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A CONTINUOUS SEMIGROUP OF NOTIONS OF INDEPENDENCE

BETWEEN THE CLASSICAL AND THE FREE ONE

FLORENT BENAYCH-GEORGES AND THIERRY LÉVY

Abstract. In this paper, we investigate a continuous family of notions of independence which
interpolates between the classical and free ones for non-commutative random variables. These
notions are related to the liberation process introduced by D. Voiculescu. To each notion
of independence correspond new convolutions of probability measures, for which we establish
formulae and of which we compute simple examples. We prove that there exists no reasonable
analogue of classical and free cumulants associated to these notions of independence.
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Introduction

Free probability is the non-commutative probability theory built in parallel with the classical
one, but upon the notion of independence called freeness instead of the classical independence.
Concretely, independent random variables are numbers arising randomly with no influence on
each other, whereas free random variables are elements of an operator algebra endowed with a
state which do not satisfy any algebraic relation, as far as can be observed with the algebra’s
state. The point of view of random matrices, which is, like most of the bases of this theory,
due to Dan Voiculescu, allows to somehow unify both theories: large diagonal random matrices
conjugated by independent uniformly distributed random permutation matrices will, as far as
traces are concerned, behave like independent random variables, whereas large diagonal random
matrices conjugated by independent uniformly distributed random unitary matrices will behave
like free random variables. Free probability theory, a very active field of mathematics during
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2 FLORENT BENAYCH-GEORGES AND THIERRY LÉVY

the last two decades, has been constructed in deep analogy with the classical one. It follows
that there is a kind of dictionary between objects of both theories: many fundamental notions
or results of classical probability theory, like the Law of Large Numbers, the Central Limit
Theorem, the Gaussian distribution, the convolution, the cumulants, the infinite divisibility,
have a precise analogue in free probability theory. Thus it seems natural to try interpolate
between both theories and to find a continuous way to pass from one to the other. But the
research of such a continuum has been broken off by a paper of Roland Speicher in 1997 [S97],
where it is shown that no other notion of independence than the classical one and the freeness
can be the base of a reasonable probability theory. However, even though the axioms in the
definition given in this paper for a “reasonable probability theory” seemed very natural, one of
them, the associativity1, seems to be too restrictive. Indeed, it appeared to us that replacing
associativity by a “semigroup version” of associativity allows one to build a continuous family
of “notions of independence” indexed by [0,+∞] which passes from the classical independence
(case t = 0) to the free one (case t = +∞). More specifically, we shall define, for all t ≥ 0,
a notion called t-freeness such that for all s, t ≥ 0, if X,Y,Z are three random variables such
that X is t-free with Y and Y is s-free with Z, then under certain additional hypotheses, X

will be (s + t)-free with Z. In a non-commutative probability space, two elements will be said
to be t-free if they can be obtained from two classically independent elements by conjugating
one of them by a free unitary Brownian motion taken at time t. Equivalently, the general
random matrix model for a pair of t-free elements, is obtained at the limit when the dimension
n of the matrices tends to infinity, from a pair of diagonal random matrices by conjugating
one of them by a unitary Brownian motion taken at time t, with initial law the uniform law
on the group of permutation matrices. This can be considered as a particular case of the so-
called liberation process introduced by Voiculescu [V99]. The notion of t-freeness gives rise to
additive and multiplicative convolutions, denoted respectively by ∗t,⊙t, and called additive and
multiplicative t-free convolution, which pass from the classical convolutions to the free ones as
t goes from zero to +∞.

There are several ways to characterize and deal with independence and freeness. The first one
is to consider what it models: independence concerns numbers chosen randomly independently
and freeness concerns matrices chosen randomly, in an independent and isotropic way. The
second one is given by the computation rules: the expectation factorizes on independence,
whereas the expectation of a product of free elements can be computed using the fact that if
x1, . . . , xn are centered and successively free, then their product is centered. The third one is
the use of integral transforms (Fourier transform or R-transform) i.e. the use of cumulants. The
last one, a bit more abstract, is to consider tensor of free product: a family of random variables
is independent (resp. free) if it can be realized on a tensor (resp. free) product of probability
spaces. This can be summarized in the following diagrams.

1Roughly speaking, the associativity property states that if X, Y, Z are three random variables such that X, Y

are independent and Z is independent of (X, Y ), then X is independent of (Y,Z).
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intuitive
model

��

model:
isotropic

large
rand. mat.

��computation rules:
factorization on
indep. factors

// independence classical
cumulants

oo

computation rules:
for x1, . . . , xn

successively free,
ϕ(x1)=···=ϕ(xn)=0

⇒ϕ(x1···xn)=0

// freeness free
cumulants

oo

tensor products
of prob. spaces

OO

free products
of non com.
prob. spaces

OO

In the present paper, we complete such a diagram for the notion of t-freeness. We begin, in
Section 2, by giving the definition of a t-free product and presenting the random matrix model,
mentioned in the previous paragraph. Then, in Section 3, we state the computation rules, which
can be understood as a family of differential equations. Finally, in Section 4, we prove that no
notion of cumulants can be associated to the notion of t-freeness. This can be summarized in
the following diagram.

model: large rand. mat.
conjugated by a unitary Brownian

��
computation rules:
differential system

// t-freeness t-free cumulants:
do not exist !

oo

t-free products of
non com. prob. spaces

OO

We also study certain examples, like the the t-convolutions of symmetric Bernoulli laws.

1. Preliminaries

1.1. General definitions related to non-commutative probability theory. Non commu-
tative probability is based on the following generalization of the notion of probability space.

Definition 1.1 (Non commutative probability space). It is a pair (A, ϕ), where:

• A is an algebra over C with a unit element denoted by 1, endowed with an operation
of adjunction x 7→ x∗ which is C-antilinear, involutive and satisfies (xy)∗ = y∗x∗ for all
x, y ∈ A,

• ϕ : A → C is a linear form on A, satisfying ϕ(1) = 1, ϕ(xy) = ϕ(yx), ϕ(x∗) = ϕ(x) and
ϕ(xx∗) ≥ 0 for all x, y ∈ A.

The linear form ϕ is often called the expectation of the non-commutative probability space.

