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In condensed matter physics tensors are used to model physical properties of materials. Some well
known examples are elasticity which is modeled by a 4th-order tensor or piezoelectricity by a 3rd-
order tensor. Some tensors of higher order might occur in theory of generalized continuum, for
example in Mindlin’s strain-gradient elasticity [2] in which the physical state of the material is
described in each point using three tensors from 4th-order to 6th-order one. Damage could also be
modeled by an 8th-order tensor. When ones studying such complex models the first step is to focus
attention in its bi-dimensional version. Taking a complex problem at a lower level help to better
understand the physics of the behavior. But we have to wonder in which measure the phenomenon
we study is independent of the dimension of the space we are working in. In this paper we will focus
our attention on the issue of symmetry classes of linear constitutive behavior, and show that in a
two dimension anomalies could occur.

1 Physical and material symmetries

In the following Ed will be the d-dimensional euclidean space, Ed will represent the space we are
working in. We will consider the cases d = 2 and d = 3.

Let G be a group of operations, a material M is said to be G-invariant if the action of the
elements of G transform M into itself. We shall note GM this set of operation, namely the material
symmetry group, and defined

GM = {Q ∈ O(d), Q ?M = M} (1)

where ? represents the action of Q upon M and O(d) is the orthogonal group in d dimension.

Consider now a physical property P defined on a material. The physical group of symmetry
is defined as the set of operations that leaves the behavior invariant. We will note GP this group
defined as

GP = {Q ∈ O(d), Q ? P = P} (2)

We will suppose now that the physical property could be described by an n-order tensor, we will
note T(n) this tensor and T(n) the related vector space. The action of O(d) on T(n) is defined by
the mean of the Rayleigh product:
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? : O(d) × T(n) → T(n) : (Q,T(n)) 7→ Q ? T(n) := Qi1j1 . . . Qinjn
T

(n)
j1...jn

(3)

So the group of symmetry of a tensor T(n) is the set of elements in O(d):

GT (n) = {Q ∈ O(d)|Qi1j1 . . . Qinjn
T

(n)
j1...jn

= T
(n)
i1...in

} (4)

According to the different symmetry properties of its elements the space T(n) is divided in equiva-
lence classes [3].

The material symmetry group and the physical one are related by the mean of Neumann’s
principle [4]. In this way we get the inclusion:

GM ⊆ GP (5)

This relation means that every operation that leaves the material invariant let the physical proper-
ties invariant. Nevertheless, as shown for tensorial properties by Hermann’s theorems [6], physical
properties could be more symmetrical than the material.

In E2 plane and spatial material symmetry group coincide meanwhile there are distinct in E3.
In case of plane invariance GM should be conjugate to a subgroup of O(2) [4]. The collection of
those subgroups is [3]

Σ := {I, Zp, Dp,SO(2),O(2)} (6)

Where I is the identity group, Zp is the cyclic group of order p, it is the group of rotation of a chiral
figure that possesses an p-fold axe of invariance. Dp is the dihedral group of order 2p, it is the group
of operations that leave a regular p-gone invariant. Dp contains Zp and mirror symmetry. SO(2) is
the continuous group of rotations and O(2) is the continuous group of orthogonal transformations
in two dimension. In the sequel we will often refer to rotational invariance, according to formers
definitions it means the collection of SO2-subgroups.

To study the symmetry classes of tensors a decomposition in elementary elements is needed.
Such a decomposition is referred in literature as the harmonic decomposition [3, 1] or the irreducible
decomposition [8, 7].

