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Reconstruction from non-uniform samples:

A direct, variational approach

in shift-invariant spaces
Laurent Condat, Member, IEEE, and Annick Montanvert

Abstract—We propose a new approach for signal recon-
struction from non-uniform samples, without any constraint
on their locations. We look for a function that minimizes a
classical regularized least-squares criterion, but with the addi-
tional constraint that the solution lies in a chosen linear shift-
invariant space—typically, a spline space. In comparison with a
pure variational treatment involving radial basis functions, our
approach is resolution dependent; an important feature for many
applications. Moreover, the solution can be computed exactly by
a fast non-iterative algorithm, that exploits at best the particular
structure of the problem.

Index Terms—Non-uniform sampling, variational reconstruc-
tion, interpolation, shift invariant spaces, splines.

I. INTRODUCTION

IN MODERN digital data processing and communication

systems, signals and numerical data are usually available

as a sequence of discrete—eventually non-uniform and/or

noisy—samples. For the purpose of deriving numerical algo-

rithms, it is sometimes desirable to represent the data by a

continuously-defined parametric function. This is particularly

relevant for resampling tasks: a function is fitted to the data

and resampled at new locations. Non-integer sampling rate

conversion, arbitrary time delay, or edge detection in images

are examples where such a treatment may be required.

Numerous methods have been proposed in the literature

for reconstructing a signal from non-uniform samples. Since

the pioneering work of Shannon [1], it is known that any

π/T -bandlimited function s(t) ∈ L2(R) can be perfectly

reconstructed from its uniform samples s(Tn), n ∈ Z. This

is still true when considering non-uniform samples, assuming

strong limitations on the samples locations [2]. Perfect recon-

struction from non-uniform samples is also possible under the

weaker assumption that s(t) belongs to a linear shift-invariant

(LSI) space [3], with similar constraints on the sampling

set [4]. Pratical iterative algorithms have been proposed for

reconstruction in the bandlimited case [5], [6], and in LSI

spaces [7], [8]. Strong conditions have to be met for these

algorithms to converge [9].

In this article, we propose a novel approach for one-

dimensional signal reconstruction from non-uniform samples,
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without any constraint on their locations. We aim at recon-

structing a continuous-time function fT (t) that best fits the

data, while being resolution dependent, that is, completely

determined by its values fT (Tk), k ∈ Z, where the parameter

T can be chosen arbitrarily. In other words, we seek a

reconstructed function that is constrained to lie in a linear shift-

invariant space. This ensures that the solution is parameterized

by coefficients attached to the uniform reconstruction grid

having the desired resolution, and not to the data locations. In

this reconstruction space, we formulate reconstruction as a reg-

ularized least-squares problem; that is, the solution minimizes

a cost depending on two terms: the sum of the squared errors at

the sampling locations on one side, and a quadratic variational

functional that enforces the solution to be smooth on the other

side. This formulation circumvents the strong limitations—

typically, a restriction on the maximal gap between samples—

of formulations where only the fit to the data is considered.

The main advantage of our formulation is that the coefficients,

that parameterize the reconstructed function, can be computed

using a simple, fast, and non-iterative algorithm. In essence,

it performs a two-pass time-varying recursive filtering of the

data.

The paper is organized as follows. We first give the

mathematical background necessary to define the problem in

Section II. In Section III, we derive its solution and discuss the

novelty of our approach in comparison with previous related

works. We then propose a practical algorithm for computing

the solution in Section IV. In Section V, we discuss the

properties of the reconstructed function, and illustrate our

method with experimental results. In the last section, we

discuss some applications of our method.

II. MATHEMATICAL PRELIMINARIES

A. Definitions and notations

Throughout this paper, parentheses are used for continuous-

time signals, e.g., f(t), and brackets for the samples of a dis-

crete time signal like u = (u[n])n∈Z. Continuous and discrete

convolutions are denoted by ∗. We define the z−transform of

a discrete signal u by U(z) =
∑

n∈Z
u[n]z−n, and the convo-

lution inverse u−1 of u as the sequence whose z−transform

is 1/U(z). We also introduce the autocorrelation function aϕ

of a function ϕ: aϕ(t) = (ϕ̄ ∗ ϕ) (t), using the flip operator

ϕ̄(t) = ϕ(−t).



2

B. Linear shift-invariant spaces

In this work, we make use of functions that belong to

linear shift-invariant (LSI) spaces. Let the real number T > 0
denote our choice of sampling step. The LSI space VT (ϕ) is

the functional space spanned by the T -shifts of a generating

function ϕ( t
T ):

VT (ϕ) =
{∑

k∈Z

cT [k]ϕ(
t

T
− k) : cT [k] ∈ R ∀k ∈ Z

}
. (1)

The potential of LSI spaces has been recognized for quite

some time. They have been used in finite elements and

approximation theory [10], [11] and for the construction of

multiresolution approximations and wavelets [12]. In sampling

theory, they have been used increasingly in recent years [8],

[13]. We assume in this work that ϕ is bounded with compact

support, and that the functions {ϕ( t
T − k)} form a Riesz

basis of VT (ϕ) ∩ L2(R), which ensures that each function

fT ∈ VT (ϕ) has a unique expansion of the form fT (t) =∑
k∈Z

cT [k]ϕ( t
T − k). This last condition is equivalent to

the requirement that there exist two constants 0 < C1 and

C2 < +∞ (the lower and upper Riesz bounds) such that

C1 <
∑

k∈Z
aϕ(k)e−jωk < C2 a.e.

A classical example of LSI space is the set of π/T -

bandlimited functions, obtained with ϕ(t) = sinc(t) [1].