Here are two very natural examples of non-commutative probability spaces.

Example 1.2 (Classical probability space). Let (Ω,Σ, P) be a classical probability space where
the expectation is denoted by E. Then the algebra of complex-valued random variables defined
on this space having moments to all orders, endowed with the involution X∗ = X and with the
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linear form E is a non-commutative probability space, of which we will say that it is inherited
from a classical probability space.

Example 1.3 (Space of matrices endowed with the normalize trace). Let n ≥ 1 be an integer.
Then the algebra A = Mn(C) endowed with the linear form ϕ which is the normalized trace is
a non-commutative probability space.

The second notion from classical probability which has a natural non-commutative general-
ization is the one of distribution of a family of random variables.

Definition 1.4 (Non commutative distribution). The non-commutative distribution of a family
(a1, . . . , an) of elements of a non-commutative probability space (A, ϕ) is the linear map defined
on the space of polynomials in the non-commutative variables X1,X

∗
1 , . . . ,Xn,X∗

n which maps
any such polynomial P to ϕ(P (a1, a

∗
1, . . . , an, a∗n)).

Remark 1.5. Consider a self-adjoint element a (i.e. such that a = a∗) in a non-commutative
probability space (A, ϕ). Then by the hypothesis ϕ(xx∗) ≥ 0 for all x ∈ A, the distribution of
a is a linear form on C[X] which is non negative on the polynomials which are non negative on
the real line. Hence it is the integration with respect to a probability measure on the real line.
Note that this measure is unique if and only if it is determined by its moments, which is the
case when the measure has compact support, i.e. when there is a constant M such that for all
n ≥ 0, one has ϕ(a2n) ≤ M2n.

Remark 1.6. The content of the previous remark can be generalized to any unitary element:
its distribution is the integration with respect to a probability measure on the unit circle of C.

Remark 1.7. Note, as a generalization of Remark 1.5, that in the case of a non-commutative
probability space inherited from a classical one (see Example 1.2), the non-commutative distri-
bution of a family of random variables is the integration of polynomials with respect to the law
of the family (defined in the classical way).

1.2. Independence, freeness and random matrices.

1.2.1. Definitions and basic properties. After the notions of probability space and of distribution,
one of the most important notion in probability theory is the independence. Here, we shall
present two definitions. One of them is the translation of the classical notion of independence
in the context of non-commutative probability spaces, which shall coincide with independence
in the case of a non-commutative probability space inherited from a classical one (see Example
1.2). The second one is another notion, defined by Voiculescu [VDN91], which is called freeness.
In the present paper, we shall define a “continuum of notions” between those two ones.

In this paper, by a subalgebra of the algebra of a non-commutative probability space, we shall
always mean a subalgebra which contains 1 and which is stable under the operation x 7→ x∗.

Definition 1.8 (Independence and freeness). Let (M, ϕ) be a non-commutative probability
space. The kernel of ϕ will be called the set of centered elements. Consider a family (Ai)i∈I of
subalgebras of M.

• The family (Ai)i∈I is said to be independent if
(i) for all i 6= j ∈ I, Ai and Aj commute,
(ii) for all n ≥ 1, i1, . . . , in ∈ I pairwise distinct, for all family (a1, . . . , an) ∈ Ai1 ×· · ·×

Ain of centered elements, the product a1 · · · an is also centered.
• The family (Ai)i∈I is said to be free if for all n ≥ 1, i1, . . . , in ∈ I such that i1 6= i2, i2 6=

i3, . . . , in−1 6= in, for all family (a1, . . . , an) ∈ Ai1 × · · · × Ain of centered elements, the
product a1 · · · an is also centered.
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Note that in the case of a non-commutative probability space inherited from a classical one
(see Example 1.2), the notion of independence as it is presented here is exactly the classical
notion of independence: with the notation of Example 1.2, let us define, for all family (Σi)i∈I of
sub-σ-fields of Σ, and for all i ∈ I, the set Ai of random variables of A which are Σi-measurable.
Then the family (Σi)i∈I is independent in the classical sense if and only if the family (Ai)i∈I is
independent in the sense of Definition 1.8.

It is well known that a family of random variables is independent if and only if its joint law
is the tensor product of the individual ones. In the following definition and proposition, we
translate this statement to our vocabulary, and give its analogue for freeness. These definitions
shall also be needed to define t-freeness in the following.

Definition 1.9 (Tensor and free product). Let (A1, ϕ1) and (A2, ϕ2) be two non-commutative
probability spaces.

• Their tensor product, denoted by (A1, ϕ1)⊗(A2, ϕ2), is the non-commutative probability
space with algebra the tensor product of unital algebras A1 ⊗A2, on which the adjoint
operation and the expectation are defined by

∀(x1, x2) ∈ A1 ×A2, (x1 ⊗ x2)
∗ = x∗

1 ⊗ x∗
2, ϕ(x1 ⊗ x2) = ϕ1(x1)ϕ2(x2).

• Their free product, denoted by (A1, ϕ1) ∗ (A2, ϕ2), is the non-commutative probability
space with algebra the free product of unital algebras A1∗A2, with adjoint operation and
expectation defined uniquely by the fact that for all n ≥ 1, for all i1 6= · · · 6= in ∈ {1, 2},
for all (x1, . . . , xn) ∈ Ai1 × · · · × Ain ,

(x1 · · · xn)∗ = x∗
n · · · x∗

1

and x1 · · · xn is centered whenever all xi’s are.

Note that this definition can easily be extended to tensor and free products of finite families
of non-commutative probability spaces. It can also easily be extended to families indexed by
any set, but in order to avoid cumbersome notation, we have restricted the definitions to what
is needed in this article.

The link between the previous notions and the classical characterization of independence in
terms of distributions is made in the following proposition.