2 Harmonic Decomposition

2.1 Generality

We call harmonic decomposition the orthogonal irreducible decomposition of a tensor. In Ed this
decomposition is O(d)-invariant. This decomposition is well known in group representation theory
and allow us to decompose a tensor of any finite order as a sum of irreducible ones [7, 8]. And so

T(n) =
X
k,τ

D(n)k,τ (7)

Tensors D(n)k,τ are components of the irreducible decomposition, k denote the order of the harmonic
tensor embedded in D(n) and τ separate terms of same order. This decomposition establish an
isomorphism between T(n) and a direct sum of harmonic tensor vector spaces Hk [3]. We shall note
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T(n) =
M
k,τ

Hk,τ (8)

but as explained in [1] this decomposition is not unique. But the following decomposition, which
groups terms of same order, is unique and is called the O(d)-isotypic decomposition.

T(n) =
nM

k=0

αkHk (9)

where αk is the multiplicity of Hk in the decomposition. Harmonic tensors are totally symmetric
and traceless, and the dimension of the associated vector spaces are:

dim Hk =

¨
2k + 1, ∀ k ≥ 0 in 3D

2, ∀ k > 0, and 1 if k = 0 in 2D
(10)

For the sake of simplicity when there is no risk of misunderstanding we will note Kαk spaces αkHk.
That means the order K of the subspace along with its multiplicity αk. Moreover, as we are dealing
with 2D and 3D tensor spaces, we will distinguish in the notation the two kind of vector space with
an ∗ exponent for the bi-dimensional one. We shall note, for example, the bi-dimensional harmonic
decomposition of T∗(n)

T∗(n) =
nM

k=0

α∗kH∗k (11)

The families {αk} and {α∗k} are function of the order of the tensor space and of its index symmetries.
There exist several methods to compute those different families, more details can be found in [8, 7, 5].
A general result on the structure of 2D and 3D harmonic decomposition can be find in [7]. For a
generic tensor, a tensor space with no index symmetry, the two following theorems hold true:

Theorem 1. Let T∗(n) be a 2D generic n-order tensor vector space. If n = 2q its harmonic decom-
position only contains subspaces of even order, and if n = 2q + 1 its harmonic decomposition only
contains subspaces of odd order.

Theorem 2. Let T(n) be a 3D generic n-order tensor. Its harmonic decomposition contains sub-
spaces of k-order for any k with 0 ≤ k ≤ n

Taking into account index symmetries can make odd or even components to vanish in the 3D cases,
for example a full symmetrical tensor of even order would just contain harmonic tensor of even
order and reciprocally for full symmetrical odd tensor [8].

A classical example is the 3D space of elasticity tensors [3] ; this space is isomorphic to 02⊕22⊕4
[3] which is a 21 dimensional vector space. In 2D the same space will be isomorphic to 0∗2⊕2∗⊕4∗

[7]. This space is a 6 dimensional vector space. The information provided by those two decomposi-
tions does not allow one to make a direct comparison of theirs structures. In order to do that we
should express the O(2)-isotypic decomposition of T(n).

We will now focus on the link between 3D harmonic decomposition and 2D one. Our aim is, for
rotational action, to establish an isomorphism between 3D vector spaces and a direct sum of 2D
harmonic tensor vector spaces.
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2.2 Cartan decomposition

As shown and demonstrated in [1] under the action of O(2) the space Hk admits the following
decomposition:

Hk =
kM

j=0

Kk
j (12)

where

dim Kk
j =

¨
1 if j = 0
2 if j 6= 0

(13)

This decomposition is referred as the Cartan’s decomposition of harmonic tensor space. The relation
(12) implies a decomposition that contains subspaces for each j between 0 and k.
For (x, y, z) ∈ R3 let w = x+ iy be the plane complex vector with i =

√
−1. As explained in [1] the

space Kk
j is spanned by

kj
l = {kj

1, kj
2} = {zk−j<(wj), zk−j=(wj)} (14)

where <,= are functions returning the real and imaginary part of a complex number. In the same
time the space H∗j is spanned [7] by

hj
l = {hj

1, hj
2} = {<(wj), =(wj)} (15)

So if z 6= 0 for each space Kk
j there exists a bijective function φk

j that turns Kk
j basis vectors into

H∗j ones. φk
j is defined as

φk
j (kj

l ) =
kj

l

zk−j
= hj

l (16)