Particularly useful LSI spaces are the polynomial spline spaces

[14], [15]. They are obtained by choosing ϕ = βd, the centered

B-spline of degree d, that is symmetric and has compact sup-

port of width d+1. The B-splines are constructed by successive
convolution: βd = β0 ∗ βd−1, from the indicator function β0

defined by β0(t) =
{
1 if t ∈ [− 1

2 , 1
2 ), 0 otherwise

}
.

III. VARIATIONAL RECONSTRUCTION

A. Problem statement

We assume that we are given a finite number N of measure-

ments (v[n])n∈[0,N−1] at locations (x[n])n∈[0,N−1] within an

interval I = [0, S]; that is, v[n] = s(x[n]) where s(t) is some

unknown process defined on I. Let us choose a resolution step

T > 0 (whose choice will be discussed in Sections V, VI). Our

goal is to reconstruct a continuous-time function fT (t) defined
on I, that modelizes the data and belongs to the reconstruction

space VT (ϕ). That is, we look for a function having the form

fT (t) =
∑

k∈Z

cT [k]ϕ(
t

T
− k), (2)

where the discrete coefficients cT [k] are the unknowns to be

determined. We assume that the generator ϕ has compact

support, included in the interval (−W,W ), with W ∈ N, and

that S = KT , for some K ∈ N. Then, for every t0 ∈ I
the value fT (t0) is determined by only a few coefficients

cT [k], for k in the interval ( t0
T − W, t0

T + W ). Therefore, the
function fT is completely determined on the interval I by the

cT [k], k ∈ [−W + 1,K + W − 1]. So, for convenience, we
only consider functions of VT (ϕ) such that cT [k] = 0 for every

k /∈ [−W + 1,K + W − 1] in (1) (except in Section III-C).

This allows to use simple notations indexed by k ∈ Z, but we

have to keep in mind that only a finite number of coefficients

are not zero, e.g. in (2).

We define our reconstruction problem as a variational prob-

lem, whose fT is the solution:

fT = argmin
g∈VT (ϕ)

(
N−1∑

n=0

∣∣g(x[n]) − v[n]
∣∣2 + λ

∫

I

|g(r)(t)|2 dt

)
.

(3)

where g(r) is the rth derivative of g, for some integer r ≥ 1.

This variational criterion is composed of two antagonist

terms, one controlling the closeness to the data, the other one

enforcing the solution to be smooth. Interestingly, these terms

are similar to the so-called external forces (the function is

attracted by the data) and internal forces (the bending energy

of the function tends to be minimized) in the theory of snakes

and active contours used in computer graphics [16]. The

quantity λ > 0 is a Lagrangian parameter working as a tradeoff

factor between these two terms. The integer r controls the

smoothness of the reconstruction. The values r = 1 and r = 2
are the most frequently used, and correspond to searching a

function that has maximum flatness, and minimum curvature,

respectively. The resolution parameter T > 0 controls the

coarseness of the representation. Finally, the generator func-

tion ϕ(t) controls the space where the reconstructed function

lives. Signal processing practitioners often rely on localized

kernels such as B-splines [15] or MOMS [17]. The influence of

this set of parameters is discussed and illustrated in Section V.

Before determining the solution of (3) in the remainder

of this section, we have to introduce some mathematical

safeguards for the problem to be well posed. First, we suppose

that ϕ is such that
∫

R
|ϕ(r)(t)|2dt < ∞. For instance, if

choosing a B-spline ϕ = βd, then d ≥ r is necessary.

Moreover, we require that the samples are at r or more distinct

locations. We will see that these conditions allow the solution

of our problem to exist and to be unique.

B. Solution to (3)

Finding the reconstructed function fT (t) amounts to deter-

mining the sequence cT in (2), so that the cost function

Ψ(cT ) =

N−1∑

n=0

∣∣fT (x[n]) − v[n]
∣∣2 + λ

∫

I

|f
(r)
T (t)|2 dt (4)

is minimized. First, we rewrite the data fidelity term as a

function of cT :

N−1∑

n=0

∣∣fT (x[n])−v[n]
∣∣2 =

N−1∑

n=0

(
v[n] −

∑

k∈Z

cT [k]ϕ(
x[n]

T
− k)

)2

.

(5)

Second, we rewrite the variational term as a function of

cT , with the integral over R and not I in a first time. Let

us introduce the discrete sequence qϕ,r defined by qϕ,r[k] =
(−1)r

T a
(2r)
ϕ (k). Since ϕ(r)(−t) = (−1)rϕ̄(r)(t), and differen-
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tiations commute with convolutions, we have:

∫

R

∣∣f (r)
T (t)

∣∣2 dt =
1

T 2

∫

R

(
∑

k∈Z

cT [k]ϕ(r)(
t

T
− k)

)2

dt

=
1

T

∑

k,l∈Z

cT [k]cT [l]

∫

R

ϕ(r)(x − (k − l))ϕ(r)(x) dx

=
(−1)r

T

∑

k,l∈Z

cT [k]cT [l] (ϕ̄(r) ∗ ϕ(r)) (k − l)

=
(−1)r

T

∑

k,l∈Z

cT [k]cT [l] a(2r)
ϕ (k − l)

=
∑

k∈Z

cT [k] (cT ∗ qϕ,r)[k]. (6)

In the case of spline reconstruction (ϕ = βd), we can give

the general form of the filter qϕ,r. First, B-splines verify the

simple relation aβd(t) = β2d+1(t). Moreover, the derivative

of a spline is also a spline of lower degree, since βd(1)
(t) =

βd−1(t+ 1
2 )−βd−1(t− 1

2 ). We define bd as the discrete centered

B-spline of degree d: bd[k] = βd(k) for every k ∈ Z and

d ∈ N. We recall the expression of the first few discrete B-

splines in the z−domain: B0(z) = 1, B1(z) = 1, B2(z) =
1
8z + 3

4 + 1
8z−1, B3(z) = 1

6z + 2
3 + 1

6z−1. Then the filter qϕ,r

has the following form:

Qβd,r(z) =
1

T
(−z + 2 − z−1)r B2d+1−2r(z). (7)

For example, if ϕ = β1 and r = 1, then Qϕ,r(z) =
(−z + 2 − z−1)/T . If ϕ = β3 and r = 2, then

Qϕ,r(z) = (z3 − 9z + 16 − 9z−1 + z−3)/6T .