Proposition 1.10 (Characterization of independence and freeness). Let (M, ϕ) be a non-
commutative probability space. Let A1,A2 be subalgebras of A. Then the family (A1,A2) is

• independent if and only if A1 commutes with A2 and the unique algebra morphism defined
from A1 ⊗A2 to M which, for all (a1, a2) ∈ A1 ×A2, maps a1 ⊗ 1 to a1 and 1 ⊗ a2 to
a2, preserves the expectation from (A1, ϕ|A1

) ⊗ (A2, ϕ|A2
) to (M, ϕ),

• free if and only if the unique algebra morphism defined from the unital algebras tensor
product A1 ∗ A2 to M which, restricted to A1 ∪ A2 is the canonical injection, preserves
the expectation from (A1, ϕ|A1

) ∗ (A2, ϕ|A2
) to (M, ϕ).

In the following definition, the free analogue of the classical convolution is defined.

Definition 1.11 (Additive free convolution). A consequence of the last proposition is that the
distribution of the sum of two free self adjoint elements with respective distributions µ, ν only
depends on µ and ν and will be called the free additive convolution of µ and ν, and be denoted
by µ ⊞ ν.
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1.2.2. Asymptotic behavior of random matrices.

Definition 1.12 (Convergence in non-commutative distribution). Let p be a positive integer
and let, for each n ≥ 1, (M(1, n), . . . ,M(p, n)) be a family of n by n random matrices. This
family is said to converge in non-commutative distribution if its non-commutative distribution
converges in probability to a non random one, i.e. if the normalized trace of any word in the
M(i, n)’s and the M(i, n)∗’s converges in probability to a constant.

As mentioned above, random variables which are independent in the usual sense are elements
of independent algebras in the sense developed in this paper. It is not so easy to construct free
random variables without using explicitly the free product of definition 1.9. However, in 91,
Voiculescu, in [V91], proved that random matrices conjugated by independent unitary random
matrices with Haar distribution are asymptotically free. In the following theorem, we present
this result and its analogue for freeness, where unitary matrices are replaced by permutation
matrices.

Theorem 1.13 (Asymptotic independence and asymptotic freeness). Let us fix p, q ≥ 1. Let
for each n ≥ 1, Fn = (A(1, n), . . . , A(p, n), B(1, n), . . . , B(q, n)) be a family of n by n random
matrices which converges in non-commutative distribution. We suppose that for all r ≥ 1, the
entries of these random matrices are uniformly bounded in Lr.

• Suppose these matrices to be diagonal and consider, for each n, the matrix Sn of a
uniformly distributed random permutation of {1, . . . , n} independent of the family Fn.
Then the family

(A(1, n), . . . , A(p, n), SnB(1, n)S−1
n , . . . , SnB(q, n)S−1

n )

converges in distribution to the distribution of a commutative family (a1, . . . , ap, b1, . . . , bq)
of elements of a non-commutative probability space such that the algebras generated by
{a1, . . . , ap} and {b1, . . . , bq} are independent.

• Consider, for each n, the matrix Un of a uniformly distributed random unitary n by n

matrix independent of the family Fn. Then the family

(A(1, n), . . . , A(p, n), UnB(1, n)U−1
n , . . . , UnB(q, n)U−1

n )

converges in distribution to the distribution of a family (a1, . . . , ap, b1, . . . , bq) of elements
of a non-commutative probability space such that the algebras generated by {a1, . . . , ap}
and {b1, . . . , bq} are free.

The first part of this theorem is much simpler than the second but seems to be also less
well-known. It is in any case harder to locate a proof in the literature, so that we offer one. We
shall need the following lemma.

Lemma 1.14. Let, for each n ≥ 1, x(n) = (xn,1, . . . , xn,n) and y(n) = (yn,1, . . . , yn,n) be two
complex random vectors defined on the same probability space such that the random variables

x(n) :=
xn,1 + · · · + xn,n

n
, y(n) :=

yn,1 + · · · + yn,n

n

converge in probability to constant limits x, y as n tends to infinity. Suppose moreover that the
sequences 1

n ||x(n)||22 and 1
n ||y(n)||22 are bounded in L2. Consider, for all n, a uniformly dis-

tributed random permutation σn of {1, . . . , n}, independent of (x(n), y(n)), and define yσn(n) :=
(yn,σn(1), . . . , yn,σn(n)). Then the scalar product

1

n
〈x(n), yσn(n)〉 :=

1

n
(xn,1yn,σn(1) + · · · + xn,nyn,σn(n))

converges in probability to xy as n tends to infinity.
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Proof. First of all, note that one can suppose that for all n, x(n) = y(n) = 0 almost surely.
Indeed, if the result is proved under this additional hypothesis, then since for all n, one has

1

n
〈x(n), yσn(n)〉 =

1

n
〈x(n) − x(n) · 1n, yσn(n) − y(n) · 1n〉 + x(n) · y(n), (with 1n = (1, . . . , 1)),

the result holds for general x(n), y(n). So we suppose that for all n, x(n) = y(n) = 0. It implies
that for all n, for all i, j = 1, . . . , n,

E[yn,σn(i)yn,σn(j) |x(n), y(n)] =

{

1
n ||y(n)||22 if i = j,

− 1
n(n−1) ||y(n)||22 if i 6= j.

Thus, using the fact that x(n) = 0, we have

E

[

1

n2
〈x(n), yσn(n)〉2

]

= E

[

1

n3(n − 1)
||x(n)||22||y(n)||22 +

1

n3
||x(n)||22||y(n)||22

]

= O

(

1

n

)

,

which completes the proof. �

Proof of Theorem 1.13. The second point is a well-known result of Voiculescu (see [VDN91]).
To prove the first one, we shall prove that the normalized trace any word in the random matrices
A(1, n), . . . , A(p, n), SnB(1, n)S−1

n , . . . , SnB(q, n)S−1
n converges to a constant which factorizes in

two terms: the limiting normalized trace of the A(i, n)’s and the A(i, n)∗’s of the product on one
hand and the limiting normalized trace of the B(j, n)’s and the B(j, n)∗’s of the product on the
other hand. Since the A(i, n)’s, the A(i, n)∗’s, the SnB(j, n)S−1

n ’s and the SnB(j, n)∗S−1
n ’s com-

mute, are uniformly bounded and their non-commutative distribution converges, this amounts to
proving that if M(n), N(n) are two diagonal random matrices having entries uniformly bounded
in Lr for all r ≥ 1, whose normalized traces converge in probability to constants m,n, then for
Sn the matrix of a uniform random permutation of {1, . . . , n} independent of (M(n), N(n)), the
normalized trace of M(n)SnN(n)S−1

n converges to mn. This follows directly from the previous
lemma. Thus the proof is complete. �

Corollary 1.15 (Matricial model for classical and free convolutions). Let µ, ν be two probability
measures on the real line. Let, for each n ≥ 1, Mn, Nn be n by n diagonal random matrices with
empirical spectral measures converging weakly in probability to µ and νrespectively. For each
n ≥ 1, let Sn (resp. Un) be a uniformly distributed n by n permutation (resp. unitary) random
matrix independent of (Mn, Nn). Then

• the empirical spectral measure of Mn + SnNnS−1
n converges weakly in probability to the

classical convolution µ ∗ ν of µ and ν,
• the empirical spectral measure of Mn + UnNnU−1

n converges weakly in probability to the
free convolution µ ⊞ ν of µ and ν.

