence {T n (f )} ∞ n=1 is an obvious approximating sequence for the Toeplitz operator T f when f ∈ L ∞ (T) and so we call {T n (f )} ∞ n=1 a Toeplitz sequence. It is natural to ask how the spectrum or set of eigenvalues Λ n = {λ 1 , λ 2 , . . . , λ n } of T n (f ) is related to the spectrum of T (f ) if f ∈ L ∞ (T) or, even if f ∈ L1 (T), to study the "convergence" of the sequence of sets {Λ n } ∞ n=1 (or that of the sequence {Γ n } ∞ n=1 where Γ n is the set of singular values of the matrix T n (f )). An essential result concerning the sequence of sets of eigenvalues is the famous Szegö theorem which says that, if f is real-valued and essentially bounded then

lim n→∞ 1 n λ∈Λn F (λ) = 1 2π [-π,π] F (f (exp(it)))dt, i 2 = -1, (1) 
for every continuous function F with compact support (see, for example, [START_REF] Grenander | Toeplitz Forms and Their Applications[END_REF]).

In the 1990's, independently, Tilli and Tyrtyshnikov/Zamarashkin showed [START_REF] Tilli | A note on the spectral distribution of Toeplitz matrices[END_REF][START_REF] Tyrtyshnikov | Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships[END_REF] that equation [START_REF] Avram | On bilinear forms on Gaussian random variables and Toeplitz matrices[END_REF] holds for any integrable real-valued function f . The corresponding result for a complex-valued function f and the sequence of sets of its singular values (with |f | in the place of f ) was first obtained by Parter (continuous times uni-modular symbols [START_REF] Parter | On the distribution of the singular values of Toeplitz matrices[END_REF]), Avram (essentially bounded symbols [START_REF] Avram | On bilinear forms on Gaussian random variables and Toeplitz matrices[END_REF]), and by Tilli and Tyrtyshnikov/Zamarashkin [START_REF] Tilli | A note on the spectral distribution of Toeplitz matrices[END_REF][START_REF] Tyrtyshnikov | Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships[END_REF], independently, when the symbol f is just integrable. (The book [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF] gives a synopsis of all these results in Chapters 5 and 6 and other interesting facts in Chapter 3 concerning the relation between the pseudospectrum of {T n (f )} ∞ n=1 and that of T (f )). The relation [START_REF] Avram | On bilinear forms on Gaussian random variables and Toeplitz matrices[END_REF] was established for a more general class of test functions F in [START_REF] Tilli | A note on the spectral distribution of Toeplitz matrices[END_REF][START_REF] Serra-Capizzano | Test functions, growth conditions and Toeplitz matrices[END_REF][START_REF] Böttcher | The Szegö and Avram-Parter theorems for general test functions[END_REF] and the case of functions f of several variables (the multilevel case) and matrix-valued functions was studied in [START_REF] Tilli | A note on the spectral distribution of Toeplitz matrices[END_REF] and in [START_REF] Serra-Capizzano | Spectral and computational analysis of block Toeplitz matrices with nonnegative definite generating functions[END_REF] in the context of preconditioning (other related results were established by Linnik, Widom, Doktorski, see Section 6.9 in [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF]).

Further extensions of the Szegö result can be considered. An important direction of research is represented by the case of variable Toeplitz sequences or generalized locally Toeplitz sequences (see the pioneering work by Kac, Murdoch and Szegö [START_REF] Kac | On the eigenvalues of certain Hermitian forms[END_REF] and by Parter [START_REF] Parter | On the eigenvalues of certain generalizations of Toeplitz matrices[END_REF], and, more recently, papers [START_REF] Tilli | Locally Toeplitz matrices: spectral theory and applications[END_REF][START_REF] Serra-Capizzano | Generalized Locally Toeplitz sequences: spectral analysis and applications to discretized Partial Differential Equations[END_REF][START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF][START_REF] Silbermann | Asymptotic behavior of generalized convolutions: an algebraic approach[END_REF][START_REF] Böttcher | Variable-coefficient Toeplitz matrices with symbols beyond the Wiener algebra, Heinig's Memorial[END_REF]). Another important direction is represented by the algebra generated by Toeplitz sequences and this is the main subject of this note, with special attention to the case of eigenvalues, the case of singular values being already known (see [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF][START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF] and references therein).

However we have to be careful: a simple yet striking example where the eigenvalue result does not hold is given by the Toeplitz sequence related to the function exp(-it), i 2 = -1, which has only zero eigenvalues so that the condition [START_REF] Avram | On bilinear forms on Gaussian random variables and Toeplitz matrices[END_REF] means that F (0) = 1 2π [-π,π] F (exp(it))dt which is far from being satisfied for all continuous functions with compact support, even though it is satisfied for harmonic functions (in cases like this one it is better to consider the pseudospectrum, see [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF]). In fact, Tilli was able to show that, if f is any complex-valued integrable function, then the condition (1) holds for all harmonic test functions F [START_REF] Tilli | Singular values and eigenvalues of non-Hermitian block Toeplitz matrices[END_REF] and that it is even satisfied by all continuous functions with compact support as long as the symbol f satisfies a certain geometric condition. More specifically, the function f must be essentially bounded and such that its (essential) range does not disconnect the complex plane and has empty interior, see [START_REF] Tilli | Some results on complex Toeplitz eigenvalues[END_REF]. We call this set of functions the Tilli class. In other contexts such a property is informally called "thin spectrum". It is clear that the set of all real-valued L ∞ functions is properly included in the Tilli class. In the final part of this paper, we will discuss some interesting relationships between the Tilli class and the restrictions to T d , d ≥ 1, of the Hardy space H ∞ . However we should emphasize that the importance of thin spectrum was already known in the operator theory community before the work by Tilli. This is clear from example 5.39 in [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF] and from paper [START_REF] Widom | Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index[END_REF], see the top of page 390. In fact, many of the results above have appeared in different forms in different articles using different proofs. One approach uses operator theory (a summary and guide to which can be found in [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF] and [START_REF] Böttcher | Spectral properties of banded Toeplitz matrices[END_REF]) and another a lot of basic linear algebra techniques. In particular the proofs and the approach introduced by Tilli are extremely clean as observed in the MathSciNet review of [START_REF] Tilli | Some results on complex Toeplitz eigenvalues[END_REF] by Estelle Basor. Indeed an interesting aspect of papers [START_REF] Tyrtyshnikov | A unifying approach to some old and new theorems on distribution and clustering[END_REF][START_REF] Tyrtyshnikov | Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships[END_REF][START_REF] Tilli | Some results on complex Toeplitz eigenvalues[END_REF][START_REF] Serra-Capizzano | Generalized Locally Toeplitz sequences: spectral analysis and applications to discretized Partial Differential Equations[END_REF][START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF] relies on the fact that the tools are essentially all from finite dimensional linear algebra and therefore are perhaps more accessible to engineers who are very interested in such questions (see [START_REF] Gray | Toeplitz and Circulant Matrices: a Review[END_REF]).

In reality, as a matter of fact, the different communities often find it difficult to communicate with each other. Hence one of our objectives in this paper is to provide an approach which is accessible to both groups -and also (to some extent) to parts of the nonmathematical community.

In this article we study the asymptotic spectral behavior of a product of Toeplitz sequences (in the usual, matrix valued, and multilevel cases), by using and extending tools from matrix theory and finite dimensional linear algebra.

It is well known that the product of Toeplitz operators is rarely equal to a Toeplitz operator (see [START_REF] Brown | Algebraic properties of Toeplitz operators[END_REF] and work by the third author in [START_REF] Louhichi | Products of Toeplitz Operators on the Bergman space[END_REF]), but, it turns out that the sequence of eigenvalues or singular values of the product of two Toeplitz sequences is often related to the product of the two symbols in a Szegö-type way. For the singular values the result is known as long as all the involved symbols are essentially bounded and, in fact, for any linear combination of products of Toeplitz operators, the distribution function is exactly the linear combination of the products of the symbols of the sequences: the latter goes back to the work of Roch and Silbermann (see Sections 4.6 and 5.7 in [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF]). The previous results have been extended by considering integrable symbols, not necessarily bounded [START_REF] Serra-Capizzano | Generalized Locally Toeplitz sequences: spectral analysis and applications to discretized Partial Differential Equations[END_REF][START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF], and by considering (pseudo) inversion and the related algebra of sequences (see [START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF][START_REF] Serra-Capizzano | Stability of the notion of approximating class of sequences and applications[END_REF]). Of course for the eigenvalues much less is known, and one simple reason is that much less is true, as another basic example discussed at the beginning of Section 2 in [START_REF] Serra-Capizzano | How to deduce a proper eigenvalue cluster from a proper singular value cluster in the non normal case[END_REF] shows. However, quite recently, using the Ky Fan-Mirski theorem which says that the real (or imaginary) parts of the eigenvalues are majorized by the eigenvalues of the real (or imaginary) part of the matrix (see [START_REF] Bhatia | Matrix Analysis[END_REF]), the first author obtained a method for deducing the eigenvalue distribution of sequences obtained as generic perturbations of Hermitian sequences, when the trace norm of the perturbation is asymptotically negligible with respect to size of the involved matrices (see Theorem 2.3, Theorem 2.4 and [START_REF] Golinskii | The asymptotic properties of the spectrum of non symmetrically perturbed Jacobi matrix sequences[END_REF]). We recall that a real vector v of size n is said to be majorized by a real vector w of the same size if, for each k, the sum of the largest k entries of v is bounded by the sum of the k largest entries of w and equality holds for k = n.

By using Lemma 3.2 in [START_REF] Golinskii | The asymptotic properties of the spectrum of non symmetrically perturbed Jacobi matrix sequences[END_REF], Golinskii and the first author proved that the eigenvalues of a non Hermitian complex perturbation of a Jacobi matrix sequence, which are not necessarily real, are still distributed as the real-valued function 2 cos t on [0, π], which characterizes the non-perturbed case where the Jacobi sequence is of course real and symmetric: see [START_REF] Golinskii | The asymptotic properties of the spectrum of non symmetrically perturbed Jacobi matrix sequences[END_REF], and [START_REF] Holmgren | Can one hear the composition of a drum?[END_REF][START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF] for a further application of Lemma 3.2 in [START_REF] Golinskii | The asymptotic properties of the spectrum of non symmetrically perturbed Jacobi matrix sequences[END_REF] to a (pseudo) differential setting. In this paper, we apply these results to certain products of Toeplitz sequences, then discuss, apply and extend more general tools introduced by Tilli [START_REF] Tilli | Some results on complex Toeplitz eigenvalues[END_REF] and based on the Mergelyan theorem, see [START_REF] Rudin | Real and Complex Analysis[END_REF]. Furthermore, the case of Laurent polynomials not necessarily in the Tilli class is sketched and a generalization to the case of multilevel Toeplitz sequences and sequences T n (f ) where f is a matrix-valued function is also given: we have to emphasize that these multilevel and matrix-valued extensions are of interest in the Engineering context where the number of levels refers to multiple inputs (Multi-Input systems) and size of the basic blocks, i.e., the size of the matrix-valued symbol refers to multiple outputs (Multi-Output systems). Following the Engineering terminology, we are talking of SIMO and MIMO systems, see e.g. [START_REF] Gazzah | Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO channel identification[END_REF][START_REF] Gutiérrez-Gutiérrez | Functions of the banded Hermitian block Toeplitz matrices in signal processing[END_REF] for details and references therein.