In order to express the cost Ψ(cT ) in terms of matrices

and vectors, we introduce the following quantities (·T is the

transpose operator):

c =
[
cT [−W + 1] · · · cT [K + W − 1]

]T
,

v =
[
v[0] v[1] · · · v[N − 1]

]T
,

M = [(M [n, k])n,k] with M [n, k] = ϕ(
x[n]

T
− k), (8)

for n ∈ [0, N − 1], k ∈ [−W + 1,K + W − 1],

Q = [(Q[k, l])k,l] for k, l ∈ [−W + 1,K + W − 1]. (9)

Note that performing a matrix-vector product like Mc is

equivalent to applying a time-varying filter to the signal cT .

Using these matrices, the cost Ψ(cT ) can be rewritten as:

Ψ(c) = ‖Mc − v‖2 + λcTQc, (10)

where the values of the matrix Q are given by (6):

Q[k, l] = qϕ,r[k − l] =
(−1)r

T
a(2r)

ϕ (k − l), (11)

except for the first and last rows of Q that contain particular

values because Ψ(cT ) is defined with the integral over I, and
not R as in (6). These special values are in squares of size

(2W − 1)2 in the lower-left and upper-right corners of the

matrix. To compute them for the left boundary (this would

be the same for the other boundary), we have to develop

the left-hand side of the following equality, and identify the

coefficients with its right-hand side:

∫ 2W−1

0

∣∣∣
W−1∑

k=−W+1

cT [k]ϕ(r)(
t

T
−k)

∣∣∣
2

dt =

W−1∑

k,l=−W+1

Q[k, l]cT [k]cT [l].

(12)

For instance, if ϕ = β1, r = 1 and ϕ = β3, r = 2, Q takes

the respective forms:

Q =
1

T
× Q =

1

6T
×




1 −1 0 0 0 · · ·

−1 2 −1 0 0
. . .

0 −1 2 −1 0
. . .

0 0 −1 2 −1
. . .

0 0 0 −1 2
. . .

.

.

.
. . .

. . .
. . .

. . .
. . .




,




2 −3 0 1 0 · · ·

−3 8 −6 0 1
. . .

0 −6 14 −9 0
. . .

1 0 −9 16 −9
. . .

0 1 0 −9 16
. . .

.

.

.
. . .

. . .
. . .

. . .
. . .




.

Now, let us define A
def
= MTM + λQ and y

def
= MTv.

Minimizing the cost Ψ(c) amounts to solving the linear system

Ac = y. (13)

When considering the rows of this system, we obtain a set

of equations that can be found directly from (5) and (6) by

setting the partial derivatives ∂Ψ/∂cT [k] to zero, for each k ∈
[−W + 1,K + W − 1]:

∑

l∈Z

[
N−1∑

n=0

ϕ(
x[n]

T
− k)ϕ(

x[n]

T
− l) + λQ[k, l]

]
cT [l]

=

N−1∑

n=0

ϕ(
x[n]

T
− k)v[n]. (14)

We have to check that the solution to the linear system (13)

is well defined. In fact, MTM and Q are positive semi-

definite matrices, and A is symmetric and positive definite, as

proved in the Appendix. As a consequence, the linear system

has a unique solution. Moreover, thanks to the hypothesis

of compact support of ϕ, A is band-diagonal with only

4W −1 diagonals containing non-zero entries; more precisely,

A[k, l] = 0 if |k−l| ≥ 2W . This will be the key for efficiently

solving this linear system, as detailed in Section IV.

C. Reconstruction with mirror boundary conditions

There is a second possibility to deal with reconstruction on

a finite interval: considering mirror boundary conditions that

allow to extend a finite signal to an infinite one by symmetry

and periodicity [18]. The main advantage is that there is no

overhead of coefficients as with the previous method; that

is, we only have to compute cT [k] for k ∈ [0,K]: the

decomposition is said to be non-expansive. In this subsection,

we assume that ϕ is symmetric (ϕ(t) = ϕ(−t)).
The proposed method consists in solving the following

problem:

fT = argmin
g∈VT (ϕ)∩S

(
N−1∑

n=0

∣∣g(x[n]) − v[n]
∣∣2 + λ

∫

I

|g(r)(t)|2 dt

)
.

(15)
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Fig. 1. A finite data set of N = 3 samples extended to an infinite one using
mirror boundary conditions

where S is the set of functions that are symmetric around t = 0
and t = TK. With these boundary conditions, the coefficients

cT of fT verify the following symmetry and periodicity

conditions: cT [−k] = cT [k] and cT [k + 2pK] = cT [k] for

every k, p ∈ Z. In other words, fT is completely determined

by the coefficients cT [k], k ∈ [0,K]. An interpretation of (15)

is to consider that we want to fit a function on a infinite data

set that is symmetric and periodic, as illustrated in Fig. 1.