Proof. In the case where µ, ν have compact supports and the entries of the diagonal matrices
Mn, Nn are uniformly bounded, it is a direct consequence of the previous theorem. The general
case can easily be deduced using functional calculus, like in the proof of Theorem 3.13 of [B07].
�
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1.3. Unitary Brownian motion, free unitary Brownian motion. In this paragraph, we
give a brief survey of the definition and the main convergence result for the Brownian motion
on the unitary group.

Let n ≥ 1 be an integer. Let Hn denote the n2-dimensional real linear subspace of Mn(C)
which consists of anti-Hermitian matrices. On Mn(C), we denote by Tr the usual trace and by
tr = 1

n Tr the normalized trace. Let us endow Hn with the scalar product 〈·, ·〉 defined by

∀A,B ∈ Hn , 〈A,B〉 = n Tr(A∗B) = −n Tr(AB).

There is a linear Brownian motion canonically attached to the Euclidean space (Hn, 〈·, ·〉). It is
the unique Gaussian process H indexed by R+ with values in Hn such that for all s, t ∈ R+ and
all A,B ∈ Hn, one has

E[〈Hs, A〉〈Ht, B〉] = min(s, t)〈A,B〉.
Let us consider the following stochastic differential equation:

U0 = In , dUt = i(dHt)Ut −
1

2
Utdt,

where (Ut)t≥0 is a stochastic process with values in Mn(C). This linear equation admits a
strong solution. The process (U∗

t )t≥0, where U∗
t denotes the adjoint of Ut, satisfies the stochastic

differential equation

U∗
0 = In , dU∗

t = −iU∗
t dHt −

1

2
U∗

t dt.

An application of Itô’s formula to the process UtU
∗
t shows that, for all t ≥ 0, UtU

∗
t = In. This

proves that the process (Ut)t≥0 takes its values in the unitary group U(n).

Definition 1.16. The process (Ut)t≥0 is called the unitary Brownian motion of dimension n.

As n tends to infinity, the unitary Brownian motion has a limit in distribution which we now
describe. For all t ≥ 0, the numbers

e−
kt
2

k−1
∑

j=0

(−t)j

j!

(

k

j + 1

)

kj−1 , k ≥ 0,

are the moments of a unique probability measure on the set U = {z ∈ C : |z| = 1} invariant by
the complex conjugation. We denote this probability measure by νt. The following definition
was given by P. Biane in [B97a].

Definition 1.17. Let (A, τ) be a non-commutative probability space. We say that a collection
(ut)t≥0 of unitary elements of A is a free unitary Brownian motion if the following conditions
hold.
1. For all s, t ≥ 0 such that s ≤ t, the distribution of utu

∗
s is the probability measure νt−s.

2. For all positive integer m, for all 0 ≤ t1 ≤ t2 ≤ . . . ≤ tm, the elements ut1u
∗
0, ut2u

∗
t1 , . . . , utmu∗

tm−1

are free.

In the same paper, P. Biane has proved the following convergence result.

Theorem 1.18. For each n ≥ 1, let (U
(n)
t )t≥0 be a Brownian motion on the unitary group U(n).

As n tends to infinity, the collection of random matrices (U
(n)
t )t≥0 converges in non-commutative

distribution to a free unitary Brownian motion.
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2. A continuum of notions of independence

In this section, we shall define a family (indexed by a real number t ∈ [0,+∞]) of relations
between two subalgebras of a non-commutative probability space which passes from the classical
independence (case t = 0) to freeness (which is the “limit” when t tends to infinity). We have
to start with the definition of the t-free product of two non-commutative probability spaces. In
a few words, it is the space obtained by conjugating one of them, in their tensor product, by a
free unitary Brownian motion at time t, free with the tensor product.

Fix t ∈ [0,+∞] and let (A, ϕA) and (B, ϕB) be two non-commutative probability spaces. Let

(U (t), ϕU(t)) be the non-commutative probability space generated by a single unitary element ut

whose distribution is that of a free unitary Brownian motion at time t (with the convention that
a free unitary Brownian motion at time +∞ is a Haar unitary element, i.e. a unitary element
whose distribution is the uniform law on the unit circle of C).

Definition 2.1 (t-free product). The t-free product of (A, ϕA) and (B, ϕB), defined up to an
isomorphism of non-commutative probability space, is the non-commutative probability space
(C, ϕ|C), where C is the subalgebra generated by A and utBu∗

t in

(X , ϕ) := [(A, ϕA) ⊗ (B, ϕB)] ∗ (U (t), ϕU(t)).

A few simple observations are in order.

Remark 2.2. Both (A, ϕA) and (B, ϕB) can be identified with subalgebras of the algebra of
their t-free product (namely with (A, ϕ|A) and (utBu∗

t , ϕ|utBu∗

t
)). More specifically, if one defines

Ast := {a ∈ A ; ϕA(a) = 0, ϕA(aa∗) = 1}, Bst := {b ∈ B ; ϕB(b) = 0, ϕB(bb∗) = 1},
then any element in the algebra of the t-free product (A, ϕA) and (B, ϕB) can be uniquely written
as a constant term plus a linear combination of words in the elements of Ast ∪utBstu

∗
t where no

two consecutive letters both belong to Ast or to utBstu
∗
t .