We proceed as follows. In Section 2 we discuss some relationships between the notions of distribution in the sense of eigenvalues and clustering/attracting properties of matrix sequences. In particular, Theorems 2.3 and 2.4 give tools for working with non-Hermitian perturbations of Hermitian matrix sequences. In Section 3, as a straightforward consequence of these results, we obtain the distribution of the eigenvalues of Toeplitz sequences products when the linear combination of the products of the symbols is a real-valued (Hermitian-valued) essentially bounded function. Finally, in Section 4 we introduce some tools based on the Mergelyan theorem and use them in Section 5 to deal with more complicated cases, that of the Tilli class and of sequences belonging to the algebra generated by Toeplitz sequences, when the global symbol lies in the Tilli class. A generalization to the case of matrix-valued symbols is also given together with a more specific study in the case of Laurent polynomials. The conclusion in Section 6 ends the paper.

Basic notations

We begin with some formal definitions. A square complex matrix A always can be uniquely written as a Hermitian matrix plus a skew-Hermitian matrix (in analogy to case of scalar complex numbers). More precisely, by defining A * the complex conjugate and transpose of the matrix A, we have

A = Re(A) + i Im(A), i 2 = -1, Re(A) = (A + A * )/2, Im(A) = (A -A * )/(2i),
where Re(A) and Im(A) are Hermitian matrices so that i Im(A) is skew-Hermitian. Moreover, given any Hermitian matrix B, by Schur (see [START_REF] Bhatia | Matrix Analysis[END_REF]), we find B = U diag(d 1 , . . . , d n )U * , where every d j , j = 1, . . . , n, is real and U is unitary. Then the Hermitian positive semi-definite matrices B + and B -are defined as

B + = U diag(d + 1 , . . . , d + n )U * , B -= U diag(d - 1 , . . . , d - n )U * ,
with d + = max{0, d}, d -= max{0, -d}, and

B = B + -B -.
For A an n × n matrix over C with singular values σ 1 (A), . . . , σ n (A), and p ∈ [1, ∞] we define A p , the Schatten p-norm of A to be the ℓ p norm of the vector of the singular values

A p = n k=1 (σ k (A)) p 1 p .
We will be especially interested in the norm • 1 which is known as the trace norm, and the norm • ∞ which is equal to the usual operator norm

• A = sup x =1 Ax .
For any n × n matrix A with eigenvalues λ j (A), j = 1, . . . , n, we set

Λ n = {λ 1 (A), λ 2 (A), . . . , λ n (A)}.
Then, for any function F defined on C, the symbol Σ λ (F, A) stands for the mean

Σ λ (F, A) := 1 n n j=1 F (λ j (A)) = 1 n λ∈Λn F (λ),
and the symbol Σ σ (F, A) denotes the corresponding expression with the singular values replacing the eigenvalues. Throughout this paper we speak of matrix sequences as sequences {A n } where A n is an n × n matrix and Toeplitz sequences as matrix sequences of the form {A n } with A n = T n (f ) and

T n (f ) = [ fj-r ] n r,j=1 ,
where f is an integrable function and fk are the Fourier coefficients of f defined by equation [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF].

The following definition is motivated by the Szegö and Tilli theorems characterizing the spectral approximation of a Toeplitz operator (in certain cases) by the spectra of the elements of the natural approximating matrix sequence A n , where A n is formed by the first n rows and columns of the matrix representation of the operator. Definition 1.1. Let C 0 (C) be the set of continuous functions with bounded support defined over the complex field, d a positive integer, and θ a complex-valued measurable function defined on a set G ⊂ C d of finite and positive Lebesgue measure m(G). Here G will be equal to T d . A matrix sequence {A n } is said to be distributed (in the sense of the eigenvalues) as the pair (θ, G), or to have the distribution function θ, if, ∀F ∈ C 0 (C), the following limit relation holds

lim n→∞ Σ λ (F, A n ) = 1 m(G) G F (θ(t)) dt. (2) 
Whenever (2) holds ∀F ∈ C 0 (C) we say that {A n } ∼ λ (θ, G).

If (2) holds for every F ∈ C 0 (R + 0 ) in place of F ∈ C 0 (C), with the singular values σ j (A n ), j = 1, . . . , n, in place of the eigenvalues, and with |θ(t)| in place of θ(t), we say that {A n } ∼ σ (θ, G) or that the matrix sequence {A n } is distributed (in the sense of the singular values) as the pair (θ, G): more specifically for every F ∈ C 0 (R + 0 ) we have

lim n→∞ Σ σ (F, A n ) = 1 m(G) G F (|θ(t)|) dt, (3) with 
Σ σ (F, A n ) := 1 n n j=1 F (σ j (A n )).
Furthermore, in order to treat block Toeplitz matrices, we consider measurable functions θ : G → M N ≡ M N N , where M N M is the space of N × M matrices with complex entries and a function is considered to be measurable if and only if the component functions are. In this case

{A n } ∼ λ (θ, G) means that M = N and lim n→∞ Σ λ (F, A n ) = 1 m(G) G N j=1 F (λ j (θ(t))) N dt, (4) 
∀F ∈ C 0 (C), where the λ i (θ(t)) in equation ( 4) are the eigenvalues of the matrix θ(t). When considering θ taking values in M N M , we say that {A n } ∼ σ (θ, G) when for every

F ∈ C 0 (R + 0 ) we have lim n→∞ Σ σ (F, A n ) = 1 m(G) G min{N,M } j=1 F (λ j ( θ(t)θ * (t))) min{N, M } dt.
Finally we say that two sequences {A n } and {B n } are equally distributed in the sense of eigenvalues (λ) or in the sense of singular values (σ) if, ∀F ∈ C 0 (C), we have

lim n→∞ [Σ ν (F, B n ) -Σ ν (F, A n )] = 0, with ν = λ or ν = σ.
Notice that two sequences having the same distribution function are equally distributed. On the other hand, two equally distributed sequences may not be associated with a distribution function at all: consider any diagonal matrix sequence {A n } and let {B n } be a sequence of the form B n = A n + ǫ n I n with ǫ n → 0 when n → ∞. Then, if the original {A n } does not have an eigenvalue distribution function (e.g. A n = (-1) n I n ), we will have {A n } and {B n } equally distributed, even though it is impossible to associate a distribution function with either of them. On the other hand, if one of them has a distribution function, then the other necessarily has the same one. This is easy to show using the definitions (or see [START_REF] Serra-Capizzano | Spectral behavior of matrix sequences and discretized boundary value problems[END_REF]Remark 6.1]). Now, notice that a matrix sequence {A n } is distributed as the pair (θ, G) if and only if the sequence of linear functionals {φ n } defined by φ n (F ) = λ (F, A n ) converges weak-* to the functional φ(F ) = 1 m(G) G F (θ(t)) dt as in [START_REF] Bhatia | Matrix Analysis[END_REF]. In order to describe what this really means about the asymptotic qualities of the spectrum, we will derive more concrete characterizations of {Λ n } such as "clustering" and "attraction", where, as above, Λ n is the set of eigenvalues of A n . Definition 1.2. A matrix sequence {A n } is strongly clustered at s ∈ C (in the eigenvalue sense), if for any ε > 0 the number of the eigenvalues of A n off the disc

D(s, ε) := {z : |z -s| < ε}, (5) 
can be bounded by a pure constant q ε possibly depending on ε, but not on n. In other words

q ε (n, s) := #{j : λ j (A n ) / ∈ D(s, ε)} = O(1), n → ∞.
If every A n has only real eigenvalues (at least for large n) then we may assume that s is real and that the disc D(s, ε) is the interval (sε, s + ε). A matrix sequence {A n } is said to be strongly clustered at a nonempty closed set S ⊂ C (in the eigenvalue sense) if for any ε > 0

q ε (n, S) := #{j : λ j (A n ) ∈ D(S, ε)} = O(1), n → ∞, (6) 
where D(S, ε) := ∪ s∈S D(s, ε) is the ε-neighborhood of S. If every A n has only real eigenvalues, then S is a nonempty closed subset of R. We replace the term "strongly" by "weakly", if

q ε (n, s) = o(n), q ε (n, S) = o(n) , n → ∞,
in the case of a point s or a closed set S. Finally, if we replace eigenvalues with singular values, we obtain all the corresponding definitions for singular values.

It is clear that {A n } ∼ λ (θ, G), with θ ≡ s equal to a constant function if and only if {A n } is weakly clustered at s ∈ C (for more results and relations between the notions of equal distribution, equal localization, spectral distribution, spectral clustering etc., see [START_REF] Serra-Capizzano | Spectral behavior of matrix sequences and discretized boundary value problems[END_REF]Section 4]). We introduce one more notion concerning the eigenvalues of a matrix sequence. Definition 1.3. Let {A n } be a matrix sequence and let Λ n be the set of eigenvalues of the matrix A n . We say that

{A n } is strongly attracted by s ∈ C if lim n→∞ dist(s, Λ n ) = 0, (7) 
where dist(X, Y ) is the usual Euclidean distance between two subsets X and Y of the complex plane. Furthermore, if we order the eigenvalues according to their distance from s, i.e.,

|λ 1 (A n ) -s| ≤ |λ 2 (A n ) -s| ≤ • • • ≤ |λ n (A n ) -s|,
then we say that the attraction to s is of order r(s

) ∈ N, r(s) ≥ 1 is a fixed number, if lim n→∞ |λ r(s) (A n ) -s| = 0, lim inf n→∞ |λ r(s)+1 (A n ) -s| > 0,
and that the attraction is of order

r(s) = ∞ if lim n→∞ |λ j (A n ) -s| = 0,
for every fixed j. Finally, one defines weak attraction by replacing lim with lim inf in [START_REF] Böttcher | Mass concentration in quasicommutators of Toeplitz matrices[END_REF].