The coefficients (cT [k])k∈[0,K] are solution of a linear

system Ãc̃ = ỹ to be determined (the tildes are for distin-

guishing the matrices from the ones previously defined). Let

us study the structure of this system on the left boundary

only (the treatment on the right boundary is similar). As

in the previous subsection, our problem is equivalent to

minimizing the criterion Ψ(c) in (10). The vector c has the

form c =
[
cT [W − 1] · · · cT [1] cT [0] cT [1] · · ·

]T
because of

the boundary conditions cT [−k] = cT [k]. Each row of Mc

can be expanded as · · · + M [k,−1]cT [−1] + M [k, 0]cT [0] +
M [k, 1]cT [1] + · · · , that can be rewritten M [k, 0]cT [0] +

(M [k,−1]+M [k, 1])cT [1]+· · · . Therefore, M̃c̃ = Mc, where

M̃ is derived from M by removing its first W − 1 columns

and adding their values to the ones of the mirror columns with

respect to the W th column (with the similar manipulation at

the right boundary). This is equivalent to “folding” the matrix

M, as in the following example with W = 2, where the first

column is added to the third one and removed:

M =




a b c d · · ·
e f g h · · ·
.
.
.

.

.

.
.
.
.

.

.

.
. . .


 −→ M̃ =




b c + a d . . .
f g + e h . . .
.
.
.

.

.

.
.
.
.

. . .


. (16)

This folding operation has to be performed on the first and

last rows and columns of the matrix Q and A in order to get

Q̃ and Ã, respectively. Similarly, the first and last values of

y have to be folded. For instance, if ϕ = β3 and r = 2 (thus

W = 2), this yields:

Q =
1

6T
× Q̃ =

1

6T
×




2 −3 0 1 0 · · ·

−3 8 −6 0 1
. . .

0 −6 14 −9 0
. . .

1 0 −9 16 −9
. . .

0 1 0 −9 16
. . .

.

.

.
. . .

. . .
. . .

. . .
. . .




−→




8 −9 0 1
. . .

−9 16 −8 0
. . .

0 −8 16 −9
. . .

1 0 −9 16
. . .

. . .
. . .

. . .
. . .

. . .




.

(17)

D. Related works

Most of the works in the literature address the non-uniform

reconstruction problem with restrictions on the samples loca-

tions, usually a density constraint or a maximum gap x[n+1]−
x[n], so as to achieve perfect reconstruction of an unknown

signal s(t) from its non-uniform samples [2], [4], [19]. How-

ever, in many practical applications, this is far too restrictive. If

these conditions are not met, perfect reconstruction can not be

guaranteed, hence the problem becomes ill-posed. One way

to handle this issue is to adopt a variational approach, as

proposed in this work. It is classical, in approximation theory

and statistics, to reconstruct a function f(t) that minimizes the

criterion of (3), but over the whole Sobolev space of order r
instead of over VT (ϕ) [20]. The solution to this problem can

be expressed as f(t) =
∑N−1

n=0 c[n] |t−x[n]|2r−1+p(t) [14]. It
is made of a polynomial p(t) of degree less than r and a linear

combination of radial basis functions (RBF) |t|2r−1 positioned

at the sampling locations x[n]. This implies that the solution

f(t) is a non-uniform polynomial spline of degree 2r − 1
with knots at the x[n]. These spline spaces have other basis

functions, the non-uniform B-splines, which are compactly

supported and, therefore, much better conditioned than the

radial basis functions [14]. Non-uniform B-splines revert to

classical B-splines when the samples are uniform.

In comparison with the RBF framework, our approach

enforces the solution to lie in VT (ϕ), and thus to be resolution-

dependent. Our solution can be expressed as a linear combi-

nation of translates of a single generator ϕ, while in the RBF

framework, a non-uniform B-spline has to be determined for

each sample. Moreover, the choice of ϕ is free in our approach,

while in the RBF framework, it is induced by the differential

regularization operator, and thus constrained to be a spline of

odd degree.

The idea of minimizing a regularized least-squares criterion

in a LSI space has also been proposed recently in 2-D for

image reconstruction [21], [22], but the associated algorithms,

although relatively fast in comparison with previous works,

are still iterative and not adapted to real-time implementations.

In fact, our algorithm is limited to the 1-D case. This is the

price to pay for having the direct and very efficient imple-

mentation based on time-varying recursive filtering, detailed

in Section IV.

Another related approach has been proposed in [23]; it

also provides a resolution-dependent reconstruction fT (t), in
the noise-free case. To this end, the non-uniform spline f(t)
interpolating the data is computed, and projected orthogonally

onto VT (ϕ) in the L2 sense, so as to obtain fT (t). This

method is more complicated than ours, since the non-uniform

interpolation has to be performed first, and the projection step

is relatively involved. Moreover, this formulation gives more

credit, in the definition of fT (t), to the estimate f(t) than to

the data (v[n]). It is more reliable to directly formulate the

solution fT (t) from the available data (v[n]), as proposed in

this work.
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IV. A FAST RECONSTRUCTION ALGORITHM

A. Strategy

We have seen that our problem boils down to solving a

linear system. It is possible to perform this operation using

standard linear algebra libraries (such as LAPACK), that

implement routines to factorize matrices in various ways and to

solve linear systems. Such libraries are highly optimized, but

they are generic. The practitioner interested by our approach

may want to have a dedicated algorithm, that exploits at

best the particular structure of the problem. So, we detail in

this section the best strategy for solving the linear system

Ac = y. This system is symmetric, positive definite, and

band-diagonal. Thus, the best way to solve it relies on the

Cholesky factorization of A and consists in the following three

steps:

1) The Cholesky decomposition of A is performed; that is,

we compute the unique lower triangular matrix L such

that A = LLT [24], [25]. L is also band-diagonal, with

2W diagonals containing non-zero entries: L[k, l] 6= 0
only if −2W < k− l ≤ 0. The Cholesky decomposition

can be performed row by row by a fast version of Crout’s

algorithm [24] that takes advantage of the band-diagonal

structure of A.