So by the family {φk
j }0≤j≤k the space Hk is isomorphic to the following space:

Hk =
kM

j=0

H∗j (17)

So we may rewrite the relation (9)

T(n) =
nM

k=0

αk(
kM

j=0

H∗j) =
nM

k=0

nX
j=k

αjH∗k =
nM

k=0

βkH∗k (18)

This decomposition is the O(2)-isotypic decomposition of a three dimensional tensor. We obtain
the following lemma for the planar decomposition of an 3D operator:

Lemma 1. Let T(n) be a 3D n-order tensor vector space with any kind of indicial symmetry. Its
planar harmonic decomposition contains subspaces of k-order for any k within 0 ≤ k ≤ n

Proof. The planar decomposition is written

T(n) =
nM

k=0

βkH∗k (19)
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So to demonstrate this lemma we shall prove the following property

∀k ∈ [0, n], βk > 0 (20)

The proof is straight forward. Let’s consider the harmonic decomposition of a tensor space T(n).
Regardless of the index symmetry of that space we got a term of order n in this decomposition. By
property of harmonic decomposition the multiplicity of that harmonic space must be of 1. By the
mean of Cartan’s decomposition this space will be decomposed into n + 1 Cartan’s subspaces. We
got

∀k ∈ [0, n], βk =
nX

i=k

αi = 1 +
n−1X
i=k

αi (21)

and αi ∈ N we can conclude that
∀k ∈ [0, n], βk ≥ 1 (22)

which concludes the proof. ut

So theorems 1 and lemma 1 allow us to formulate the following theorem:

Theorem 3. Let T(n) be the any nth-order tensor vector space. In E3 its planar harmonic spectrum
will be full meanwhile in E2 it would be sparse according to the parity of n.

If we come back to the example of elasticity, we remind that, in 3D, its vector space is iso-
morphic to 02 ⊕ 22 ⊕ 4. According to the formula given in (18) its planar decomposition would
be 0∗5 ⊕ 1∗3 ⊕ 2∗3 ⊕ 3∗ ⊕ 4∗. This decomposition is the one to compare with the bi-dimensional
harmonic decomposition which is 0∗2 ⊕ 2∗ ⊕ 4∗.

This difference in the composition of the planar spectrum will led to different systems of sym-
metry in 2D and 3D physical spaces. Let’s show that with the study of the rotational-invariance
systems of symmetry.

3 Rotational invariance

Let GTn be the group of operations that leaves Tn unchanged, i.e.:

Q ∈ GTn ⇒ Q ? Tn = Tn (23)

The space Tn is isomorphic with
Ln

k=0 βkH∗k. So any ∀Tn ∈ Tn is defined by a family of tensors
{H∗k,τ}. The order of this family is obviously m =

Pn
k=0 βk. As this decomposition is SO(2)-

invariant the invariance condition on Tn could be expressed as m conditions on the elements of the
planar decomposition. Those m conditions are of n+1 different types according to the order of the
bi-dimensional harmonic tensor, that means

Q ?k H∗k = H∗k (24)

where ?k is the action of SO(2) on H∗k, this action shall easily be expressed in the sequel.

Let H∗k = (sk, tk) be a vector of a space H∗k. Consider a plane rotation Qrot ∈ SO(2), for
example take the generator of Zp, we got
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Qrot =
�

cos 2π
p − sin 2π

p

sin 2π
p cos 2π

p

�
(25)

As shown in [1] Qrot act on H∗k as a generator of Z p
k
, the order of the rotation p is divided by the

indice of Cartan’s subspace:

Qrot ? H∗k =

�
cos 2kπ

p − sin 2kπ
p

sin 2kπ
p cos 2kπ

p

��
sk

tk

�
(26)

So if Qrot belong to GTn each H∗k must be Qrot-invariant. We will note Q(k)
rot the matrix of the

action of Qrot on H∗k, the invariance condition of H∗k is simply the solution of (Q(k)
rot− Id)H∗k = 0.