Remark 2.3. As a consequence, since ut is unitary and (ut, u
∗
t ) has the same non-commutative

distribution as (u∗
t , ut), the t-free product of (A, ϕA) and (B, ϕB) is clearly isomorphic, as a

non-commutative probability space, to the t-free product of (B, ϕB) and (A, ϕA).

Remark 2.4. Another consequence of Remark 2.2 is that as a unital algebra, the algebra of
the t-free product of (A, ϕA) and (B, ϕB) is isomorphic to the free product of the unital algebras

Ã and B̃, where Ã (resp. B̃) is the bilateral ideal of the elements x of A (resp. of B) such
that ϕA(xx∗) = 0 (resp. ϕB(xx∗) = 0). Thus if A and B are subalgebras of the algebra of
a non-commutative probability space (M, ϕ), there is a canonical algebra morphism from the
algebra of the t-free product of (A, ϕ|A) and (B, ϕ|B) to M whose restriction to A∪B preserves
the expectation.

Now, we can give the definition of t-freeness. A real t ∈ [0,+∞] is fixed.

Definition 2.5 (t-freeness). Let (M, τ) be a non-commutative probability space.
- Two subalgebras A,B of M are said to be t-free if the canonical algebra morphism from the

algebra of the t-free product of (A, ϕA) and (B, ϕB) to M mentioned in Remark 2.4 preserves
the expectation.

- Two subsets X,Y of M are said to be t-free if the subalgebras they generate are t-free.

Remark 2.6. Note that for t = 0, t-freeness is simply the independence, whereas it follows
from [HL00] that in the case where t = +∞, it is the freeness.

The following proposition is obvious from the definition of t-freeness.
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Proposition 2.7. Let (M, τ) be a non-commutative probability space. Let {a1, . . . , an}, {b1, . . . , bm}
be two t-free subsets of M. Then the joint non-commutative distribution of the family

(a1, . . . , an, b1, . . . , bm)

depends only on t and on the distributions of the families (a1, . . . , an) and (b1, . . . , bm).

Proposition-Definition 2.8 (Additive and multiplicative t-free convolutions). Let us fix t ∈
[0,+∞). Let µ, ν be compactly supported probability measures on the real line (resp. on [0,+∞),
on the unit circle). Let a, b are t-free self-adjoint elements (resp. positive elements, unitary

elements) with distributions µ, ν. Then the distribution of a + b (resp. of
√

ba
√

b, of ab) is a
compactly supported probability measure on the real line which depends only on t, µ and ν, and
which will be denoted by µ ∗t ν (resp. µ ⊙t ν).

Proof. Let us treat the case of the sum of two self-adjoint elements. The other cases can be
treated analogously. From Proposition 2.7, it follows that the moments of a + b depend only
on µ and ν. To see that these are the moments of a compactly supported probability measure
on the real line, introduce M > 0 such that the supports of µ and ν are both contained in
[−M,M ]. Then for all n ≥ 1, by Hölder inequalities in a non-commutative probability space
[N74], ϕ((a + b)2n) ≤ 22nM2n. By Remark 1.5, the result follows. �

Proposition 2.9 (Matricial model for the t-freeness). For each n ≥ 1, let Mn and Nn be
diagonal random matrices whose distributions have limits. Let also, for each n, Sn be the matrix
of a uniform random permutation of {1, . . . , n} and Un be a random n by n unitary matrix
distributed according to the law of a Brownian motion on the unitary group at time t. Suppose
that for each n, the sets of random variables {Mn, Nn}, {Sn}, {Un} are independent. Then as n

tends to infinity, the non-commutative distribution of

(Mn, UnSnNnS∗
nU∗

n)

converges in probability to that of a pair (a, b) of self-adjoint elements of a non-commutative
probability space which are t-free.

Proof. By Theorem 1.13, the non-commutative distribution of (Mn, SnNnS∗
n) converges to the

one of a pair (x, y) of independent elements. Moreover, since for all n, the law of Un is invariant
by conjugation, by Theorems 1.13 and 1.18, the family of sets

({Mn, SnNnS∗
n}, {Un})

is asymptotically free and the limit distribution of Un is that of a free unitary Brownian motion
at time t. By definition of t-freeness, this concludes the proof. �

Corollary 2.10. With the notation of the previous proposition, in the case where Mn, Nn have
real coefficients and where their limit spectral laws, denoted respectively by µ, ν are compactly
supported, the measure µ ∗t ν is the limit spectral law of Mn + UnPnNnP ∗

nU∗
n.

3. Computation rules for t-freeness

3.1. Multivariate free Itô calculus.
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3.1.1. Technical preliminaries. In this section, we shall extend some results of [BS98] to the mul-
tivariate case. Let us first recall basics of free stochastic calculus. For more involved definitions,
the reader should refer to sections 1-2 of [BS98]. Let (M, τ) be a faithful2 non-commutative
probability space endowed with a filtration (Mt)t≥0 and an (Mt)t≥0-free additive Brownian
motion (Xt)t≥0. Let Mop be the opposite algebra of M (it is the same vector space, but it is
endowed with the product a ×op b = ba). We shall denote by ♯ the left actions of the algebra
M⊗Mop on M and M⊗M defined by (a ⊗ b)♯u = aub and (a ⊗ b)♯(u ⊗ v) = au ⊗ vb. The
algebras M and M⊗Mop are endowed with the inner products defined by 〈a, b〉 = τ(ab∗) and
〈a⊗b, c⊗d〉 = τ(ac∗)τ(bd∗). The Riemann integral of functions defined on a closed interval with
left and right limits at any point with values in the Hilbert space3 L2(M, τ) is a well known
notion. Now, we shall recall the definition of the stochastic integral. A simple adapted biprocess
is a piecewise constant map U from [0,+∞) to M⊗Mop vanishing for t large enough such that
Ut ∈ Mt ⊗Mt for all t. The set of simple biprocesses is endowed with the inner product

〈U, V 〉 =

∫ ∞

0
〈Ut, Vt〉dt.

We shall denote by Ba
2 the closure in L2(M, τ) of the set of simple adapted biprocesses. Let

U be a simple adapted biprocess. Then there exists times 0 = t0 ≤ t1 ≤ · · · ≤ tm such that L

(resp. U) is constant on each [ti, ti+1) and vanishes on [tm,+∞). Then we define
∫ ∞

0
UtdXt =

m−1
∑

i=0

Uti♯(Xti+1 − Xti).

