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SPRAY IMPINGEMENT ON A WALL IN THE CONTEXT OF THE UPPER AIRWAYS *

We here address the modelling of an aerosol hitting the walls of the airways or an endotracheal tube used for a mechanical ventilation, and the possible creation of secondary droplets that may follow. We present a kinetic modelling of the spray-wall interaction and propose a boundary term that takes into account the possible formation of secondary droplets. Next we answer the following question: when, modelling the delivery of solute therapeutic aerosols, is it necessary to take into account the apparition of secondary droplets? A study of empirical models of drop-wall interaction allows us to conclude that in usual respiratory conditions, no secondary droplets appear. Finally, we perform numerical simulations of an aerosol delivered in an endotracheal tube, in the mechanical ventilation case. The idea is to compare our numerical results to in silico experiments from aerosols specialists. We study the trajectories and the deposition locations of spray droplets.

Introduction

In this work, we address the modelling of the aerosol impingement on walls, in the context of human breathing. We are especially interested in the human upper airways, where the air behaviour is classically modelled by the incompressible Navier-Stokes equations, see for example [START_REF] Grandmont | A multiscale/multimodel approach of the respiration tree[END_REF]. Aerosols are used as medical treatment for many respiratory diseases. When they are liquid, which is the case we aim to study here, they are sent into the airways to the lungs by jet nebulizers. The aerosol can be delivered directly in the upper airways (trachea, larynx, pharynx), or through an endotracheal tube in case of mechanically ventilated patients. Part of the aerosol is lost by deposition on the wall. The treatment efficiency is obviously related to the proportion of the aerosol which reaches the lung. To estimate which proportion of the aerosol deposits on the endotracheal tube or the upper airways, and which proportion actually reaches the respiratory tract, in vitro studies, such as [START_REF] Vecellio | In vitro study and semiempirical model for aerosol delivery control during mechanical ventilation[END_REF], can be complemented by numerical simulations.

There are many ways to model an aerosol. If there are very few particles, one can treat each particle as a numerical individual and perform direct numerical simulations on it, as it is possible for particles in blood flows. Unfortunately, the medical aerosols are constituted of numerous particles, so that direct numerical simulations are too expensive. It then seems quite natural to use a kinetic model for the aerosols [START_REF] Baranger | A modeling of biospray for the upper airways[END_REF][START_REF] Gemci | A numerical and experimental study of spray dynamics in a simple throat model[END_REF]. As a matter of fact, that kind of fluid, which is in the frame of rarefied gases, allows to consider particles from a statistical point of view.

As already stated, this work is more specifically dedicated to the study of a particle impingement on the wall of the human airways. Droplets impinging on a solid surface (dry wall or thin fluid film) usually deposit or splash. In the latter case, secondary droplets are ejected from the wall. The boundary between deposition and splashing has been widely investigated in the last years, both empirically and theoretically. It is generally described using a parameter K, function of the Ohnesorge and Weber numbers of the impinging droplet [START_REF] Cossali | Impact of a single drop on a liquid film: experimental analysis and comparison with empirical models[END_REF][START_REF] Cossali | The impact of a single drop on a wetted solid surface[END_REF][START_REF] Mundo | Droplet-wall collisions: experimental studies of the deformation and breakup process[END_REF][START_REF] Mundo | On the modeling of liquid sprays impinging on surfaces[END_REF][START_REF] Tropea | Spray-wall interaction: How much physics do we need in our models?[END_REF]:

K = We Oh -2/5 , with We = ̺DV 2 0 σ , Oh = µ (̺σD) 1/2 ,
where ̺, σ and µ respectively denote the density, surface tension and viscosity of the droplet, D its diameter and V 0 its velocity. If K exceeds a threshold value K s , then the splashing occurs. Sometimes, the Weber number of the droplet is used as the splashing parameter instead of K [START_REF] Kalantari | Comparison between splash of a droplet in isolation and in a spray[END_REF][START_REF] Vander Wal | The splash/non splash boundary upon a dry surface and thin fluid film[END_REF]. For more details on the general droplet impingement phenomenon, we refer to the reviews of Rein [START_REF] Rein | Phenomena of liquid drop impact on solid and liquid surfaces[END_REF] and Yarin [START_REF] Yarin | Drop impact dynamics: splashing, spreading, receding, bouncing[END_REF].