In other word we have to study ker(Q(k)
rot − Id). A direct calculation shows that the condition of

invariance of H∗k under the Zp-action is:

k = tp, t ∈ N (27)

That mean that if k 6= tp then H∗k equal 0. So the planar decomposition of a Zp-invariant space
T(n), ZpTn, will be:

ZpTn =
M

0≤m≤bn
p c

βmpH∗mp (28)

where b.c is the floor function. It is clear that in the case of p > n the decomposition (28) will
reduced to

ZpTn = β0H∗0 (29)

wich only contains the hemitropic components. The relation (28) allow us to compare consequences
of material invariance on operator in different cases.

For any three dimensional tensor we got as a consequence of the theorem 1 the following theorem

Theorem 4. Let’s consider the vector space Tn in 3D. Non-equivalent rotational material invari-
ance of order lower than or equal to n lead to distinct anisotropic classes for the tensorial properties.

Proof. As we are dealing with a tensorial vector space in 3D we know that its planar decomposition
is complete. For any p and q greater than n we got ZpTn =Zq Tn = β0H∗0 and so we conclude that
this condition lead the same anisotropic class: transverse hemitropy3. This property is related to
Hermann’s theorems [5]. Now suppose that p and q are both less than or equal to n. Let’s search
p, q ∈ N∗2 that verify ZpTn =Zq Tn for a given vector space Tn.

M
0≤m≤bn

p c
βmpH∗mp =

M
0≤m′≤bn

q c
βm′qH∗m

′
q (30)

this relation implies that the following indices equality hold: mp = m
′
q, {m,m

′
, p, q} ∈ N4.

∀m, ∃m
′
, m

′
= m

p

q
(31)

3 Mirror invariance should combine with the rotational one to obtain the transverse isotropy class.
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and so p
q = k, k ∈ N∗. Reciprocally

∀m
′
, ∃m, m = m

′ q

p
(32)

and so q
p = k

′
= 1

k , k
′ ∈ N∗, which implies that k must be 1. The only solution is p = q, so

reciprocally p 6= q implies ZpTn 6=Zq Tn. ut

As an example of what this property implies let’s consider a 6th-order tensor A. For a physical
illustration this tensor could be the second order elasticity that appears in theory of strain-gradient
elasticity [2]. By the mean of Hermann’s theorems [6] we know that for any material invariance
of order greater that 6 our tensor will be transverse hemitropic. By the mean of the theorem
4 we know that any other rotational invariance lead to distinct classes of symmetry. And so, if
we just consider the subgroup of SO(2), we got 7 different rotational invariant type of tensors:
{I, Z2, Z3, Z4, Z5, Z6,SO(2)}. Let’s consider now the same problem in a two dimensional physical
space.

4 Bi-dimensional physical space

To study the plane invariance in 3D we completed the use of the harmonic decomposition by the
Cartan’s one. In 2D the problem is simpler and we don’t have to decompose the vector space T∗(n)

any further. The action on Qrot on the 2D harmonic decomposition is the same as the one we in-
troduce for the Cartan decomposition in the 3D case and all the things we said about the condition
of invariance remain the same. The only difference arises from the theorem 1: in 2D the harmonic
decomposition of an even-order tensor just contain even-order and reciprocally. This property will
generate a phenomenon, we call "Class-Jump", that makes some physical properties more symmet-
rical that they should.