It is not hard to see that, if {A n } is at least weakly clustered at a point s, then s strongly attracts {A n } with infinite order. Indeed, if there is an attraction of finite order to s then

lim n→∞ #{λ ∈ Λ n : λ / ∈ D(s, δ)} n = 1,
for some δ > 0 and this is impossible if {A n } is weakly clustered at s. On the other hand, there are sequences which are strongly attracted by s with infinite order, but not even weakly clustered at s. Indeed, the notion of weak clustering does not tell anything concerning weak attraction or attraction of finite order.

Remark 1.4. It is easy to see that any of the notions introduced in this section for eigenvalues has a natural analogue for singular values, as explicitly described for the concept of distribution in ( 2) and (3).

Toeplitz sequences: definition and previous distribution results

Let f be an integrable function on T d the d-fold Cartesian product of the unit circle in the complex plane. The Fourier coefficients of f are given by:

fj = f(j 1 ,...,j d ) (f ) = 1 (2π) d [-π,π] d f (e it 1 , . . . , e it d )exp(-i(j 1 t 1 + • • • + j d t d )) dt 1 • • • dt d , (8) 
for integers j ℓ such that -∞ < j ℓ < ∞ for 1 ≤ ℓ ≤ d. If f is a matrix-valued function of d variables whose component functions are all integrable, then the (j 1 , . . . , j d )-th Fourier coefficient is considered to be the matrix whose (r, s)-th entry is the (j 1 , . . . , j d )-th Fourier coefficient of the function [f (e it 1 , . . . , e it d )] r,s .

In the following, for the sake of readability, we shall often write n for the d-tuple (n 1 , . . . , n d ), n = n 1 • • • n d , z r for the function exp(it r ), and z j , j = (j 1 , . . . , j d ), for the monomial [START_REF] Tilli | A note on the spectral distribution of Toeplitz matrices[END_REF] by

z j 1 1 • • • z j d d . We write n → ∞ to indicate that min 1≤r≤d n r → ∞. Now, for f : T d → M M N , we define the M n × N n multilevel Toeplitz matrix as in
T n (f ) = n 1 -1 j 1 =-n 1 +1 • • • n d -1 j d =-n d +1 J (j 1 ) n 1 ⊗ • • • ⊗ J (j d ) n d ⊗ f(j 1 ,...,j d ) (f ), (9) 
where ⊗ denotes the tensor or Kronecker product of matrices and

J (ℓ) m , (-m + 1 ≤ ℓ ≤ m -1
, is the m × m matrix whose (i, j)th entry is 1 if ij = ℓ and 0 otherwise; thus {J -m+1 , . . . , J m-1 } is the natural basis for the space of m × m Toeplitz matrices. In the usual multilevel indexing language, we say that [T n (f )] r,j = fj-r where (1, . . . , 1) ≤ j, r ≤ n = (n 1 , . . . , n d ), i.e., 1 ≤ j ℓ ≤ n ℓ for 1 ≤ ℓ ≤ d. To translate the multilevel notation into the usual notation we convert the pair (j, r) of n-tuples into the pair (t, s) of positive integers using the formulas below:

s = (r 1 -1) n n 1 + (r 2 -1) n n 1 n 2 + • • • + (r d-1 -1) n n 1 • • • n d-1 + r d , t = (j 1 -1) n n 1 + (j 2 -1) n n 1 n 2 + • • • + (j d-1 -1) n n 1 • • • n d-1 + j d .
Operator theorists probably prefer to interpret this matrix in terms of the usual Toeplitz operator on H 2 of the polydisc. To do this, we let E n be the subspace of H 2 spanned by the set of monomials of degree "less than" z n , that is:

E n = span{z j } 0≤j 1 ≤n 1 -1,...,0≤j d ≤n d -1 .
Then, if P n is orthogonal projection from H 2 onto E n and we define T f n (g) = P n (f g) from E n to E n it is not hard to see that T f n = P n T f P n where T f is the usual Toeplitz operator, and that T n (f ) is the matrix of T f n in the basis

{z j : j = (j 1 , . . . , j d ), j 1 = 0, . . . , n 1 -1; . . . ; j d = 0, . . . , n d -1}.
This is the perspective that we shall use in proving Lemma 2.5. See [START_REF] Tilli | A note on the spectral distribution of Toeplitz matrices[END_REF] for a detailed matrix definition and [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF] for an explanation with examples in the case d = 2.

For the sake of clarity, whenever the extension from scalar to matrix valued functions is simple enough, we shall prove our theorems (especially the ones concerning multilevel Toeplitz) only in the case M = N = 1.

The asymptotic distribution of eigenvalues and singular values of a sequence of Toeplitz matrices has been deeply studied in the last century, and strictly depends on the generating function f (see, for example, [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF][START_REF] Tyrtyshnikov | Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships[END_REF][START_REF] Tilli | A note on the spectral distribution of Toeplitz matrices[END_REF] and references therein). Now, let {f α,β } be a finite set of L 1 (T d ) functions and define the measurable function h by:

h = ρ α=1 qα β=1 f s(α,β) α,β , s(α, β) ∈ {±1}, (10) 
where f α,β is sparsely vanishing (i.e., the Lebesgue measure of the set of its zeros is zero) when s(α, β) = -1. The function h may not belong to L 1 in which case {T n (h)} is not defined according to the rule in (9) simply because the formula ( 8) is not well-defined. However we can still consider the sequence of matrices

{ ρ α=1 qα β=1 T s(α,β) n (f α,β )}.
In [START_REF] Serra-Capizzano | Stability of the notion of approximating class of sequences and applications[END_REF] it has been proved that

{ ρ α=1 qα β=1 T s(α,β) n (f α,β )} ∼ σ (h, T d ),
and

{ ρ α=1 qα β=1 T s(α,β) n (f α,β )} ∼ λ (h, T d ), if the matrices ρ α=1 qα β=1 T s(α,β) n (f α,β )
are Hermitian, at least for n large enough (which implies necessarily that N = M ). In this context, the symbol T s(α,β) n (f α,β ) with s(α, β) = -1 and f α,β sparsely vanishing means that we are (pseudo) inverting the matrix in the sense of Moore-Penrose (see [START_REF] Bhatia | Matrix Analysis[END_REF]), since T n (f α,β ) is not necessarily invertible, but the number of zero singular values is at most o(n), for n → ∞.

Notice that in defining the symbol h when matrix-valued symbols are involved, it is necessary to consider compatible dimensions and also one has to be careful in respecting the correct ordering in the products, owing to the lack of commutativity in the matrix context. When ρ = 1, N = M = 1, and q 1 = 1 this result concerns standard Toeplitz sequences and is attributed to Tyrtyshnikov, Zamarashkin, and Tilli [START_REF] Tyrtyshnikov | A unifying approach to some old and new theorems on distribution and clustering[END_REF][START_REF] Tyrtyshnikov | Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships[END_REF][START_REF] Tilli | A note on the spectral distribution of Toeplitz matrices[END_REF]; see also [START_REF] Serra-Capizzano | Distribution results on the algebra generated by Toeplitz sequences: a finite dimensional approach[END_REF] and references therein for the evolution of the subject. The case where s(α, β) = 1 for every α and β is considered and solved in [START_REF] Serra-Capizzano | Distribution results on the algebra generated by Toeplitz sequences: a finite dimensional approach[END_REF] by using matrix theory techniques. We stress that the Hermitian case where h is defined as in [START_REF] Fasino | From Toeplitz matrix sequences to zero distribution of orthogonal polynomials[END_REF] has been treated in two different ways in [START_REF] Serra-Capizzano | Stability of the notion of approximating class of sequences and applications[END_REF] and in [START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF], for both singular values and eigenvalues. In this paper we are interested in the more difficult eigenvalue setting, when Hermitianity is lost.

Remark 1.5. It should be noted that, according to [START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF], the distribution result for singular values holds for any sequence belonging to the algebra generated by Toeplitz sequences with L 1 (T d ) symbols, where the allowed algebraic operations are linear combination, product, and (pseudo) inversion. In order to formally define this algebra A T we say that

A T = ∞ j=0 A (j) T
where Toeplitz sequences with L 1 (T d ) symbols form the set A (0)

T and {A n } ∈ A (j) T , j ≥ 1, if there exists a finite set of sequences {A (α,β) n } with measurable symbols f α,β belonging to A (k) T , 0 ≤ k < j, such that A n = ρ α=1 qα β=1 A (α,β) n s(α,β) , s(α, β) ∈ {±1},
where every sequence which is (pseudo) inverted (s(α, β) = -1) should have sparsely vanishing symbol; the new symbol of {A n } is recursively defined as

h = ρ α=1 qα β=1 f s(α,β) α,β , s(α, β) ∈ {±1}.
The general result in [START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF] is that {A n } ∼ σ (h, T d ) and {A n } ∼ λ (h, T d ), if all the matrices A n are Hermitian, at least for n large enough.

Finally it is worth mentioning that the above results also hold when starting from the set of block multilevel sequences generated by matrix-valued N × M symbols; see [START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF] for general integrable symbols (i.e. all the singular values of the symbol are integrable on T d ) and [START_REF] Böttcher | Mass concentration in quasicommutators of Toeplitz matrices[END_REF] for the case of bounded symbols with M = N and without pseudo inversion, but where the distribution result for eigenvalues is extended to the case in which the involved sequences are normal (the Hermitian case for general integrable symbols and with pseudo inversion can be found in [START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF]).

Eigenvalue distribution and clustering

Let us recall the notion of the essential range which plays an important role in the study of the asymptotic properties of the spectrum. Definition 2.1. Given a measurable complex-valued function θ defined on a Lebesgue measurable set G, the essential range of θ is the set S(θ) of points s ∈ C such that, for every ε > 0, the Lebesgue measure of the set θ (-1) (D(s, ε)) [START_REF] Böttcher | Spectral properties of banded Toeplitz matrices[END_REF]. The function θ is essentially bounded if its essential range is bounded. Furthermore, if θ is real-valued, then the essential supremum (infimum) is defined as the supremum (infimum) of its essential range. Finally if the function θ is N × N matrix-valued and measurable, then the essential range of θ is the union of the essential ranges of the complex-valued eigenvalues λ j (θ), j = 1, . . . , N .

:= {t ∈ G : θ(t) ∈ D(s, ε)} is positive, with D(s, ε) as in
We note that S(θ) is clearly a closed set -it's easy to see that its complement is open. Next we discuss the relationship between the notions introduced in the last section and the essential range.

Theorem 2.2. Let θ be a measurable function defined on G with finite and positive Lebesgue measure, and S(θ) be the essential range of θ. Let {A n } be a matrix sequence distributed as θ in the sense of eigenvalues; in that case, defining Λ n to be the set of eigenvalues of A n , the following facts are true:

a) S(θ) is a weak cluster for {A n }; b) each point s ∈ S(θ) strongly attracts Λ n with infinite order r(s) = ∞; c) there exists a sequence {λ (n) }, where λ (n) is an eigenvalue of A n , such that lim inf n→∞ |λ (n) | ≥ θ ∞ .
The same statements holds in the case of a N × N matrix-valued function θ.