2) The lower triangular system L
◦
c = y is solved by

forward substitution: for k from kmin to kmax,

◦
cT [k] =

1

L[k, k]

(
y[k] −

−1∑

i=−2W+1

L[k, k + i]
◦
cT [k + i]

)
,

(18)

3) The upper triangular system LTc =
◦
c is finally solved

by backward substitution: for k from kmax down to kmin,

cT [k] =
1

L[k, k]

(
◦
cT [k] −

2W−1∑

i=1

L[k + i, k]cT [k + i]
)
,

(19)

B. Practical algorithm

The practical algorithm that computes the coefficients

cT [k], k ∈ [−W + 1,K + W − 1], consists in two passes:

the first pass implements the Cholesky decomposition and

solves the first system (18), while the second pass solves the

second linear system (19). We define the auxiliary variables

a[i] = A[k, k+i] and u[k, i] = L[k+i, k]. Then our algorithm

can be written in pseudo-code as:

• First pass:

for k from −W + 1 to K + W − 1 {
imin := max(−2W + 1,−W + 1 − k);
imax := min(2W − 1,K + W − 1 − k);

for i from 0 to imax,

a[i] :=

N−1∑

n=0

ϕ(
x[n]

T
− k)ϕ(

x[n]

T
− k − i)+

λQ[k, k + i];

u[k, 0] :=
(
a[0] −

−1∑

i=imin

u[k + i,−i]2
)1/2

;

◦
cT [k] :=

1

u[k, 0]

(N−1∑

n=0

ϕ(
x[n]

T
− k)v[n]−

−1∑

i=imin

u[k + i,−i]
◦
cT [k + i]

)
;

for i from 1 to imax,

u[k, i] :=
1

u[k, 0]

(
a[i]−

−1∑

j=max(i−2W+1,−W+1−k)

u[k + j,−j]u[k + j, i − j]
)
;

}
• Second pass:

for k from K + W − 1 down to −W + 1 {
imax := min(2W − 1,K + W − 1 − k);

cT [k] :=
1

u[k, 0]

(
◦
cT [k] −

imax∑

i=1

u[k, i]cT [k + i]
)
;

}

In fact, the sums indexed by n have to be evaluated only for

the few samples located in the interval (T (k−W ), T (k+W ))
that have a non-zero contribution. If the samples are ordered

such that x[n+1] ≥ x[n] for every n, the data set (x[n], v[n])
can be accessed progressively. Hence the first pass can be

computed on-the-fly, as the data are made available. For

example, if x[n] is the time of the measurement v[n], the first

pass can be performed in real-time with a delay of at most

W time units. Moreover, during the second backward pass,

the coefficients cT [k] can be computed in place, replacing

the intermediate values
◦
cT [k]. Note that this algorithm can

be interpreted as a two-pass time-varying recursive filtering

on the sequence y, with a filter updated on the fly by the

Cholesky decomposition.

If the data locations are not sorted, or if N >> K, the

computation time will be consumed mostly for the evaluation

of the sums indexed by n. In this case, it is much more

appropriate to use the following variant of the algorithm that

consists in three passes. During the first pass, the upper part of

the matrix A is stored temporarily in the coefficients u[k, i].

The y[k] are also stored in the
◦
cT [k]. The true values of

these coefficients are computed in place in the second pass,

as previously.

• First pass:

for k from −W + 1 to K + W − 1 {
◦
cT [k] = 0;
for i from 0 to min(2W − 1,K + W − 1 − k),

u[k, i] := λQ[k, k + i];
}
for n from 0 to N − 1,

for k from ⌊
x[n]

T
+ 1 − W ⌋ to ⌈

x[n]

T
− 1 + W ⌉ {

for i from 0 to min(2W − 1,K + W − 1 − k),

u[k, i] := u[k, i]+ϕ(
x[n]

T
−k)ϕ(

x[n]

T
−k−i);

◦
cT [k] :=

◦
cT [k] + ϕ(

x[n]

T
− k)v[n];

}
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Fig. 2. Computation time for the calculation of the coefficients cT [k], k ∈ [0, K], in log-log scale, for a reconstruction problem from N samples randomly
located in the interval [0, 100], as in Fig. 6 (T = 100/K, λ = 0.01). (a): K is fixed to 100 and N is varying. (b): N is fixed to 10000 and K is varying.
The dotted line is for linear spline reconstruction (ϕ = β1, r = 1), while the solid line is for cubic spline reconstruction (ϕ = β2, r = 2).

• Second pass:

for k from −W + 1 to K + W − 1 {
imin := max(−2W + 1,−W + 1 − k);
imax := min(2W − 1,K + W − 1 − k);

u[k, 0] :=
(
u[k, 0] −

−1∑

i=imin

u[k + i,−i]2
)1/2

;

◦
cT [k] :=

1

u[k, 0]

(
◦
cT [k]−

−1∑

i=imin

u[k + i,−i]
◦
cT [k+i]

)
;

for i from 1 to imax,

u[k, i] :=
1

u[k, 0]

(
u[k, i]−

−1∑

j=max(i−2W+1,−W+1−k)

u[k + j,−j]u[k + j, i − j]
)
;

}
• Third pass:

for k from K + W − 1 down to −W + 1 {
imax := min(2W − 1,K + W − 1 − k);

cT [k] :=
1

u[k, 0]

(
◦
cT [k] −

imax∑

i=1

u[k, i]cT [k + i]
)
;

}

These algorithms are for the strategy without boundary con-

ditions, proposed in Section IV-B. The implementation for the

method with mirror boundary conditions is very similar. In that

case, the “folding” operation on the matrices is implemented

by assigning each contribution ϕ(x[n]
T − k)ϕ(x[n]

T − k − i) to

its folded place directly, for example to u[−k,−i] instead of

u[k, i] if k < 0.