4.1 Even order tensor

Consider first the case of the vector space T∗(2q) in 2D, according to theorem 1 its O(2)-isotypic
decomposition would be written:

T∗(2q) =
qM

k=0

α∗2kH∗2k (33)

Consider the sub-set of Zp-invariant tensors, for those tensor the non-vanishing coefficients would
belong to subspace of order 2k verifying the relation:

2k = tp, t ∈ N (34)

We now have to consider two cases: p = 2q
′

and p = 2q
′
+ 1. Suppose first p = 2q

′
, we obtain the

classical condition k = tq
′
. But if we consider the case p = 2q

′
+ 1 we obtain:

2k = t(2q
′
+ 1), t ∈ N (35)

The former relation make sense only for t = 2t
′
, and so we obtain
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2k = t
′
(2(2q

′
+ 1)), t

′
∈ N (36)

Which is the same restriction as the one imposed by an Z(2(2q′+1))-material invariance. A Z(2q′+1)-
material invariance will impose the same restriction on the tensors as a Z(2(2q′+1))-invariance. This
demonstrate the following theorem:

Theorem 5. In a 2D, an even order tensor could not see an odd-order material invariance, the
invariance seen would be twice the order of the former.

Now consider the case of odd-order tensors.

4.2 Odd order tensor

According to theorem 1, the O(2)-isotypic decomposition of the vector space T∗(2q+1) would be
written:

T∗(2q+1) =
qM

k=0

α∗2k+1H∗2k+1 (37)

Consider the sub-set of Zp-invariant tensors, for those tensor the non-vanishing coefficients would
belong to subspace of order 2k + 1 verifying the relation:

(2k + 1) = tp, t ∈ N (38)

We consider first the case p = 2q
′
, we have

(2k + 1) = 2tq
′
, t ∈ N (39)

As t ∈ N the former relation could never be satisfied. And so we demonstrate the following theorem

Theorem 6. In a 2D an odd tensor could not see an even-order material invariance, the tensor
would vanish for that kind of material invariance.

Consider now p = 2q
′
+ 1 we got the relation

(2k + 1) = t(2q
′
+ 1), t ∈ N (40)

If we suppose t to be even we will find the relation (39), and so we conclude that there is no solution
for t = 2t

′
. Suppose now t = 2t

′
+ 1, we obtain:

(2k + 1) = (2t + 1)(2q
′
+ 1) (41)

and so we obtain a relation of the form k
′
= t

′
r

′
for {k′

, t
′
, r

′} ∈ (2N+1). In this case we don’t have
any specific behavior for the symmetry classes. Distinct material invariances will lead to distinct
tensorial classes.
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4.3 Synthesis

We can sum up all the results we obtain for rotational invariance in two dimensional space in the
following array:

T∗(2k) T∗(2k+1)

Z2p t ∈ N t = ∅
Z2p+1 t ∈ (2N) ⇒ jump to Z2(2p+1) t ∈ (2N + 1)

The point to stress are the class jump phenomenon for an odd material invariance in the case of a
even tensor, and the vanishing effect for the opposite case. A demonstrated by theorem 4, none of
these effect could be seen in three-dimensional space.

Let’s go back to the example of a 6th-order tensor. We show in §.3 that in three dimensional
space we got 7 different types of rotational invariance. By the mean of theorem 5 we claim that such
a tensor in a two dimensional space could only belong to 4 different systems4: {Z2, Z4, Z6,SO(2)}.

5 Conclusion

We show in that paper that the symmetry class of any tensorial property depends on the space di-
mension. In 2D some jump of symmetry could occur making physical properties more symmetrical
than the material they are defined on. This point is related to the reciprocity of Hermann’s theorems
[6]. Those theorems state that if the order of the rotational invariance exceed the number of indexes
of a tensor then this tensor is, a least, transverse hemitropic (SO(2)-invariant). For the 3D case
theorems 1 and 4 show that the reciprocity is true. But as corollary of theorem 5 the reciprocity
fail for a bi-dimensional space. If we consider a 6th-order tensor then a Z5-material invariance will
be seen as a Z10-one by the tensor and so we can conclude that Z5-material invariance imply a
6th-order tensor to be at least hemitropic. And so a continuous class of symmetry could appear for
an order of rotation lower than the number of index of our tensor.
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