Most models were built from observations made in the case of a one-droplet impingement, where the incoming velocity is normal to the wall [START_REF] Vander Wal | The splash/non splash boundary upon a dry surface and thin fluid film[END_REF][START_REF] Yarin | Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity[END_REF]. However, some authors recently began to take into account the interactions between impinging droplets that exist in the case of a spray, as well as the effect of an inclined impingement.

We prefered Kalantari and Tropea's model [START_REF] Kalantari | Spray impact onto flat and rigid walls: empirical characterization and modelling[END_REF], because it is, to our knowledge, the only one established from real spray impingement observations. In particular, it accounts for inclined impingements. Details about this model and two other ones [START_REF] Marengo | Aufprall von Tropfen auf Flussigkeitsfilme[END_REF][START_REF] Mundo | Experimental studies of the deposition and splashing of small liquid droplets impinging on a flat surface[END_REF], quite comprehensive, are given in the appendix. Note that most existing models for secondary droplets are reviewed in [START_REF] Cossali | Impact of a single drop on a liquid film: experimental analysis and comparison with empirical models[END_REF].

Since the aerosol evolves in an ambient fluid (the air), there may be some interactions between them. A common assumption is that the aerosol has no effect on the air, in the context of the airways. Hence, the aerosol may be considered as a thin or a very thin spray. The difference between these two kinds of spray lies in the action of the aerosol on the air. We can assume, as in [START_REF] Gemci | A numerical and experimental study of spray dynamics in a simple throat model[END_REF], that the aerosol is thin, i.e. it does globally act on the air. The numerical context of [START_REF] Gemci | A numerical and experimental study of spray dynamics in a simple throat model[END_REF] mimics O'Rourke's [START_REF] O'rourke | Statistical properties and numerical implementation of a model for droplet dispersion in a turbulent gas[END_REF] and uses the Kiva-3V code [START_REF] Amsden | Kiva-3V: A block-structured Kiva program for engines with vertical or canted valves[END_REF]. Note that if we assumed that the aerosol was very thin, we would not eventually need a specific equation for the particles, for they would instantaneously get the air velocity. Hence we get a strongly coupled system, which is the following:

∂ t u + ∇ x • (u ⊗ u) + ∇ x p = 0, ∇ x • u = 0, ∂ t f + ∇ x • (vf ) + ∇ v • (af ) = 0,
where t is the time variable, x the space variable, v the droplet velocity, r its radius, u(t, x) the fluid velocity, p(t, x) the pressure, and a the acceleration of the aerosol droplets mainly due to the drag force exerted on the aerosol by the fluid. The probability density function f of the aerosol depends on t, x, v and r. The previous system is further detailed in Subsectn. 2.1. Such coupled fluid-kinetic models have been studied a lot recently from an analytical point of view. For instance, Hamdache [START_REF] Hamdache | Global existence and large time behaviour of solutions for the Vlasov-Stokes equations[END_REF] tackled the existence problem for the Vlasov-Stokes system. Baranger and Desvillettes [START_REF] Baranger | Coupling Euler and Vlasov equations in the context of sprays: the local-in-time, classical solutions[END_REF] proved the existence of classical solutions in small times for the Vlasov-Euler system. And more recently, Mellet and Vasseur [START_REF] Mellet | Existence and uniqueness of global strong solutions for one-dimensional compressible Navier-Stokes equations[END_REF] studied the existence of global weak solutions to the Vlasov-Fokker-Planck equations coupled with the Navier-Stokes equations. There have been lots of numerics dedicated works too: see [START_REF] Baranger | Modelling of oscillations, breakup and collisions for droplets: the establishment of kernels for the T.A.B. model[END_REF][START_REF] Hylkema | A random particle method to simulate coalescence phenomena in dense liquid sprays[END_REF][START_REF] Hylkema | Modélisation cinétique et simulation numérique des collisions entre gouttelettes d'alumine dans un propulseur à poudre[END_REF][START_REF] Mathiaud | Étude de systèmes de type gaz-particules[END_REF] for instance.

Our model is further discussed in the next two sections, then we address the effect of the impingement of a droplet on a wall, and eventually we present a numerical test in an endotracheal tube.