C. Computation time and storage requirements

The computation time of the proposed algorithm can be

modeled as O(W 2N), O(W 2K), O(WN) for the calculation
of the elements in A, L and y respectively, and O(KW )
for the forward and backward substitutions. So, the total time

reduces to O(W 2(N +K)); it is linear in N and K, which is

the best one could have hoped for. If the reconstruction is to

be performed on an interval I of fixed size S = KT , the total

time may be rewritten O(W 2(N + S/T )), so as to let appear

the linear dependence in 1/T . Experimental computation times

are reported in Fig. 2 for an implementation in C language

of the algorithm proposed in Section IV-B (second variant),

running on a 1.6 GHz laptop PC. The computation time is

asymptotically linear in K and N as predicted.

Apart of the memory required to store the coefficients cT [k],
auxiliary memory of size 2W (K+2W −1) units (or 2W (K+
1) if using mirror boundary conditions) is needed to store the

values u[k, i], which are generated during the forward pass of

our algorithm and used in the backward pass.

Instead of the Cholesky decomposition, it is possible to use

a LU-factorization that does not exploit the symmetry of the

matrix. Although this decomposition requires two times more

computation, the square-root operator is not needed, and one

diagonal is saved in the storage of L; that is, (2W − 1)(K +
2W −1) instead of 2W (K +2W −1) memory units are used.

Another variant is the LDLT factorization, that requires one

more pass on the data, but also avoids the square-root operator.

Note that our algorithm uses a Cholesky decomposition

that is “extremely stable numerically” [24]. However, even

if our linear system is positive definite, its condition number

clearly depends on the sampling locations. In fact, our method

amounts to performing the deconvolution of a time-varying

filter. In large gaps without samples, this filter reduces to qϕ,r,

which has roots on the complex unit circle. An inverse filter

with poles on the unit circle is said to be marginally stable,

because the impulse response corresponding to these poles

does not decay, but does not grow either. So, if a round-off

error occurs on a coefficient cT [k] during the computation, it

can propagate to its neighbors inside a region without samples,

but its amplitude, limited to the machine accuracy, will not

grow. Therefore, this is not a problematic issue.

V. CHOICE OF THE PARAMETERS

In this section, we discuss the influence of the parameters

ϕ, r, T , λ.
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Fig. 3. Uniform splines with knots at the integers (T = 1, λ = 0.01) fitted on 7 point samples in the interval [0, 10], with different polynomial degrees and
values of the regularization parameter r. (a): ϕ = β1, r = 1. (b): ϕ = β3, r = 1. (c), (d): ϕ = β3, r = 2. Mirror boundary conditions are used for (a), (b),
(c), not for (d).

Since the reconstruction is performed in a LSI space, this

space has to be chosen before hand. The “best” space depends

on the characteristics of the signal to be modeled. If prior

knowledge on the process that gave the samples is available,

it can be used to choose a particular generator ϕ [26]. For

instance, if the reconstructed function is required to be con-

tinuous and continuously differentiable, these properties will

be enforced on ϕ. In concrete problems, spline spaces have

shown to be particularly adequate for representing signals [15].

Their optimal approximation properties have been demon-

strated theoretically [17], [27] and confirmed by practical

experiments [28]–[30]. Part of their interest lies in the fact

that a B-spline has the maximal possible approximation order,

given the size of its support. The ability to reproduce high

order polynomials is of primary concern for approximating

arbitrary signals. Besides, for a given parameter r, choosing
ϕ = β2r−1 ensures that our solution fT coincides with

the RBF solution if the samples are uniform, at locations

x[n] = Tn. This means that spline functions are the natural

choice when minimizing a criterion based on a derivative.

The parameter r controls the kind of smoothness that is

enforced on the solution. Three configurations are illustrated

with a simple synthetic example in Fig. 3. In (a), the choice

ϕ = β1, r = 1 results in a piecewise linear reconstruction,

with knots at the Tk, k ∈ Z, which means that fT (t) is linear

on each interval [Tk, T (k + 1)]. Note that with ϕ = β1, there

is no other possible choice than r = 1. Moreover, the two

strategies for handling the reconstruction on a finite interval

(no boundary conditions as in Section IV-B or mirror boundary

conditions as in Section III-C) are equivalent in this case. In

(b), (c), (d), ϕ = β3 yields a smoother reconstruction, that

is twice continuously differentiable. If r = 1, the variation∫
|∇fT |

2 is minimized, and the solution tends to behave like

a straight line in large gaps, as in (b). If r = 2, the second

derivative modelizes a curvature energy, and in large gaps,

the solution fT behaves like a polynomial of degree three,

as in (c); in this case, fT can go beyond the dynamics of

the initial samples, which may be a disadvantage. Note that,

in large gaps, we do not have information about the signal

to reconstruct. So, fitting a polynomial using the data at the

boundaries of the gap is, in essence, the best we can do.

The choice of the boundary conditions is illustrated in

Fig. 3 (c) and (d): mirror boundary conditions yield a

reconstruction whose first derivative is constrained to be zero

at the boundaries of the reconstruction interval. In this case,

fT is parameterized by 11 coefficients cT [k], k ∈ [0, 10]. In
(d), no boundary conditions are enforced, but the solution is

now parameterized by 13 coefficients cT [k], k ∈ [−1, 11].