Proof. For items a) and b) see [START_REF] Golinskii | The asymptotic properties of the spectrum of non symmetrically perturbed Jacobi matrix sequences[END_REF], Theorem 2.4, for a proof. Then notice that, by b), each point s ∈ S(θ) is a limit of a sequence {λ (n) } where λ (n) is an eigenvalue of A n . Hence item c) follows from the definition of S(θ). The extension to the matrix-valued case is trivial.

The following result, based on a Mirski theorem (see Proposition III, Section 5.3 of [START_REF] Bhatia | Matrix Analysis[END_REF]), establishes a link between distributions of non-Hermitian perturbations of Hermitian matrix sequences and the distribution of the original sequence. 

C n 1 = o(n), n → ∞.
Then θ is real-valued and {A n } is distributed as (θ, G) in the sense of the eigenvalues. In particular, if S(θ) is the essential range of θ, then {A n } is weakly clustered at S(θ), and S(θ) strongly attracts the spectra of {A n } with an infinite order of attraction for any of its points.

The next theorem is a slight extension of a theorem from [START_REF] Golinskii | The asymptotic properties of the spectrum of non symmetrically perturbed Jacobi matrix sequences[END_REF] concerning strong clustering. Proof. The case where the compact set E is a union of m disjoint closed intervals (possibly, degenerate) has been treated in [START_REF] Golinskii | The asymptotic properties of the spectrum of non symmetrically perturbed Jacobi matrix sequences[END_REF] (Theorem 3.6). The general case follows since, for the notion of strong clustering we have to consider the ǫ fattening of E, or D(E, ǫ) defined as in relation [START_REF] Böttcher | The Szegö and Avram-Parter theorems for general test functions[END_REF]. It is clear that for every compact set E, the closure of D(E, ǫ) is a finite union of closed intervals and so the general case is reduced to that handled in [START_REF] Golinskii | The asymptotic properties of the spectrum of non symmetrically perturbed Jacobi matrix sequences[END_REF]. Now we give a simple technical result which is useful in our subsequent study and which is due to SeLegue: it can explicitly be found in Lemma 5.16 in [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF]. We present an elementary matrix proof as an alternative to the (elementary) operator theory proof given in [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF] . This proof seems to be the most natural one to extend to the multi-level case, as explained in the proof of Lemma 2.6.

Lemma 2.5. Let f, g ∈ L ∞ (T), A n = T n (f )T n (g), and let h = f g. Then A n -T n (h) 1 = o(n).
Proof. In order to estimate A n -T n (h) 1 , i.e., the Schatten 1 norm of A n -T n (h), we will use some classical results from approximation theory.

For a given θ ∈ L 1 (T), let p k,θ be its Cesaro sum of degree k, i.e., the arithmetic average of Fourier sums of order q with q ≤ k (see [START_REF] Zygmund | Trigonometric Series[END_REF][START_REF] Bhatia | Fourier Series[END_REF]). From standard trigonometric series theory we know that p k,θ converges in L 1 norm to θ as k tends to infinity and also that [START_REF] Avram | On bilinear forms on Gaussian random variables and Toeplitz matrices[END_REF][START_REF] Serra-Capizzano | On unitarily invariant norms of matrix valued linear positive operators[END_REF], Corollary 4.2). Now, by adding and subtracting and by using the triangle inequality several times we get: [START_REF] Gazzah | Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO channel identification[END_REF] and, by using Hölder inequalities for the Schatten p norms XY 1 ≤ X 1 Y and the previously mentioned norm inequality from [START_REF] Serra-Capizzano | On unitarily invariant norms of matrix valued linear positive operators[END_REF], we infer that

p k,θ L ∞ ≤ θ L ∞ , whenever θ ∈ L ∞ (T) with L ∞ (T) ⊂ L 1 (T). Furthermore, the norm inequality T n (θ) p ≤ ((2π) -1 n) 1/p θ L p holds for every θ ∈ L p (T) if 1 ≤ p ≤ ∞ (see
A n -T n (h) 1 ≤ A n -T n (p k,f )T n (g) 1 + T n (p k,f )T n (g) -T n (p k,f )T n (p k,g ) 1 + + T n (p k,f )T n (p k,g ) -T n (p k,f p k,g ) 1 + T n (p k,f p k,g ) -T n (h) 1 ,
A n -T n (p k,f )T n (g) 1 = (T n (f ) -T n (p k,f ))T n (g) 1 ≤ T n (f ) -T n (p k,f ) 1 T n (g) ≤ n(2π) -1 f -p k,f L 1 g L ∞ ; T n (p k,f )T n (g) -T n (p k,f )T n (p k,g ) 1 = T n (p k,f )(T n (g) -T n (p k,g )) 1 ≤ T n (g) -T n (p k,g ) 1 T n (p k,f ) ≤ T n (g -p k,g ) 1 p k,f L ∞ ≤ n(2π) -1 g -p k,g L 1 f L ∞ ; T n (p k,f p k,g ) -T n (h) 1 = T n (h -p k,f p k,g ) 1 ≤ n(2π) -1 h -p k,f p k,g L 1 .
Thus, we see that the sum of the first, second and fourth terms of (11) equals ǫ(k)n where, since the Cesaro operator converges to the identity in the L 1 topology, we have

lim k→∞ ǫ(k) = 0.
We treat the third term of [START_REF] Gazzah | Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO channel identification[END_REF] in a different way. Let E n and P n be defined as in Section 1.2; recall that p k,f and p k,g are Laurent (or trigonometric) polynomials of degree at most k, that is they are of the form:

p k,f (e it ) = k j=-k a j exp(ijt), p k,g (e it ) = k j=-k b j exp(ijt).
Now, we recall that T n (p k,g ) is the matrix of the Toeplitz operator T p k,g n where T

p k,g n = P n T p k,g P n ; with T p k,g the classical Toeplitz operator on H 2 and P n orthogonal projection on the space E n of analytic polynomials of degree less than n. So, since for k ≤ ℓ ≤ n -1k, the function φ(e it ) = p k,g (e it )exp(iℓt) is in E n we see that:

T p k,g n (exp(iℓt)) = P n (p k,g (e it )exp(iℓt)) = p k,g (e it )exp(iℓt), (k ≤ ℓ ≤ n -k -1),
and so

T p k,f n T p k,g n (exp(iℓt)) = P n (p k,f (e it )p k,g (e it )exp(iℓt)) = T p k,f p k,g n (exp(iℓt)), (k ≤ ℓ ≤ n-1-k).
This means that the image of the operator T

p k,f p k,g n -T p k,f n T p k,g n
is generated by the image of the set {exp(iℓt)} 0≤ℓ≤k-1 or n-k≤ℓ≤n-1 and so its dimension is less than or equal to 2k. Thus, since

T n (p k,f p k,g ) -T n (p k,f )T n (p k,g ) is just the matrix of the operator T p k,f p k,g n -T p k,f n T p k,g n
in the basis exp(iℓt) , we see that the rank of the matrix

T n (p k,f p k,g ) -T n (p k,f )T n (p k,g ) is at most 2k.
Now, since the trace norm is bounded by the the rank times the spectral or operator norm, we see that:

T n (p k,f )T n (p k,g ) -T n (p k,f p k,g ) 1 ≤ 2k T n (p k,f )T n (p k,g ) -T n (p k,f p k,g ) ≤ 2k( T n (p k,f ) T n (p k,g ) + T n (p k,f p k,g ) ) ≤ 2k( p k,f L ∞ p k,g L ∞ + p k,f p k,g L ∞ ) ≤ 2k( p k,f L ∞ p k,g L ∞ + p k,f L ∞ p k,g L ∞ ) = 4k p k,f L ∞ p k,g L ∞ ≤ 4k f L ∞ g L ∞ , for each k ∈ N. Thus, if M = 4 g L ∞ f L ∞ and ǫ(k) is defined above, then A n -T n (h) 1 ≤ ǫ(k)n + kM, (12) 
for each k ∈ N. Now, for each ǫ > 0, by first choosing k 0 so that ǫ(k 0 ) < ǫ 2 then choosing Ñ > 2M k 0 ǫ , we see that n ≥ Ñ gives An-Tn(h) 1 n ≤ ǫ which finishes the proof.

Next, we notice that the reasoning above applies to multilevel Toeplitz matrices. Let T n represent the multilevel n by n Toeplitz matrix with symbol f (as in Section 1.2).

Lemma 2.6. Let f, g ∈ L ∞ (T d ), n = (n 1 , . . . , n d ) ∈ N d and n = n 1 n 2 • • • n d . Then for A n = T n (f )T n (g) and h = f g we have: A n -T n (h) 1 = o(n).
The only part of the proof which is slightly different from that of Lemma 2.5 is the treatment of the third term of [START_REF] Gazzah | Asymptotic eigenvalue distribution of block Toeplitz matrices and application to blind SIMO channel identification[END_REF]. To get the analogous inequality, we consider the multi-variable equivalents P n and E n , n = (n 1 , . . . , n d ), and see that if k = (k 1 , . . . , k d ), p k,f and p k,g are the multivariate Laurent polynomials approximating f and g, then for

k 1 ≤ ℓ 1 ≤ n 1 -1-k 1 , . . . , k d ≤ ℓ d ≤ n d -1 -k d we have (writing z r = exp(it r ), and z ℓ = z ℓ 1 1 • • • z ℓ d d ) z ℓ p k,g ∈ E n ,
and so, for

k 1 ≤ ℓ 1 ≤ n 1 -1 -k 1 , . . . , k d ≤ ℓ d ≤ n d -1 -k d , we find T n (p k,f )T n (p k,g )(z ℓ ) = T n (p k,f p k,g )(z ℓ ).
Thus, by the same logic as in the proof of the one variable case, the rank of the matrix

T n (p k,f )T n (p k,g ) -T n (p k,f p k,g ), is less than n -(n 1 -2k 1 ) • • • (n d -2k d ). So, setting γ(k) = n -(n 1 -2k 1 ) • • • (n d -2k d ),
we can replace equation ( 12) with the equation:

A n -T n (h) 1 ≤ ǫ(k)n + γ(k)M,
for each k ∈ N d , and choose, for ǫ > 0, a d-tuple k such that ǫ(k) < ǫ 2 and an Ñ such that Ñ > 2M γ(k) ǫ . Then, if n > Ñ we will have

A n -T n (h) 1 n < ǫ, which shows that A n -T n (h) 1 = o(n)
and finishes the proof.