Aerosol modelling

Fluid-kinetic modelling

In the same way fluids are classically described by the Navier-Stokes equations, kinetic models are often used to model the behaviour of a set of numerous particles or droplets, with a statistical point of view. The associated equation gives the evolution with respect to time t of a probability density function (PDF) f , which in our case depends on t, space coordinates x, velocity v and radius r. Note that f may depend on other variables, such as the droplet temperature, its internal energy, etc. The quantity f (t, x, v, r) dr dv dx is the number of droplets at time t inside the elementary volume of the phase space, which can be abusively denoted by

[x, x + dx] × [v, v + dv] × [r, r + dr].
Assuming, like in [START_REF] Gemci | A numerical and experimental study of spray dynamics in a simple throat model[END_REF], that droplets neither collide, nor exert an action on the fluid, f solves a transport Vlasov-like equation. Eventually, here is the full system satisfied by f , the fluid velocity u and the pressure p, which depend on t and x:

∂ t u + ∇ x • (u ⊗ u) + ∇ x p = 0, (1) 
∇ x • u = 0, (2) 
∂ t f + ∇ x • (vf ) + ∇ v • (af ) = 0, (3) 
where a, approximated here by the Stokes force, is given by

a = -6πµr(v -u). (4) 
The boundary conditions (see Fig. 1) for the Navier-Stokes equations are the following:

u(t, x) = u 1 (t) if x ∈ Γ 1 , (5) u(t, x) = 0 if x ∈ Γ 2 , (6) 
where u 1 is the profile of the incoming velocity in Ω. Note that there is no condition on Γ 3 . 

Boundary conditions for the aerosol

To take into account the possible impingement of droplets on walls, one must add an adequate boundary condition to Eqn. (3) above. Actually, in order to describe the evolution of f , it is necessary to know if secondary droplets are created on the walls, and if there are, what their locations, velocities and radii are. Hence, we only need to prescribe, as a boundary condition, the value of f for velocities emerging from the wall.

Define in every point x of the wall the normal vector to the wall n(x). We consider that the droplet located in x, with velocity v and radius r does hit the wall if x is really on the wall, and if velocity v satisfies v • n(x) < 0, which means that the droplet is heading to the wall.

We propose the following boundary condition, for x ∈ Γ 2 and v • n(x) < 0,

f (t, x, v, r) = r * ∈R + v * ∈R 2 χ [v * .n(x)<0] (x, v * ) N sec (K, v * , v, r * , r)f (t, x, v * , r * ) dv * dr * .
In the previous equation, N sec (K, v * , v, r * , r) represents the number of secondary droplets of velocity v and radius r, appearing because of the impingement of droplets of radius between r * and r * + dr * with velocity between v * and v * + dv * . It depends on K: if K does not exceed a threshold value K s , then the droplet simply deposits on the wall, and no secondary droplet is created, so that N sec (K, v * , v, r * , r) = 0. It can be a Gaussian distribution, as in [START_REF] Mundo | Experimental studies of the deposition and splashing of small liquid droplets impinging on a flat surface[END_REF] and [START_REF] Kalantari | Comparison between splash of a droplet in isolation and in a spray[END_REF], or a punctual distribution, as in [START_REF] Marengo | Aufprall von Tropfen auf Flussigkeitsfilme[END_REF]. Note that kinetic equations with similar boundary conditions have been studied from the mathematical point of view by Mischler [START_REF] Mischler | On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system[END_REF][START_REF] Mischler | On the trace problem for solutions of the Vlasov equation[END_REF].

Splashing or deposition?

Here we want to discuss if the drop splashing in the endotracheal tube can occur during a mechanical ventilation. Note that a droplet splashing cannot occur on the upper airway walls, because these walls are covered of viscous mucus that absorbs and retains every droplet reaching its surface. Thus discussing splashing or deposition is only relevant in the endotracheal tube.

According to [START_REF] Kalantari | Spray impact onto flat and rigid walls: empirical characterization and modelling[END_REF], the critical Weber number for splashing for a droplet impinging on a wall is approximately above 80. We here suppose that the aerosol solution properties are similar to water properties. Consequently, its viscosity µ, surface tension σ and density ̺ are: µ = 9.78 10 -4 Pa.s, σ = 7.28 10 -4 N.cm -1 , ̺ = 1.0 kg.m -3 .