It can be proved (Corollary 3.1.2 of [BS98]) that the map U 7→
∫ ∞
0 UtdXt can be extended

isometrically from Ba
2 to L2(M, τ).

3.1.2. Free Itô processes. We shall call a free Itô process any process

(1) At = A0 +

∫ t

0
Lsds +

∫ t

0
UsdXs,

where A0 ∈ M0, L is an adapted process with left and right limit at any point and U ∈ Ba
2 . In

this case, we shall denote

(2) dAt = Ltdt + Ut♯dXt.

The part Ut♯dXt of this expression is called the martingale part of A. Note that the process A

is determined by A0 and dAt.
We shall use the following lemma, which follows from Proposition 2.2.2 of [BS98] and from

the linearity of τ .

Lemma 3.1. Let At be as in (1). Then τ(At) = τ(A0) +
∫ t
0 τ(Ls)ds.

3.1.3. Multivariate free Itô calculus. Consider n elements a1, . . . , an ∈ M for some n ≥ 2.
Consider also two elements u =

∑

k xk ⊗ yk, v =
∑

l zl ⊗ tl of M⊗Mop. For all 1 ≤ i < j ≤ n,
we define an element of M by setting

〈〈a1, . . . , ai−1, u, ai+1, . . . , aj−1, v, aj+1, . . . , an〉〉i,j =
∑

k,l

a1 · · · ai−1xkτ(ykai+1 · · · aj−1zl)tlaj+1 · · · an.

2A non-commutative probability space (M, τ ) is said to be faithful if for all x in M \ {0}, τ (xx∗) > 0. Any
non-commutative probability space can be quotiented by a bilateral ideal into a faithful space.

3The Hilbert space L2(M, τ ) is the completion of M with respect to the inner product 〈x, y〉 = τ (xy∗).
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The following theorem follows from Theorem 4.1.12 and the remark following in [BS98].

Theorem 3.2. Let At = A0 +
∫ t
0 Lsds +

∫ t
0 UsdXs and Bt = B0 +

∫ t
0 Ksds +

∫ t
0 VsdXs be two

Itô processes with respect to the same free Brownian motion (Xt). Then AB is a free Itô process
and with the notations of (2),

d(AB)t = AtdBt + (dAt)Bt + 〈〈Ut, Vt〉〉1,2dt.

In order to prove computation rules for t-freeness, we shall need the following theorem.

Theorem 3.3. Let A1, . . . , An be free Itô processes with respect to the same Brownian motion.

For all k, denote Ak,t = Ak,0 +
∫ t
0 Lk,sds +

∫ t
0 Uk,sdXs. Then A1 · · ·An is a free Itô process and

d(A1 · · ·An)t =
n

∑

k=1

A1,t · · ·Ak−1,t(dAk,t)Ak+1,t · · ·An,t

+
∑

1≤k<l≤n

〈〈A1,t, . . . , Ak−1,t, Uk,t, Ak+1,t, . . . , Al−1,t, Ul,t, Al+1,t, . . . , An,t〉〉k,ldt.

Proof. Let us prove this theorem by induction on n. For n = 1, it is obvious. Let us suppose
the result to hold at rank n. Then the martingale part of A1 · · ·An is

n
∑

k=1

A1,t · · ·Ak−1,t(Uk,t♯dXk,t)Ak+1,t · · ·An,t.

Thus by Theorem 3.2, A1 · · ·An+1 is a free Itô process and

d(A1 · · ·An+1)t =(A1 · · ·An)tdAn+1,t + (d(A1 · · ·An)t)An+1,t

+

n
∑

k=1

〈〈A1,t, . . . , Ak−1,t, Uk,t, Ak+1,t, . . . , An,t, Un+1,t〉〉k,n+1dt

=
n+1
∑

k=1

A1,t · · ·Ak−1,t(dAk,t)Ak+1,t · · ·An,t

+
∑

1≤k<l≤n

〈〈A1,t, . . . , Ak−1,t, Uk,t, Ak+1,t, . . . , Al−1,t, Ul,t, Al+1,t, . . . , An,t, An+1,t〉〉k,ldt

+
n

∑

k=1

〈〈A1,t, . . . , Ak−1,t, Uk,t, Ak+1,t, . . . , An,t, Un+1,t〉〉k,n+1dt,

which concludes the proof. �

3.2. Computation rules for t-freeness.

3.2.1. Main result. In order to do computations with elements which are t-free, we have to find
out a formula for the expectation of a product of elements of the type

(3) x1uty1u
∗
t x2uty2u

∗
t · · · xnurynu∗

t ,

for {x1, . . . , xn} independent with {y1, . . . , yn} and {x1, y1, . . . , xn, yn} free with ut, free unitary
Brownian motion. Actually, for the result which follows, the independence of the xi’s and the
yi’s will not be useful, thus we consider a non-commutative probability space (M, τ), an integer
n ≥ 1, a1, . . . , a2n ∈ M and a free unitary Brownian motion (ut) which is free with {a1, . . . , a2n}.
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In order to have some more concise formulas, it will be useful to multiply the product of (3) by
ent. So we define

f2n(a1, . . . , a2n, t) = entτ(a1uta2u
∗
t · · · a2n−1uta2nu∗

t ).

We shall use the convention f0(a, t) = τ(a) for all a ∈ M.
Since f2n(a1, . . . , a2n, 0) = τ(a1 · · · a2n), the following theorem allows us to deduce all func-

tions f2n(a1, . . . , a2n, t) (thus the expectation of any product of the type of (3)) from the joint
distribution of the ai’s.

Theorem 3.4. The family of functions t 7→ f2n(a1, . . . , a2n, t) satisfies the following differential
system: for all n ≥ 1, a1, . . . , a2n ∈ M free with the process (ut),

∂

∂t
f2n(a1, . . . , a2n, t) = −

∑

1≤k<l≤2n
k=l mod 2

f2n−(l−k)(a1, . . . , ak, al+1, . . . , a2n, t)fl−k(ak+1, . . . , al, t)

+ et
∑

1≤k<l≤2n
k 6=l mod 2

f2n−(l−k)−1(a1, . . . , ak−1, akal+1, al+2, . . . , a2n, t)fl−k−1(alak+1, ak+2, . . . , al−1, t).