Preliminary results

We start with the case of a sequence {A n } where A n = T n (f )T n (g); f, g ∈ L ∞ (T) such that f g is real-valued (even though f and g are not necessarily real-valued); for the simpler, all real-valued case, see [START_REF] Serra-Capizzano | Stability of the notion of approximating class of sequences and applications[END_REF]. The idea is to look at A n as the Hermitian matrix T n (h), h = f g, plus a correction term C n such that C n 1 = o(n) as n → ∞, where each of the matrix sequences is uniformly bounded in operator norm (see Lemma 2.5). This will permit us to use the powerful Theorem 2.3.

Theorem 3.1. Let f, g ∈ L ∞ (T) be such that h = f g is real-valued. Then {A n } ∼ λ (h, T) with A n = T n (f )T n (g), S ( 
h) is a weak cluster for {A n }, and any s ∈ S(h) strongly attracts the spectra of {A n } with infinite order.

Proof. It is well known (see [START_REF] Grenander | Toeplitz Forms and Their Applications[END_REF]) that {T n (h)} ∼ λ (h, T) and 

T n (θ) ≤ θ L ∞ for every θ ∈ L ∞ (T). Thus T n (h) ≤ h L ∞ and A n ≤ T n (f ) T n (g) ≤ f L ∞ g L ∞ . As a consequence, since A n -T n (h) 1 = o(n)
A n = T n (f )T n (g),
we have that {A n } ∼ λ (h, T d ), S(h) is a weak cluster for {A n }, and any s ∈ S(h) strongly attracts the spectra of {A n } with infinite order.

Proof. In 1993, Tyrtyshnikov showed that the relation (1) holds for multilevel Toeplitz sequences (see [ [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF], Theorem 6.41]) so that we once again have {T n (h)} ∼ λ (h, T d ). Also, by the definition of the Toeplitz operators it is again true that

T n (h) ≤ h L ∞ ,
and

A n ≤ T n (f ) T n (g) ≤ f L ∞ g L ∞ . As a consequence, since A n -T n (h) 1 = o(n)
by Lemma 2.6, the desired results follow by applying Theorem 2.3 with B n = T n (h) and C n = A n -T n (h), and invoking Theorem 2.2.

Remark 3.3. Let f, g, h and A n be defined as in Theorem 3.1 and suppose that either f or g is a Laurent polynomial of degree q. Then, if h = f g, by the same type of reasoning as above, A n -T n (h) has rank less than or equal to q. Therefore, again using the fact that the sequences

{ A n } and { T n (h) } are both bounded by f L ∞ g L ∞ and the Schur decomposition, it follows that A n -T n (h) 1 ≤ 4q f L ∞ g L ∞ .
As a consequence, since S(h) is a compact real set, Theorem 2.4 implies that S(h) is a strong cluster for the spectra of {A n }.

Remark 3.4. Lemma 2.5 and Theorem 3.1 remain valid in a block multidimensional setting, i.e., when considering symbols belonging to L ∞ N (T d ) with d ≥ 2, N ≥ 2. In fact, we can follow verbatim the same proof as in Lemma 2.5 (see also [START_REF] Böttcher | Mass concentration in quasicommutators of Toeplitz matrices[END_REF]) and in Theorem 3.1 since all the involved tools concerning the Cesaro operator and the trace norm estimates have a natural counterpart in several dimensions and in the matrix-valued setting (see [START_REF] Zygmund | Trigonometric Series[END_REF][START_REF] Serra-Capizzano | On unitarily invariant norms of matrix valued linear positive operators[END_REF]). The only change is of notational type: in fact all the terms o(n) will become o(n), since the involved dimensions in the multidimensional Toeplitz setting are defined as N n, with n = n 1 • • • n d and with n = (n 1 , . . . , n d ) being a multi-index, see Section 1.2.

In light of the previous remark, it is natural to state the following generalizations without proof.

Theorem 3.5. Let f, g ∈ L ∞ N (T d ) such that h = f g is Hermitian-valued (real-valued for N = 1). Then {A n } ∼ λ (h, T d ) with A n = T n (f )T n (g), S(h) is a weak cluster for {A n }, and any s ∈ S(h) strongly attracts the spectra of {A n } with infinite order. Theorem 3.5 is the basis for the subsequent general result on the algebra generated by Toeplitz sequences with L ∞ N (T d ) symbols. Its proof works by induction on the structure of h and of A n and, more specifically, Theorem 3.5 is used for the basis of induction and for the inductive step. We do not furnish further details since, under mild additional assumptions, the same statement is proved carefully in Section 5 in the more general case where h belongs to the Tilli class. We recall that Hermitian-valued (real-valued if N = 1) L ∞ N (T d ) functions form a proper subset of the Tilli class.

Theorem 3.6. Let f α,β ∈ L ∞ N (T d ) with α = 1, . . . , ρ, β = 1, . . . , q α , ρ, q α < ∞. Assume that the function h = ρ α=1 qα β=1 f α,β
, is Hermitian-valued (real-valued for N = 1) and consider the sequence

{A n } with A n = ρ α=1 qα β=1 T n (f α,β ). Then {A n } ∼ λ (h, T d ), S(h)
is a weak cluster for {A n }, and any s ∈ S(h) strongly attracts the spectra of {A n } with infinite order. Remark 3.7. Theorem 3.6 nicely complements the analysis by Böttcher and coauthors in [START_REF] Böttcher | Mass concentration in quasicommutators of Toeplitz matrices[END_REF]. In fact in [START_REF] Böttcher | Mass concentration in quasicommutators of Toeplitz matrices[END_REF] the authors require that the given sequence {A n } is normal, i.e., every

A n satisfies A * n A n = A n A * n .
This technical assumption may be difficult to verify except in the Hermitian case. For the Hermitian setting see also [START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF] and Remark 1.5.

Further tools for general matrix sequences

Before generalizing the results of the previous section to the case where the product symbol h belongs to the Tilli class, we establish a series of general results for matrix sequences. In particular, we give some generalizations of Theorem 2.2 from [START_REF] Golinskii | The asymptotic properties of the spectrum of non symmetrically perturbed Jacobi matrix sequences[END_REF]. We begin by stating this theorem in a slightly different, but equivalent way. The basic ideas used here come from the paper [START_REF] Tilli | Some results on complex Toeplitz eigenvalues[END_REF], where the same questions were considered in a Toeplitz context. First we give the results which come directly from Theorem 2.2 of [START_REF] Golinskii | The asymptotic properties of the spectrum of non symmetrically perturbed Jacobi matrix sequences[END_REF] (in fact the ideas are taken from [START_REF] Tilli | Some results on complex Toeplitz eigenvalues[END_REF], but there were also known in a certain form to the operator theory community (see [START_REF] Widom | Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index[END_REF], top of page 390) and were extensively developed by Böttcher, Roch, SeLegue, Silbermann etc, see [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF]). (a4) there exists a function θ measurable, bounded, and defined on a set G of positive and finite Lebesgue measure, such that, for every positive integer L, we have lim n→∞ [START_REF] Bhatia | Matrix Analysis[END_REF] holds with F being any polynomial of an arbitrary fixed degree; (a5) the essential range of θ is contained in S; then relation ( 2) is true for every continuous function F with bounded support which is holomorphic in the interior of S. If it is also true that the interior of S is empty then the sequence {A n } is distributed as θ on its domain G, in the sense of the eigenvalues.

tr(A L n ) n = 1 m(G) G θ L (t) dt, i.e., relation
Next, we show that the hypotheses (a3) and (a slightly stronger form of) (a4) imply (a1), (a2), and (a3) for the set S defined by "filling in" the essential range of the function θ from (a4) (or its strengthened version). This will show that, when our set S(θ) has empty interior our matrix sequence has the desired distribution. When we say "filling in" we mean taking the "Area" in the following sense: Definition 4.2. Let K be a compact subset of C. We define

Area(K) = C\U,
where U is the (unique) unbounded connected component of C\K. (b2) there exists a function θ measurable, bounded, and defined on a set G of positive and finite Lebesgue measure, such that, for all positive integers L and l, we have lim n→∞

tr((A * n ) l A L n ) n = 1 m(G) G θ l (t)θ L (t) dt;
then S(θ) is compact, the matrix sequence {A n } is weakly clustered at Area(S(θ)), and relation ( 2) is true for every continuous function F with bounded support which is holomorphic in the interior of S = Area(S(θ)).

If it is also true that C\S(θ) is connected and the interior of S(θ) is empty then the sequence {A n } is distributed as θ on its domain G, in the sense of the eigenvalues.

Proof. Since θ is bounded, S(θ) is bounded, and so, since the essential range is always closed, the set S(θ) is compact. Hence we can define S = Area(S(θ)).

We prove that S is a weak cluster for the spectra of {A n }. First, we notice that the compact set S C = {z ∈ C : |z| ≤ C} is a strong cluster for the spectra of {A n } since by (b1) it contains all the eigenvalues. Moreover C can be chosen such that S C contains S. Therefore, we will have proven that S is a weak cluster for {A n } if we prove that, for every ε > 0, the compact set S C \D(S, ε) contains at most only o(n) eigenvalues, with D(S, ε) as in Definition 1.2. By compactness, for any δ > 0, there exists a finite covering of S C \D(S, ε) made of balls D(z, δ), z ∈ S C \S with D(z, δ) ∩ S = ∅, and so, it suffices to show that, for a particular δ, at most o(n) eigenvalues lie in D(z, δ). Let F (t) be the characteristic function of the compact set D(z, δ). Then restricting our attention to the compact set D(z, δ) S, Mergelyan's theorem implies that for each ǫ > 0 there exists a polynomial P ǫ such that |F (t)-P ǫ (t)| is bounded by ǫ on D(z, δ) S. Therefore, setting γ n (z, δ) equal to the number of eigenvalues of A n belonging to D(z, δ), we find

(1 -ǫ)γ n (z, δ) ≤ n i=1 F (λ i )|P ǫ (λ i )| (13) ≤ n i=1 F 2 (λ i ) 1/2 n i=1 |P ǫ (λ i )| 2 1/2 (14) = n i=1 F (λ i ) 1/2 n i=1 |P ǫ (λ i )| 2 1/2 (15) = (γ n (z, δ)) 1/2 n i=1 |P ǫ (λ i )| 2 1/2 (16) 
≤ (γ n (z, δ)) 1/2 P ǫ (A n ) 2 (17) = (γ n (z, δ)) 1/2 (tr(P * ǫ (A n )P ǫ (A n ))) 1/2 (18) = (γ n (z, δ)) 1/2   tr   M l,L=0 c l c L (A * n ) l A L n     1/2 (19) = (γ n (z, δ)) 1/2   M l,L=0 c l c L tr((A * n ) l A L n )   1/2 , ( 20 
)
where inequality [START_REF] Gray | Toeplitz and Circulant Matrices: a Review[END_REF] follows from the definition of F and from the approximation properties of P ǫ , inequality ( 14) is Cauchy-Schwartz, relations ( 15)-( 16) come from the definitions of F and γ n (z, δ), ( 17) is a consequence of the Schur decomposition and of the unitary invariance of the Schatten norms, identities ( 18)-( 20) follow from the entry-wise definition of the Schatten 2 norm (the Frobenius norm), from the monomial expansion of the polynomial P ǫ , and from the linearity of the trace.