Experiments with the endotracheal tube performed by aerosol specialists [START_REF] Duparque | [END_REF][START_REF] Vecellio | In vitro study and semiempirical model for aerosol delivery control during mechanical ventilation[END_REF] deal with velocities between 0.25 and 1 m.s -1 . With such velocities, the Weber number of spray droplets in the airways does not exceed the value 0.15. We conclude that splashing cannot occur in the endotracheal tube under usual ventilation conditions. Consequently, in the sequel, we shall not address either any more the possibility of splashing when considering the endotracheal tube. The boundary condition on f then simply becomes

f (t, x, v, r) = 0, if x ∈ Γ 2 , v • n(x) < 0. ( 7 
)
3. Numerics

Numerical solving

We use a standard P 1 -P 2 finite element computation for the air flow, a particle method for the aerosol, to solve (1)- [START_REF] Cossali | Impact of a single drop on a liquid film: experimental analysis and comparison with empirical models[END_REF]. We do not give any detail on the fluid computation, since (1)-( 2), ( 5)-( 6) are solved thanks to the Navier-Stokes routine of the Freefem++ software [START_REF]Freefem++, finite elements software[END_REF]. Note that our numerical code is inspired from an engineering project performed under B. Maury's supervision [START_REF] Dérumeaux | Modélisation du dépôt de particules dans les bronches[END_REF].

Particle method

The equation describing the evolution of the PDF f involves a phase space of high dimension. Thus, using finite volume or finite difference methods to solve this equation, or simply performing direct numerical simulations on the droplets, would be too expensive. Particle methods appear to be an adequate compromise between the previous solutions. The same choice has been made in a previous attempt to model therapeutic sprays in [START_REF] Baranger | A modeling of biospray for the upper airways[END_REF].

Let us fastly present the particle method we here use. Since there are numerous droplets described from a statistical point of view, one must distinguish the physical droplets from the numerical particles. Let N P the total number of numerical particles, N P is almost always much smaller than the number of droplets N D . The PDF f is discretized in the following way:

f (t, x, v, r) = NP p=1 ω p (t)δ xp(t) (x)δ vp(t) (v)δ rp(t) (r),
where t → (x p (t), v p (t), r p (t)) is the trajectory of the numerical particle p in the phase space, and ω p (t) its representativity at time t. A particle p somehow gives the average behaviour of a set of droplets whose physical characteristics and coordinates are very close to the ones of p. Note that the average value of ω p is approximately of the order N D /N P .

Impingement resolution

A crucial aspect of the numerical solving is the detection of impingements. In order to ascertain if a droplet actually reaches the wall or not, we need to evaluate accurately the distance between this droplet and the wall. In [START_REF] Dérumeaux | Modélisation du dépôt de particules dans les bronches[END_REF], a method to estimate this distance is proposed, which consists in numerically solving the following problem in the computational domain:

-∆θ = 1 in Ω, θ = 0 on ∂Ω. (8) 
For small values of θ, isovalues of θ approximate the distance to the walls, and the function Θ = θ/||∇θ|| represents a good approximation of this distance. In our numerical code, Equation ( 8) is solved. If the value of Θ computed at the location of a particle is smaller than an numerical threshold, then we consider that this particle has hit the wall. More details about this way of estimating the distance can be found in [START_REF] Strang | Level sets and the fast marching method[END_REF].

Numerical test

Here we want to numerically predict the trajectories and deposition locations of aerosol droplets in the endotracheal tube used for the mechanical ventilation (Fig. 2). We aim to compare our numerical results with the results obtained with in vitro experiments by aerosols specialists [START_REF] Duparque | [END_REF]. The simulations are performed with the scientific computation software Freefem++ [START_REF]Freefem++, finite elements software[END_REF]. Numerical results are plotted with the visualization software medit [START_REF]Medit, scientific visualization software[END_REF]. The time step is 0.1 s, and 300 time steps are computed, so the total simulation length is 30 s. Because the droplet motion varies faster than the fluid flow, each computational time step for the fluid solving is divided into 50 time sub-steps to solve the particle motion.

The computational domain reproduces in 2D the exact measures of the endotracheal tube used for the mechanical ventilation in the experimental tests. The endotracheal tube is shaped like the upper airways of a lying down patient (see Fig. 2). It is curved, and can be contained in a box of height 25.5 cm and length 21.6 cm. The computational parameters reproduce an experiment performed by aerosol specialists [START_REF] Duparque | [END_REF]. In particular, several identical ejections happen in a row, in order to mimic the continuous aerosol diffusion of the experiment. More precisely, 20 ejections of 50 particles happen, separated from each other by 6 time steps. All particles have a radius of 1.85 µm. The rate of flow at the entrance of the tube is 34 l/min, which corresponds to an average incoming velocity of 2 m.s -1 , and is stationary, because the experiments involved a stationary flow in the tube. All the physical quantities used for the test were given by our fellow experimenters from Inserm Tours, and detailed in [START_REF] Duparque | [END_REF]. Fig. 3 show particle locations, after the first ejection (a), and after several ejections (b), (c).