The parameter T controls the coarseness of the represen-
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Fig. 4. Uniform linear splines with different resolutions (ϕ = β1, r = 1, λ = 0.01) fitted on 7 point samples in the interval [0, 10]. (a): T = 0.1. (b):
T = 1. (c): T = 2. (d): T = 5. The splines have their knots at the Tk, k ∈ [0, 10/T ].

tation. When reconstructing a signal over an interval [0, S],
we obtain a parametric solution with K + 1 = S/T + 1
degrees of freedom. If the sparseness of the representation

modelling the data is an important criterion, for example in

coding applications or if the computation time is limited,

then T will be choosen relatively large. Conversely, when

T → 0, the solution fT becomes closer and closer to the

non-uniform solution in the RBF framework, since the space

VT (ϕ) becomes dense in the whole Sobolev space of order r.
The influence of T is illustrated in Fig. 4, with ϕ = β1, r = 1.
The function fT is parameterized by 10/T + 1 coefficients

cT [k], k ∈ [0, 10/T ]. When T → 0, fT approaches the non-

uniform smoothing spline of degree 1, which has its knots at

the non-uniform sampling locations.

In practical applications, the parameter T will be matched

to the cut-off frequency of the reconstruction lattice, as

discussed in the next section. In fact, for each function

fT ∈ VT (ϕ), there is a one-to-one correspondence between

its coefficients cT [k] and its point values wT [k] = fT (Tk)
at locations Tk. That is why fT ∈ VT (ϕ) is said to have

resolution 1/T .

The regularization factor λ is a key parameter: an excessive

value will oversmooth the solution, while a small value will

provide a solution that is close to the data, but may have

large disturbing variations. Let us consider the behavior of

the reconstructed function fT in the limit case when λ → 0.
The solution c = (MTM + λQ)−1MTs has a well defined

limit. This limit corresponds to setting exactly λ = 0 in the

equations only if the matrix MTM is invertible. This is the

case, for example, if 0 < x[n+1]−x[n] < T for every n. In the
general case, the limit solution has the following interpretation:

when λ → 0, the regularization term in (3) becomes neglictible

in comparison with the fit-to-data term. So the limit function

fT minimizes the criterion
∑

n

∣∣g(x[n]) − v[n]
∣∣2, and if the

solution g(t) is not unique, the remaining degrees of freedom

are used to minimize
∫
I
|g(r)(t)|2. Therefore, the behavior of

the reconstructed function is the following: if λ is large, fT is

smooth, whatever the locations x[n] of the data, as in Fig. 5 (a).
If λ is very small, there are two cases: if locally the samples

set is sparse (i.e. x[n + 1] − x[n] > T for a few successive

values of n), then fT almost passes through the samples, and

is smooth inbetween (Fig. 5 (b), (c), (d), for t > 3). Thus
large gaps are “in-painted” in a smooth way. Conversely, in a

region where x[n+1]−x[n] < T for a few successive values

of n, fT approaches the data at best in the least-squares sense

(Fig. 5 (b), (c), (d), for t < 2). Thus, in the noise-free case, it

is tempting to choose λ very small. However, this may result

in large unexpected oscillations, going far beyond the initial

range of the signal, as shown in Fig. 5 (c), (d): the exact

interpolation of the samples is a too strong constraint.

In practice, the measurements are often noisy or lacking
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Fig. 5. Uniform cubic splines with knots at the integers (ϕ = β3, r = 2, T = 1, mirror boundary conditions) fitted on 7 point samples in the interval
[0, 10], for different values of the smoothing parameter λ. (a): λ = 1.0. (b): λ = 0.001. (c): λ = 0.0001. (d): limit case when λ → 0.
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precision and it is not suitable to reconstruct a function

that interpolates the data exactly. It is therefore appropriate

to achieve a tradeoff between the closeness of fit and the

smoothness of the solution through the parameter λ. The best

value for the problem at hand has to be determined on a case

by case basis. There is no rule giving an optimal value, and

empirical adjustment is the most reliable technique. It is also

possible to learn λ from the data by cross-validation [31], [32].

If we consider a stochastic framework where the data come

from a random stationary process with additive random noise,

both with known spectral characteristics, it is suggested in [33]

to choose λ inversely proportionnal to the signal-to-noise ratio.

This may serve as a heuristic in the deterministic case. This is

confirmed in the example shown in Fig. 6, where λ = σ yields
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the minimum root-mean-square error, when approximating an

unknown signal from its samples contaminated by additive

noise with standard deviation σ.

VI. APPLICATIONS

There are plenty of problems where it is useful to fit a

parametric curve on discrete data. Numerous methods have

been proposed, generally issued from statistical estimation

theory [34]. Our approach allows to reconstruct a function

fT that is resolution-dependent, a feature that offers many

advantages in practical applications. For example, if a non-

uniform signal is to be rendered on a display device with

point-spread-function Γ(t), it is straightforward to apply the

proposed approach: we choose ϕ = Γ and match T to

the resolution of the device, so that VT (ϕ) is the set of

all continuously-defined signals that can be rendered by the

device. Therefore, by minimizing the criterion in (3), we

ensure that our solution is optimal, given the available data.

Another potential field of applications is image analysis

using multiscale “pyramidal” representations. The proposed

work can be used for this task, if not only a single function

but a whole collection of functions {fT }, with different

values of T , is computed. For instance, the performances of

procedures such as edge detection or image registration can

be improved by processing from coarser to finer levels [35].

To this purpose, our approach is more general than classical

dyadic representations, that only apply to uniform signals and

discrete dyadic resolutions (T = 2n, n ∈ N).
Our approach is also particularly adapted to resampling

problems involving rate-conversions, such as image resizing.