Given ǫ 2 > 0, we choose ǫ 1 > 0 so that equation

ǫ 1 M l,L=0 |c l ||c L | ≤ ǫ 2 ,
is true and then we choose N so that for n > N , equation

tr((A * n ) l A L n ) n - 1 m(G) G θ l (t)θ L (t) dt < ǫ 1 ,
is true. Then, picking up from equation ( 20), we have

(1 -ǫ)γ n (z, δ) ≤ (γ n (z, δ)) 1/2   n   ǫ 2 + 1 m(G) G M l,L=0 c l c L (θ l (t)θ L (t)) dt     1/2 (21) = (γ n (z, δ)) 1/2 n ǫ 2 + 1 m(G) G |P ǫ (θ(t))| 2 dt 1/2 (22) 
≤ (γ n (z, δ)) 1/2 n 1/2 (ǫ 2 + ǫ 2 ) 1/2 , ( 23 
)
where inequality [START_REF] Parter | On the eigenvalues of certain generalizations of Toeplitz matrices[END_REF] is assumption (b2), the latter two inequalities are again consequences of the monomial expansion of P ǫ and of the approximation properties of P ǫ over the area delimited by the range of θ, and ǫ 2 is arbitrarily small. So, choosing ǫ 2 = ǫ 2 , we see that ( 13)-( 23) imply that, for n sufficiently large,

γ n (z, δ) ≤ 2nǫ 2 (1 -ǫ) -2 ,
which means that:

γ n (z, δ) = o(n).
Thus, hypotheses (a1)-(a5) of Theorem 4.1 hold with S = Area(S(θ)), which is necessarily compact and with connected complement, and consequently the first conclusion of Theorem 4.1 holds. Finally if C\S(θ) is connected and the interior of S(θ) is empty then Area(S(θ)) = S(θ) and so all the hypotheses of Theorem 4.1 are satisfied, and so we conclude that the sequence {A n } is distributed in the sense of the eigenvalues as θ on its domain G. Now, we give a second version, replacing hypotheses (a1)-(a5) with only (a3), (a4), and a condition on the Schatten p norm for a certain p. (c2) there exists a function θ measurable, bounded, and defined over G having positive and finite Lebesgue measure, such that, for every positive integer L, we have lim n→∞

tr(A L n ) n = 1 m(G) G θ L (t) dt; (c3) there exist a constant C and a positive real number p ∈ [1, ∞), independent of n, such that P (A n ) p p ≤ Cn 1 m(G) G |P (θ(t))
| p dt for every fixed polynomial P independent of n and for every n large enough; then the matrix sequence {A n } is weakly clustered at Area(S(θ)) := C\U (see Definition 4.2) and relation ( 2) is true for every continuous function F with bounded support which is holomorphic in the interior of S = Area(S(θ)). If, moreover (c4) C\S(θ) is connected and the interior of S(θ) is empty; then the sequence {A n } is distributed as θ on its domain G, in the sense of the eigenvalues.

Proof. The proof goes as in Theorem 4.3 until relation [START_REF] Gray | Toeplitz and Circulant Matrices: a Review[END_REF]. Then with q the conjugate of p (i.e., 1/q + 1/p = 1) we have

(1 -ǫ)γ n (z, δ) ≤ n i=1 F q (λ i ) 1/q n i=1 |P ǫ (λ i )| p 1/p (24) 
=

n i=1 F (λ i ) 1/q n i=1 |P ǫ (λ i )| p 1/p (25) 
= (γ n (z, δ)) 1/q n i=1 |P ǫ (λ i )| p 1/p (26) 
≤ (γ n (z, δ)) 1/q P ǫ (A n ) p (27) 
≤ (γ n (z, δ)) 1/q Cn m(G) G |P ǫ (θ(t))| p dt 1/p (28) 
≤ (γ n (z, δ)) 1/q ( Cn) 1/p ǫ, (29) 
where relation [START_REF] Serra-Capizzano | Distribution results on the algebra generated by Toeplitz sequences: a finite dimensional approach[END_REF] is the Hölder inequality, relations ( 25)-( 26) come from the definitions of F and γ n (z, δ), [START_REF] Serra-Capizzano | Generalized Locally Toeplitz sequences: spectral analysis and applications to discretized Partial Differential Equations[END_REF] comes from the fact that, for any square matrix, the vector with the moduli of the eigenvalues is weakly-majorized by the vector of the singular values (see [START_REF] Bhatia | Matrix Analysis[END_REF] for the precise definition and for the result), inequality [START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF] is assumption (c3) (which holds for any polynomial of fixed degree), and finally inequality (29) follows from the approximation properties of P ǫ over the area delimited by the range of θ. Therefore

γ n (z, δ) ≤ Cnǫ p (1 -ǫ) -p ,
and since ǫ is arbitrary we have the desired result, i.e., γ n (z, δ) = o(n).

The rest of the proof is the same as in Theorem 4.3.

The next result tells us that the key assumption (c3) follows from the distribution in the singular value sense of {P (A n )} and that the latter is equivalent to the very same limit relation with only polynomial test functions. We should mention here that the distribution results in the singular value sense are much easier to obtain and to prove [START_REF] Tilli | A note on the spectral distribution of Toeplitz matrices[END_REF][START_REF] Tyrtyshnikov | Spectra of multilevel Toeplitz matrices: advanced theory via simple matrix relationships[END_REF][START_REF] Tilli | Locally Toeplitz matrices: spectral theory and applications[END_REF][START_REF] Serra-Capizzano | Generalized Locally Toeplitz sequences: spectral analysis and applications to discretized Partial Differential Equations[END_REF][START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF], thanks to the higher stability of singular values under perturbations [START_REF] Wilkinson | The Algebraic Eigenvalue Problem[END_REF].

Theorem 4.5. Using the notation of Section 2, if the sequence {A n } is uniformly bounded in spectral norm then {A n } ∼ σ (θ, G) is true whenever condition (3) holds for all polynomial test functions. Moreover, if {P (A n )} ∼ σ (P (θ), G) for every polynomial P then claim (c3) is true for every value p ∈ [1, ∞), for every ǫ > 0 where C = 1 + ǫ and for n larger than a fixed value nǫ .

Proof. The first claim is proved by using the fact that one can approximate any continuous function defined on a compact set contained in the (positive) real line by polynomials. The second claim follows from taking as test function the function z p , with positive p, and exploiting the limit relation from the assumption {P (A n )} ∼ σ (P (θ), G). Indeed, the sequence {P (A n )} is uniformly bounded since {A n } is, so we are allowed to use as test functions continuous functions with no restriction on the support. Therefore, by definition (see

(3)), (A n )} ∼ σ (P (θ), G) implies that lim n→∞ 1 n n j=1 σ p j (P (A n )) = 1 m(G) G |P (θ(t))| p dt.
Hence, by observing that n j=1 σ p j (P (A n )) is by definition P (A n ) p p and using the definition of limit, we see that, for every ǫ > 0, there exists an integer nǫ such that

P (A n ) p p ≤ n 1 + ǫ m(G) G |P (θ(t))| p dt, ∀n ≥ nǫ .
The latter inequality coincides with (c3) with C = 1 + ǫ and every p ∈ [1, ∞).

The Tilli class and the algebra generated by Toeplitz sequences

As discussed in Section 1.1, we can write any matrix A in the form

Re(A) + -Re(A) -+ i Im(A) + -i Im(A) -,
where the four matrices Re(A) + , Re(A) -, Im(A) + , Im(A) -are positive semi-definite so that their trace coincides with the trace norm. As a consequence it is not difficult to see that

|tr(A)| ≤ 2 A 1 . (30) 
Now we are ready to state and prove two important lemmas. An alternative proof using operator theory methods can be found in [START_REF] Böttcher | Mass concentration in quasicommutators of Toeplitz matrices[END_REF].

Lemma 5.1. Let f α ∈ L ∞ (T d ), α = 1, . . . , ρ, ρ < ∞, d ≥ 1, let A n = ρ α=1 T n (f α ) := T n (f 1 )T n (f 2 ) • • • T n (f ρ ), n = (n 1 , . . . , n d ), and let h = ρ α=1 f α . Then A n -T n (h) 1 = o(n), n = n 1 • • • n d , (31) 
lim n→∞ tr(A n ) n = 1 (2π) d [-π,π] d h(e it 1 , . . . , e it d ) dt 1 • • • dt d . (32) 
Proof. For proving [START_REF] Serra-Capizzano | On unitarily invariant norms of matrix valued linear positive operators[END_REF] we proceed by induction on the positive integer ρ. If ρ = 1 then there is nothing to prove since A n -T n (h) is the null matrix. For ρ > 1, we write

A n = ρ-1 α=1 T n (f α ) T n (f ρ )
, where, by the inductive step, we have

ρ-1 α=1 T n (f α ) = T n (h ρ-1 ) + E n,ρ-1 with h ρ-1 = ρ-1 α=1 f α and E n,ρ-1 1 = o(n). As a consequence A n = T n (h ρ-1 )T n (f ρ ) + E n,ρ-1 T n (f ρ ), where E n,ρ-1 T n (f ρ ) 1 ≤ E n,ρ-1 1 T n (f ρ ) ≤ E n,ρ-1 1 f ρ L ∞ ,
by the Hölder inequality XY 1 ≤ X 1 Y and by the inequality T n (g) ≤ g L ∞ , see e.g. [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF]. Furthermore, thanks to Lemma 2.6 , we have

T n (h ρ-1 )T n (f ρ ) -T n (h) 1 = o(n), since h = h ρ-1 f ρ . In conclusion A n = T n (h) + E n,ρ where E n,ρ = E n,ρ-1 T n (f ρ ) + T n (h ρ-1 )
T n (f ρ ) -T n (h) so that by the triangle inequality E n,ρ 1 = o(n), and therefore the proof of the first part is concluded.