A. Appendix: Splashing models

In this appendix, we present a selection of splashing models established from experimental results. As the splashing phenomenon occurs in three dimensions, several parameters need to be known in order to correctly describe the creation of secondary droplets, as the number of secondary droplets, their sizes and velocities. In the following, the index b denotes the values before impingement, and a the values after impingement. The authors performed an experimental analysis of the secondary droplet characteristics, but only with water. The model can be used for a quasi-normal impingement angle: α > 80 • , with α denoting the angle between the wall and the direction of the velocity of the impinging droplet, for K r = K/1000 < 4, and for δ = h/D the adimensionalized thickness of the liquid film between 0.5 et 2, with h the liquid film thickness and D the impinging droplet diameter. The parameters u a /u b , v a /v b , d 10 /D and d 32 /D, describing the size and velocity of secondary droplets, are expressed by the general formula: The number d 10 denotes the arithmetical mean diameter of the secondary droplets, and d 32 represents the mean Sauter diameter of the droplets, i.e. the diameter of a droplet having the same volume/surface area ratio as the whole set of secondary droplets.

(A 1 + A 2 δ) + (A 3 + A 4 δ)(K r -K 0 ). with K r = K/1000 et K 0 = K s /
The relationship between the deposited mass, concentration and number of secondary droplets and the impinging (or primary) quantities are the following:

m sec /m prim = (B 1 + B 2 δ)(K r -K 0 ) (B3+B4δ) , N sec /N prim = (B 1 + B 2 δ)(K r -K 0 ) (B3+B4δ) , C sec = max 0, 1 + B 1 + B 1 (K r -K 0 ) 1 -e Kr-K0 2 (B2+B3δ)(Kr-K0) if K r = K 0 ,
where the values of B [START_REF] Mundo | Experimental studies of the deposition and splashing of small liquid droplets impinging on a flat surface[END_REF] This model was established from experimental results reported in [START_REF] Mundo | Droplet-wall collisions: experimental studies of the deformation and breakup process[END_REF][START_REF] Mundo | Experimental studies of the deposition and splashing of small liquid droplets impinging on a flat surface[END_REF] in the case of a liquid film of adimensionalized thickness δ = h/D = 0.03. The velocities of secondary droplets obey a Gaussian distribution around average values depending on the size of the impinging droplet and the velocity before impingement. Splashing occurs when K exceeds the value 57.7. The deposited mass fraction, the diameter and the number of secondary droplets obey the following laws: A.3. Kalantari and Tropea [START_REF] Kalantari | Spray impact onto flat and rigid walls: empirical characterization and modelling[END_REF] This model holds for a negligible surface roughness, with the entire target surface exposed to the impinging spray. The accumulated wall film thickness must stand in the range 8 µm ≤ h ≤ 107 µm, the impingement Weber number (based on the normal component of velocity before the impact) in the range 10 ≤ We n ≤ 160, and the fluid viscosity must be low (Oh ≪ 0.1). The Weber numbers We n and We t are respectively computed with the normal and the tangential components of the impinging velocity.
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  1000 and the values of A 1 , A 2 , A 3 and A 4 given in the following table.

		A 1	A 2	A 3	A 4
	u a /u b	0.056 0.057	0.038	0.00
	v a /v b	0.311 -0.077 -0.009 -0.024
	d 10 /D mean diameter	0.209 0.100 -0.096 0.005
	d 32 /D mean Sauter diameter 0.250 0.238 -0.022 -0.128

  1 , B 2 , B 3 and B 4 are given in the table below. N sec /N prim 0.285 0.073 0.630 -0.100 A.2. Mundo, Sommerfeld and Tropea

		B 1	B 2	B 3	B 4
	m sec /m prim 0.363 0.242 2.928 -1.521
	C sec	60.8 0.685 0.036	n/a
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Parameter

General correlation Normal component of velocity (m/s) u a /u b = -1.1We