Let us present some generic problems that could benefit from

our approach.

A. Non-uniform to uniform resampling

Given the non-uniform samples v[n] at locations x[n],
suppose we want to obtain resampled values wT [k] located

on the uniform reconstruction lattice (Tk)k∈Z. We can simply

compute the function fT (t) and resample it on the uniform

lattice: this yields wT [k] = fT (Tk) for every k. In fact,

once the cT [k] have been computed, the signal wT is directly

obtained by digital filtering [15]: wT = cT ∗ b−1, where

b[k] = ϕ(k) for every k ∈ Z.

With this method, the representation capabilities of the

target lattice, where the resampled signal lives, are exploited

optimally: fT (t) retains at best the information contained

in the non-uniform samples and representable on this lat-

tice. Conversely, the information that is not representable is

canceled out, and no irrelevant structure is introduced. As

a consequence, the aliasing issue is automatically handled

because, qualitatively, the frequencies higher than the Nyquist

rate of the target lattice are not representable in VT (ϕ). That
is why T is chosen so that fT has a resolution matched to the

cut-off frequency of the reconstruction lattice. Note that we

assume that ϕ is lowpass, and that λ is correctly chosen so as

not to distort the frequency content of the data.

This approach is also useful for resampling a uniform

(x[n] = n) signal v. If v is to be resampled at coarser

resolution or magnified with a non-integer factor, interpolation

followed by resampling can introduce severe distortions [36].

Instead, we look for a function having the resolution of the

target resampled signal, and not of the source signal. This

formulation has been proposed previously in [37], in the more

restrictive case where T is an integer.

Interestingly, our approach amounts to formulate resampling

as an inverse problem: we seek the uniform signal wT that,

when interpolated by the function fT (t) and resampled back

on the source lattice (x[n]), is the closest to the initial signal

(v[n]). This is the opposite of the forward approach that fits a

function on the source signal, typically by interpolation, and

then resample it, independently of the target lattice.

B. Warping

Another application is signal or image warping. Suppose

we have the uniform samples v[n] = s(n) of an unknown

function s(t) at our disposal, and we want to compute the

uniform samples (s(W−1(n)))n∈Z of the warped function

s(W−1(t)) for some reversible transform W(t). The classical

method used for warping, called backward mapping, consists

in interpolating the uniform samples v[n] with a function

f(t), that is then warped and resampled, providing the warped

signal (f(W−1(n))n∈Z. Artifacts may appear with this method

because the spectrum of the warped function f(W−1t) extends
potentially beyond the Nyquist frequency of the target lattice,

resulting in aliasing when this function is sampled. In fact,

the samples v[n] = s(W−1(W(n))) of the warped function at

the non-uniform locations x[n] = W(n) are known, so we are

back to a non-uniform to uniform resampling problem, solved

as previously. For example, arbitrary time-delay is a particular

case of warping, with W(t) = t + τ , for a delay τ ∈ R.

Our algorithm can also be used for image warping, as

long as the 2-D warping W(x, y) is separable, by applying

the resampling algorithm on each row and then on each

column of the image. It is more rigorous to use a truly 2-D

approach with a 2-D variational criterion, as proposed in [21],

[22], but one has to give up our direct and fast algorithm

in that case. As an example, the image Barbara is warped

with our approach in Fig. 7 with W(x/511, y/511)/511 =
(2.2x − 3.6x2 + 2.4x3, 0.5y2 + 0.5y), for (x, y) ∈ [0, 511]2.
As can be seen in Fig. 7 (b), (e), aliasing appears on the

trousers with backward mapping, because the stripes in the

initial image are not representable any more in the warped

image: their frequency has become higher than the Nyquist

frequency of the target lattice. Our method is free from this

drawback, and renders a flat zone without aliasing.

VII. CONCLUSION

In this article, reconstruction from non-uniform samples

is stated as a variational problem in a shift-invariant space.

This formulation has several advantages. It allows to bypass

the usual hypotheses on the maximal gap between samples,

that are often not pratically met. Thus the problem has a

solution whatever the sample locations that may be com-

pletely arbitrary. Moreover, the reconstructed function has a

given resolution that can be tuned, for example to match the
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Fig. 7. Image Barbara (a) warped using: backward mapping (b), and proposed approach with λ = 10−4 (c) (see text). (d), (e), (f): zoom-ins on (a), (b),
(c) respectively

representation capabilities of a target lattice for resampling

purpose, or the desired rate for coding. Taking into account

the particular structure of the problem under consideration, we

have been able to propose an efficient algorithm that computes

the exact solution of the optimization problem, by solving a

band-diagonal linear system without having to explicit any

matrix.

APPENDIX I

PROOF THAT A IS POSITIVE DEFINITE

First, MTM is positive semi-definite, i.e. uTMTMu ≥ 0
for every vector u, since uTMTMu = ‖Mu‖2

ℓ2
≥ 0. Q

is also positive semi-definite: let us choose a vector u and

define g(t) =
∑K+W−1

k=−W+1 u[k]ϕ( t
T − k). Then uTQu =∫

I
|g(r)(t)|2dt by construction of Q, and this integral is

positive.

Now, let us show that A is positive definite, i.e. uTAu =
0 ⇒ u = 0. We suppose that uTAu = 0. Then uTMTMu =
0 and uTQu = 0. This yields g(x[n]) = 0 for every n ∈
[0, N − 1] and

∫
I
|g(r)(t)|2dt = 0. Therefore, g(r)(t) = 0

within I, and g(t) is a polynomial of degree less than r in

this interval. This polynomial has N roots at the x[n] (with at

least r distinct roots by hypothesis on the samples locations).

Then g = 0 and u[k] = 0 for every k. �
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