The proof of the second part, i.e, relation [START_REF] Silbermann | Asymptotic behavior of generalized convolutions: an algebraic approach[END_REF] is plain since the statement is a straightforward consequence of the first part. In fact

tr(T n (h)) = nĥ 0 = n (2π) d [-π,π] d h(e it 1 , . . . , e it d ) dt 1 • • • dt d ,
where ĥ0 is the Fourier coefficient defined in [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF], and, by [START_REF] Serra-Capizzano | Stability of the notion of approximating class of sequences and applications[END_REF] and [START_REF] Serra-Capizzano | On unitarily invariant norms of matrix valued linear positive operators[END_REF],

tr(A n ) = tr(T n (h)) + o(n) = n (2π) d [-π,π] d h(t) dt + o(n),
which implies [START_REF] Silbermann | Asymptotic behavior of generalized convolutions: an algebraic approach[END_REF]. T n (f α,β ),

and h = ρ α=1 qα β=1 f α,β . Then A n -T n (h) 1 = o(n) and lim n→∞ tr (A n ) n = 1 (2π) d [-π,π] d h(e it 1 , . . . , e it d ) dt 1 • • • dt d . ( 33 
)
Proof. The first claim is a trivial consequence of Lemma 5.1. For the second claim, just observe that the linearity of the trace operator and of the limit operation implies that ( 33) is equivalent to the statement that T n (f α,β )

  = 1 (2π) d [-π,π] d g α (e it 1 , . . . , e it d ) dt 1 • • • dt d , (34) 
which is a consequence of Lemma 5.1. 

Theorem 5.3. Let f α,β ∈ L ∞ (T d ) with α = 1, . . . , ρ, β = 1, . . . , q α , ρ, q α < ∞,

The Tilli class in the case of matrix-valued symbols

With the same tools we can easily give the generalization of Theorem 5.3 to the case of N × N matrix valued symbols. Lemmas 5.1 and 5.2 are easy to extend and indeed this extension can be found in [START_REF] Böttcher | Mass concentration in quasicommutators of Toeplitz matrices[END_REF]. The only key point is to define the Tilli class in this context. We say that f belongs to the N × N matrix-valued Tilli class if f is essentially bounded (i.e. this is true for any entry of f ) and if the union of the ranges of the eigenvalues of f has empty interior and does not disconnect the complex plane. We have to observe that the case where f (t) is diagonalizable, by a constant transformation independent of t, is special in the sense that the Szegö-type distribution result holds under the milder assumption the every eigenvalue of f (now a scalar complex-valued function) belongs to the standard Tilli class. This leaves open the question whether this weaker requirement is sufficient in general.

Finally we remark that such results can be seen as a generalization of the analysis by Böttcher and coauthors in [START_REF] Böttcher | Mass concentration in quasicommutators of Toeplitz matrices[END_REF], with the advantage that the technical and difficult assumption of normality is dropped.

The role of thin spectrum in the case of Laurent polynomials

In this section we treat the case where the symbol f of our Toeplitz operator is a Laurent polynomial, i.e.,

f (z) = s j=-r fj z j , z ∈ T.
Given a Laurent polynomial f and given a value ρ > 0, we denote by f [ρ] the function

f [ρ] (z) = s j=-r fj ρ j z j . ( 35 
)
Clearly f [ρ] is still a Laurent polynomial and, if we define the n × n matrix D ρ by:

D ρ =        1 ρ ρ 2 . . . ρ n-1        , ρ > 0, (36) 
then a straightforward computation shows that

D ρ T n (f )D -1 ρ = T n (f [ρ] ). (37) 
Now, if f is any Laurent polynomial, then, as shown in the book [START_REF] Böttcher | Spectral properties of banded Toeplitz matrices[END_REF] the eigenvalues of the sequence {T n (f )} cluster along a certain set called the Schmidt-Spitzer set, and denoted by Λ(f ). It was shown by Hirschmann (Theorems 11.16 and 11.17 of the book [START_REF] Böttcher | Spectral properties of banded Toeplitz matrices[END_REF]), that, under certain hypotheses,

{T n (f )} ∼ λ (θ f , G f ), (38) 
where θ f is a suitable function supported on G f = ρ>0 Area(S(f [ρ] )), and where f [ρ] is defined as in [START_REF] Tilli | A note on the spectral distribution of Toeplitz matrices[END_REF].

Suppose now the functions f α,β , α = 1, . . . , ν, β = 1, . . . , q α , ν, q α < ∞, are all Laurent polynomials, then the function h defined by

h = ν α=1 qα β=1 f α,β ,
is also a Laurent polynomial. We want to prove that if h satisfies the hypotheses of the Hirschmann theorem so that {T n (h)} ∼ λ (θ h , G h ), then we can obtain the corresponding result for the sequence {A n }, i.e., {A n } ∼ λ (θ h , G h ).

Theorem 5.4. Let f, g be two Laurent polynomials, A n = T n (f )T n (g) and let h = f g. With D ρ defined as in [START_REF] Tilli | Some results on complex Toeplitz eigenvalues[END_REF], for each ρ > 0,

D ρ A n D -1 ρ -D ρ T n (h)D -1 ρ 1 = o(n).
Proof. This is a direct consequence of Lemma 2.5 applied to the functions f [ρ] and g [ρ] since (using (37)) we have

D ρ A n D -1 ρ = T n (f [ρ] )T n (g [ρ]
), and

D ρ T n (h)D -1 ρ = T n (h [ρ] ),
and

f [ρ] g [ρ] = h [ρ] . Lemma 5.5. Let f α ∈ L ∞ (T) be Laurent polynomials with α = 1, . . . , ν, ν < ∞. Let h = ν α=1 f α ,
be a new Laurent polynomial and let {A n } be defined as A n = ν α=1 T n (f α ). For each ρ > 0 we have

D ρ A n D -1 ρ -D ρ T n (h)D -1 ρ 1 = o(n), lim n→∞ tr(D ρ A n D -1 ρ ) n = 1 2π [-π,π] h [ρ] (t)dt.
Proof. The same reasoning as above shows that

D ρ A n D -1 ρ = ν α=1 T n (f [ρ] α ) and that D ρ T n (h)D -1 ρ = T n (h [ρ] ),
so that the Lemma is a direct consequence of Lemma 5.1 with d = 1.

Lemma 5.6. Let f α,β ∈ L ∞ (T) be Laurent polynomials with α = 1, . . . , ν, β = 1, . . . , q α , ν, q α < ∞. Let

h = ν α=1 qα β=1 f α,β ,
be a new Laurent polynomial and let {A n } be defined as A n = ν α=1 qα β=1 T n (f α,β ). For each ρ > 0 we have

D ρ A n D -1 ρ -D ρ T n (h)D -1 ρ 1 = o(n), lim n→∞ tr(D ρ A n D -1 ρ ) n = 1 2π [-π,π] h [ρ] (t)dt.
Proof. Once again, we apply [START_REF] Tyrtyshnikov | A unifying approach to some old and new theorems on distribution and clustering[END_REF] to see that

D ρ A n D -1 ρ = ν α=1 qα β=1 T n (f [ρ] α,β ) and that D ρ T n (h)D -1 ρ = T n   ν α=1 qα β=1 f [ρ] α,β   , (39) 
so that a direct application of Lemma 5.2, with d = 1, gives the desired result.

Theorem 5.7. Let f α,β ∈ L ∞ (T) be Laurent polynomials with α = 1, . . . , ν, β = 1, . . . , q α , ν, q α < ∞. Let

h = ν α=1 qα β=1 f α,β ,
be a new Laurent polynomial and let {A n } be defined as A n = ν α=1 qα β=1 T n (f α,β ). Denoting by S(h [ρ] ) the essential range of h [ρ] , for each ρ > 0, the set Area(S(h [ρ] )) is a weak cluster for {A n }.

Proof. We apply Theorem 4.4 to the sequence {D ρ A n D -1 ρ } using the equations [START_REF] Widom | Eigenvalue distribution of nonselfadjoint Toeplitz matrices and the asymptotics of Toeplitz determinants in the case of nonvanishing index[END_REF]. Condition (c1) is obtained by repeatedly applying the triangle inequality to

ν α=1 qα β=1 f [ρ] α,β L ∞ ; (c2
) is a consequence of Lemma 5.6, since any positive integer power of a linear combination of products is still linear combination of products; (c3) is true, in light of Theorem 4.5, since {P (D -1 ρ A n D ρ )} ∼ σ (P (h [ρ] ), T) for every polynomial P as a consequence of Lemma 5.6. Therefore Theorem 4.4 implies that the sequence {D ρ A n D -1 ρ } is weakly clustered at Area(S(h [ρ] )). Since A n has the same eigenvalues as D ρ A n D -1 ρ this means that the sequence {A n } is also weakly clustered at Area(S(h [ρ] )).

Theorem 5.8. With the same notation as in Theorem 5.7, ρ>0 Area(S(h [ρ] )) is a weak cluster both for {A n } and for {T n (h)}.

Proof. This follows from Theorem 5.7. Now, the Hirschmann theorem (Theorem 11.16, p. 274 in [START_REF] Böttcher | Spectral properties of banded Toeplitz matrices[END_REF]), shows that for h Laurent polynomial satisfying certain assumptions we have

{T n (h)} ∼ λ (θ h , G h ), (40) 
where θ h is a suitable function supported on G h = ρ>0 Area(S(h [ρ] )), so that S(θ h ) ⊆ ρ>0 Area(S(h [ρ] )). We use this to prove the following result. Theorem 5.9. Let f α,β ∈ L ∞ (T) be Laurent polynomials with α = 1, . . . , ν, β = 1, . . . , q α , ν, q α < ∞ and let

h = ν α=1 qα β=1 f α,β ,
be a new Laurent polynomial satisfying the hypotheses of the Hirschmann theorem. Let {A n } be defined as A n = ν α=1 qα β=1 T n (f α,β ), and set G h = ρ>0 Area(S(h [ρ] )). If C \ G h is connected in the complex field and the interior of G h is empty, then {A n } ∼ λ (θ h , G h ) where θ h is the distribution function of {T n (h)} indicated in [START_REF] Wilkinson | The Algebraic Eigenvalue Problem[END_REF], see [START_REF] Böttcher | Spectral properties of banded Toeplitz matrices[END_REF] at page 274.

Proof. We will use Theorem 4.1. First we see that (a1) holds since G h is compact by construction and C\G h is connected by the hypotheses. Condition (a2) is a consequence of Theorem 5.8; while (a3) follows from a repeated application of the triangle inequality to

ν α=1 qα β=1 f α,β L ∞ . Condition (a4) amounts in proving that lim n→∞ tr(A L n ) n = 1 m(G h ) G h θ L h (t)dt. (41) 
In fact, from Lemma 5.2, with d = 1, we find A n = T n (h) + R n,h where R n,h 1 = o(n) and, in addition, by assumption {T n (h)} ∼ λ (θ h , G h ) (this second claim is indeed the Hirschmann result).