Proof. Let us introduce the process (vt) defined by vt = et/2ut for all t. As explained in the
beginning of section 2.3 of [B97a], this process can be realized as an Itô process, with the formula

vt = 1 + i

∫ t

0
dXsvs.

Thus one can realize the family of non-commutative random variables a1, . . . , a2n, (vt)t≥0 in
a faithful non-commutative probability space (M, τ) endowed with a filtration (Mt)t≥0 and
an additive free Brownian motion (Xt)t≥0 such that a1, . . . , a2n ∈ M0 and for all t, vt =

1 + i
∫ t
0 dXsvs and v∗t = 1 − i

∫ t
0 v∗sdXs. By definition of f2n(a1, . . . , a2n, t), one has

f2n(a1, . . . , a2n, t) = τ(a1vta2v
∗
t · · · a2n−1vta2nv∗t ).

Note that since all ai’s belong to M0, the processes A1 := (a1vt), A2 := (a2v
∗
t ), . . . , A2n−1 :=

(a2n−1vt), A2n := (a2nv∗t ) are all free Itô processes: if one defines Uk,t = ak ⊗ ivt for k odd and
Uk,t = −iakv

∗
t ⊗ 1 for k even, then for all k, dAk,t = Uk,t♯dXt. Thus by theorem 3.3, A1 · · ·A2n

is an Itô process such that for all t,

(A1 · · ·A2n)t =(A1 · · ·A2n)0 +

∫ t

0

2n
∑

k=1

A1,s · · ·Ak−1,s(Uk,s♯dXs)Ak+1,s · · ·A2n,s

+

∫ t

0

∑

1≤k<l≤2n

〈〈A1,s, . . . , Ak−1,s, Uk,s, Ak+1,s, . . . , Al−1,s, Ul,s, Al+1,s, . . . , A2n,s〉〉k,lds.

Hence by lemma 3.1, for all t,

∂

∂t
f2n(a1, . . . , a2n, t) =(4)

∑

1≤k<l≤2n

τ(〈〈A1,t, . . . , Ak−1,t, Uk,t, Ak+1,t, . . . , Al−1,t, Ul,t, Al+1,t, . . . , A2n,t〉〉k,l).

Now, fix 1 ≤ k < l ≤ 2n.
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• If k = l mod 2. Suppose for example that k, l are both odd (the other case can be treated
in the same way). Then Uk,t = ak ⊗ ivt and Ul,t = al ⊗ ivt, which implies that

τ(〈〈A1,t, . . . , Ak−1,t, Uk,t, Ak+1,t, . . . , Al−1,t, Ul,t, Al+1,t, . . . , A2n,t〉〉k,l) =

iτ(a1vta2v
∗
t · · · ak−1v

∗
t akvtal+1vt · · · a2nv∗t )iτ(vtak+1v

∗
t · · · al−1v

∗
t al).

Note that since τ is tracial and the joint distribution of a1, . . . , a2n, (vt)t≥0 is the same as the
one of a1, . . . , a2n, (v∗t )t≥0, we have τ(vtak+1v

∗
t · · · al−1v

∗
t al) = τ(ak+1vt · · · al−1vtalv

∗
t ). Hence

τ(〈〈A1,t, . . . , Ak−1,t, Uk,t, Ak+1,t, . . . , Al−1,t, Ul,t, Al+1,t, . . . , A2n,t〉〉k,l) =(5)

− f2n−(l−k)(a1, . . . , ak, al+1, . . . , a2n, t)fl−k(ak+1, . . . , al, t).

• If k 6= l mod 2. Suppose for example k to be odd and l to be even (the other case can be
treated in the same way). Then Uk,t = ak ⊗ ivt and Ul,t = −aliv

∗
t ⊗ 1, which implies that

τ(〈〈A1,t, . . . , Ak−1,t, Uk,t, Ak+1,t, . . . , Al−1,t, Ul,t, Al+1,t, . . . , A2n,t〉〉k,l) =

τ(a1vta2v
∗
t · · · ak−1v

∗
t akal+1vt · · · a2nv∗t )(−i2)τ(vtak+1v

∗
t · · · al−1vtalv

∗
t ).

Note that since v∗t vt = et, τ is tracial and the joint distribution of a1, . . . , a2n, (vt)t≥0 is the same
as the one of a1, . . . , a2n, (v∗t )t≥0, we have τ(vtak+1v

∗
t · · · al−1vtalv

∗
t ) = etτ(alak+1vt · · · al−1v

∗
t ).

Hence

τ(〈〈A1,t, . . . , Ak−1,t, Uk,t, Ak+1,t, . . . , Al−1,t, Ul,t, Al+1,t, . . . , A2n,t〉〉k,l) =(6)

etf2n−(l−k)−1(a1, . . . , ak−1, akal+1, al+2, . . . , a2n, t)fl−k−1(alak+1, ak+2, . . . , al−1, t).

Equations (4), (5) and (6) together conclude the proof. �

The following proposition, which we shall use later, is a consequence of the previous theorem.

Proposition 3.5. In a non-commutative probability space (M, τ), consider two independent
normal elements a, b with symmetric compactly supported laws. Let (ut) be a free unitary Brow-
nian motion which is free with {a, b}. Then the function

G(t, z) =
∑

n≥1

τ((autbu
∗
t )

2n)e2ntzn

is the only solution, in a neighborhood of (0, 0) in [0,+∞) × C, to the nonlinear, first order
partial differential equation

∂G

∂t
+ 4zG

∂G

∂z
= 0(7)

G(0, z) =
∑

n≥1

τ(a2n)τ(b2n)zn.(8)

Proof. Let us define, for all n ≥ 1, gn(t) = τ((autbu
∗
t )

n)ent. For n = 0, we set g0(t) = 0. Let
us fix n ≥ 1. In order to apply the previous theorem, let us define, for i = 1, . . . , 2n, ai = a if i

is odd and ai = b if i is even. By the previous theorem, for all n ≥ 1, we have

∂

∂t
gn(t) = −

∑

1≤k<l≤2n
k=l mod 2

gn−(l−k)/2(t)g(l−k)/2(t)(9)

+ et
∑

1≤k<l≤2n
k 6=l mod 2

f2n−(l−k)−1(a1, . . . , ak−1, akal+1, al+2, . . . , a2n, t)fl−k−1(alak+1, ak+2, . . . , al−1, t).