With these ingredients, we now prove formula [START_REF] Zygmund | Trigonometric Series[END_REF]. Since

tr(X) = λ∈Λn(X) λ = n k=1 [X] k,k ,
and since tr(•) is a linear functional, the assumption

A n = T n (h) + R n,h implies that tr(A n )-tr(T n (h)) =tr(R n,h ). Consequently 1 n tr(A n ) - 1 n tr(T n (h)) = 1 n tr(R n,h ) ≤ (α) 2 n R n,h 1 ≤ (β) 2 n o(n) = o(1),
where (α) follows from ( 30) and (β) follows from Lemma 5.2 (with d = 1). Since T n (h) is distributed as θ h over G h , we infer [START_REF] Zygmund | Trigonometric Series[END_REF] is satisfied in the special case where L = 1.

lim n→∞ 1 n tr(A n ) = lim n→∞ 1 n tr(T n (h)) = 1 m(G h ) G h θ h (t)dt, therefore ( 
Now we consider all nonnegative integers L > 0. For L = 0, 1 the result is valid, so that we focus our attention to the case where

L ≥ 2. Relation A n = T n (h) + R n,h implies A L n = (T n (h) + R n,h ) L = T n (h) L + R n,h , where R n,h is a term of the form R n,h = X i ∈{Tn(h),R n,h } (X 1 • • • X L ) -T n (h) L . (42) 
In other words the error matrix R n,h is the sum of all possible combinations of products of j matrices T n (h) and k matrices R n,h , with j + k = L and the exception of j = L (obviously it is understood that all the addends are pairwise different). By using a simple Hölder inequality involving Schatten p norms: XY 1 ≤ X Y 1 , for every summand R in (42), we deduce that there exists j ≥ 1, k = Lj for which

R 1 ≤ T n (h) k R n,h j-1 R n,h 1 ≤ (α) C k C j-1 o(n), (43) 
where (α) follows from the assumption:

T n (h) ≤ h L ∞ ≤ C < ∞, R n,h = A n -T n (h) ≤ C < ∞.
Therefore by the triangle inequality and by applying inequality (43) to any summand in (42), we find R n,h 1 ≤ Ko(n), with K = K(L) constant independent of n. Consequently tr(A L n )-tr(T n (h) L ) =tr( R n,h ), and, since λ(X L ) = λ L (X), we have Since T n (h) is distributed as θ h over G h , we infer

lim n→∞ 1 n tr(A L n ) = lim n→∞ 1 n tr(T n (h) L ) = 1 m(G h ) G h θ h (t) L dt.
The latter proves that ( 41) is satisfied for any nonnegative integer L.

Condition (a5) is true since S(θ h ) ⊂ G h ; finally G h has empty interior by hypothesis. Therefore we can apply Theorem 4.1 and we conclude that {A n } ∼ λ (θ h , G h ).

A complex analysis consequence for H ∞ functions

Let us consider the space H given by L ∞ functions defined on T d , d ≥ 1; (where T is the unit circle in the complex plane) such that the Fourier coefficient fj , j = (j 1 , . . . , j d ) ∈ Z d , defined as in (8) equals zero if j k < 0 for some k with 1 ≤ k ≤ d.

Theorem 5.10. If h ∈ H, [S(h)]

C is connected, and the interior of S(h) is empty, then h is necessarily constant almost everywhere.

Proof. By Theorem 2 of [START_REF] Tilli | Some results on complex Toeplitz eigenvalues[END_REF] (or equivalently, by Theorem 5.3 with ρ = 1 and q 1 = 1) we know that {T n (h)} ∼ λ (h, T d ). However T n (h) is lower triangular with ĥ0 on the main diagonal since ĥj = 0 if there exists k, 1 ≤ k ≤ d, with j k < 0. Therefore it is also true that {T n (h)} ∼ λ ( ĥ0 , T d ), i.e., h ≡ ĥ0 and the proof is concluded.

In other words, if f ∈ H and it is not constant almost everywhere, then its essential range necessarily divides the complex field in (at least two) unconnected components or its interior is not empty. Since a function is in H if and only if it is equal to the boundary values of a function in H ∞ this rigidity is not surprising.

From an operator theory viewpoint the proof is as follows. Since H is a closed subalgebra of L ∞ , the spectrum of h in the subalgebra results from the spectrum of h in L ∞ by filling in holes. Thus, if the first set has no holes, then the two sets coincides and are equal to a set without interior points. As the second set is the closure of h over the polydisc, which contains interior points if h is not constant, it follows that h must be constant.

Some issues from statistics

This work was begun in search of an analysis of the asymptotic behavior of the function W n : C 0 (Π, R) → R where C 0 (Π, R) is the space of real continuous functions on the circle and W n is defined by:

W n (f ) = 1 2πn Π f (t) n j=0 X j exp(ijt) 2 dt,
where (X n ) is a centered stationary real Gaussian process. If the spectral density of (X n ) is the positive bounded function g then

W n (f ) = 1 n Y (n) T n (g) 1 2
T n (f )T n (g)

1 2 Y (n) ,
where the vector Y (n) has a Gaussian N (0, I n ) distribution. We hope that our results will help.

In fact the matrix T n (g)

1 2
T n (f )T n (g)

1 2
is similar to T n (g)T n (f ) since T n (g) is Hermitian positive definite. As a consequence in view of item c) in Theorem 2.2 and in view of Theorem 3.1, we can claim that the eigenvalue distribution of the the sequence {T n (g) 1 2 T n (f )T n (g) 1 2 } is h = f g and that its maximal eigenvalue has lim sup bounded from above by f L ∞ g L ∞ and lim inf bounded from below by h L ∞ .

Concluding remarks and open problems

As a conclusion, we observe that tools from matrix theory (Mirski Theorem, see [START_REF] Bhatia | Matrix Analysis[END_REF]) and approximation theory in the complex field (Mergelyan Theorem, see [START_REF] Rudin | Real and Complex Analysis[END_REF]), combined with those from asymptotic linear algebra [START_REF] Tilli | A note on the spectral distribution of Toeplitz matrices[END_REF][START_REF] Tilli | Some results on complex Toeplitz eigenvalues[END_REF][START_REF] Serra-Capizzano | Spectral behavior of matrix sequences and discretized boundary value problems[END_REF] have been crucial in our proof of results concerning the eigenvalue distribution of non Hermitian matrix sequences. In particular, we have employed these tools to deduce general results that we have applied, as a special case, to the algebra generated by Toeplitz sequences. An interesting side effect, already implicitly contained in the Tilli analysis [START_REF] Tilli | Some results on complex Toeplitz eigenvalues[END_REF], is a characterization of the range of L ∞ (T d ) functions obtained as restrictions of functions of several complex variables in the Hardy space H ∞ .

Some problems remain open. For instance it would be interesting to extend the results of this paper to the case where the involved symbols are not necessarily bounded, but just integrable. As already stressed in [START_REF] Serra-Capizzano | The GLT class as a Generalized Fourier Analysis and applications[END_REF], in that case, the matrix theoretic approach seems more convenient, since the corresponding Toeplitz operators are not well defined if the symbols are not bounded.

Finally, it should be observed that the conditions described in the Tilli class for the existence of a canonical distribution corresponding to the symbol are sufficient, but not necessary. In fact for f (t) =exp(-it) the range of f is the complex unit circle, disconnecting the complex plane, while the eigenvalues are all equal to zero. However, if one takes the symbol f (t) in (3.24), p.80 in [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF] (f (t) =exp(2it), t ∈ [0, π), f (t) =exp(-2it), t ∈ [π, 2π)), then the range of f is again the complex unit circle, that disconnects the complex plane, but the eigenvalues indeed distribute as the symbol as discussed in Example 5.39, pp. 167-169 in [START_REF] Böttcher | Introduction to Large Truncated Toeplitz Matrices[END_REF]. It would be nice to understand how to discriminate between these two types of generating functions which do not belong to the Tilli class.

  Theorem 2.3. [12][Theorem 3.4] Let {B n } and {C n } be two matrix sequences, where B n is Hermitian and A n = B n + C n . Assume further that {B n } is distributed as (θ, G) in the sense of the eigenvalues, where G is of finite and positive Lebesgue measure, both B n and C n are uniformly bounded by a positive constant C independent of n, and
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 24 Let {B n } and {C n } be two matrix sequences, where B n is Hermitian and A n = B n + C n . Let E be a compact subset of the real line. Assume that {B n } is strongly clustered at E, C n 1 = O(1), n → ∞ and A n is uniformly bounded by a positive constant C independent of n. Then {A n } is strongly clustered at E.
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 41 [START_REF] Golinskii | The asymptotic properties of the spectrum of non symmetrically perturbed Jacobi matrix sequences[END_REF] Let {A n } be a matrix sequence and S a subset of C. If: (a1) S is a compact set and C\S is connected; (a2) the matrix sequence {A n } is weakly clustered at S; (a3) the spectra Λ n of A n are uniformly bounded, i.e., ∃C ∈ R + such that |λ| < C, λ ∈ Λ n , for all n;
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 43 Let {A n } be a matrix sequence. If (b1) the spectra Λ n of A n are uniformly bounded, i.e., ∃C ∈ R + such that |λ| < C, λ ∈ Λ n , for all n;

Theorem 4 . 4 .

 44 Let {A n } be a matrix sequence and S a subset of C. If (c1) the spectra Λ n of A n are uniformly bounded, i.e., |λ| < C, λ ∈ Λ n , for all n;

Lemma 5 . 2 .

 52 Let f α,β ∈ L ∞ (T d ) with α = 1, . . . , ρ, β = 1, . . . , q α , ρ, q α < ∞, d ≥ 1, and let n = (n 1 , . . . , n d ) and n = n 1 • • • n d . Set

  d [-π,π] d qα β=1 f α,β (e it 1 , . . . , e it d ) dt 1 • • • dt d .Hence, setting g α = qα β=1 f α,β , α = 1, . . . , ρ, the desired result follows from lim

  d ≥ 1. Assume that the function h = ρ α=1 qα β=1 f α,β , belongs to the Tilli class and consider the sequence{A n } with A n = ρ α=1 qα β=1 T n (f α,β ). Then {A n } ∼ λ (h, T d ), S(h)is a weak cluster for {A n }, and any s ∈ S(h) strongly attracts the spectra of {A n } with infinite order.Proof. We choose to apply Theorem 4.4. Assumption (c1) is easily obtained by repeated applications of the triangle inequality to the infinity norm of the function h since the module of the eigenvalues is dominated by the infinity norm of the symbol. Statement (c3) is true for every p by Theorem 4.5, since {P (A n )} ∼ σ (P (h), T d ) for every fixed polynomial P (see Remark 1.5); assumption (c4) is verified with θ = h since h belongs to the Tilli class. The only thing left is statement (c2) which is a consequence of Lemma 5.2, since any positive power of linear combinations of products is still a linear combination of products. Therefore {A n } ∼ λ (h, T d ) by Theorem 4.4 and the proof is completed by invoking a) and b) from Theorem 2.2.
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