FROM CLASSICAL TO FREE INDEPENDENCE 15

Now, note that since for any ε, ε′ = ±1, the joint distribution of (a, b, ut) is the same as the
one of (εa, ε′b, ut), gp(t) = 0 when p is odd. Thus in the first sum of (9) only pairs (k, l) such
that k = l mod 4 have a non null contribution. For the same reason, all terms in the second
sum are null. Indeed, for any 1 ≤ k < l ≤ 2n such that k 6= l mod 2, the set {k+1, k+2, . . . , l},
whose cardinality is odd, has either an odd number of odd elements or an odd number of even
elements. To sum up, for all n ≥ 1, we have

∂

∂t
g2n(t) = −

∑

1≤k<l≤4n
k=l mod 4

g2n−(l−k)/2(t)g(l−k)/2(t) = −4
∑

1≤i<j≤n

g2(n−(j−i))(t)g2(j−i)(t)

= −4

n−1
∑

m=1

mg2(n−m)(t)g2m(t) = −2

n−1
∑

m=1

mg2(n−m)(t)g2m(t) − 2

n−1
∑

m=1

(n − m)g2(n−m)(t)g2m(t)

= −2n

n−1
∑

m=1

g2(n−m)(t)g2m(t) = −2n

n
∑

m=0

g2(n−m)(t)g2m(t).

Thus since G(t, z) =
∑

n≥1 g2n(t)zn =
∑

n≥0 g2n(t)zn, we have

∂G

∂t
= −2z

∂G2

∂z
,

which proves (7). The formula (8) is obvious.
To prove the uniqueness, let H(t, z) =

∑

n≥0 hn(t)zn be another solution of (7) and (8).

By (8), for all n ≥ 0, we have hn(0) = g2n(0) and by (8), for all n ≥ 0, we have ∂
∂thn(t) =

−2n
∑n

m=0 hn−m(t)hm(t), which implies that h0 = 0 and that by induction on n, hn = g2n. �

3.2.2. Examples. Let A,B be two independent subalgebras of a non-commutative probability
space (M, τ) and (ut) be a free unitary Brownian motion free from A∪ B.

1) For a ∈ A, b ∈ B, for all t ≥ 0, we have

(10) τ(autbu
∗
t ) = τ(a)τ(b).

(In fact, it even follows from theorem 3.4 that without the assumption that a and b are inde-
pendent, for all t, we have τ(autbu

∗
t ) = e−tτ(ab) + (1 − e−t)τ(a)τ(b)).

2) For a, a′ ∈ A, b, b′ ∈ B, for all t ≥ 0, we have

(11) τ(autbu
∗
t a

′utb
′u∗

t ) =

(τ(a)τ(a′)τ(bb′) + τ(aa′)τ(b)τ(b′) − τ(a)τ(a′)τ(b)τ(b′))(1 − e−2t) + τ(aa′)τ(bb′)e−2t.
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3) For a, a′, a′′ ∈ A and b, b′, b′′ ∈ B, we have

τ(autbu
∗
t a

′utb
′u∗

t a
′′utb

′′u∗
t )(12)

= τ(a)τ(a′)τ(a′′)τ(b)τ(b′)τ(b′′)(2 − 6e−2t + 4e−3t)

−(1 − 3e−2t + 2e−3t)τ(a)τ(a′)τ(a′′)τ(b)τ(b′b′′)

−(1 − 3e−2t + 2e−3t)τ(a)τ(a′)τ(a′′)τ(bb′)τ(b′′)

−(1 − 3e−2t + 2e−3t)τ(a)τ(a′)τ(a′′)τ(bb′′)τ(b′)

−(1 − 3e−2t + 2e−3t)τ(aa′)τ(a′′)τ(b)τ(b′)τ(b′′)

−(1 − 3e−2t + 2e−3t)τ(aa′′)τ(a′)τ(b)τ(b′)τ(b′′)

−(1 − 3e−2t + 2e−3t)τ(a)τ(a′a′′)τ(b)τ(b′)τ(b′′)

+(1 − 3e−2t + 2e−3t)[τ(a)τ(a′)τ(a′′)τ(bb′b′′) + τ(aa′a′′)τ(b)τ(b′)τ(b′′)]

−(e−2t − e−3t)[τ(aa′)τ(a′′)τ(bb′)τ(b′′) + τ(aa′)τ(a′′)τ(bb′′)τ(b′) + τ(aa′′)τ(a′)τ(bb′′)τ(b′)

+τ(aa′′)τ(a′)τ(b)τ(b′b′′) + τ(a)τ(a′a′′)τ(b′′)τ(bb′) + τ(a)τ(a′a′′)τ(b)τ(b′b′′)]

+(1 − 2e−2t + e−3t)[τ(aa′)τ(a′′)τ(b′b′′)τ(b) + τ(aa′′)τ(a′)τ(bb′)τ(b′′) + τ(a)τ(a′a′′)τ(bb′′)τ(b′)]

+(e−2t − e−3t)τ(bb′b′′)[τ(a)τ(a′a′′) + τ(aa′)τ(a′′) + τ(aa′′)τ(a′)]

+(e−2t − e−3t)τ(aa′a′′)[τ(b)τ(b′b′′) + τ(bb′)τ(b′′) + τ(bb′′)τ(b′)]

+e−3tτ(aa′a′′)τ(bb′b′′)

It can be verified that the last formula actually corresponds to the formula of E(aba′b′a′′b′′)
with {a, a′, a′′} and {b, b′, b′′} independent when t = 0, and to the formula of τ(aba′b′a′′b′′) with
{a, a′, a′′} and {b, b′, b′′} free when t tends to infinity.

3.3. Multiplicative and additive t-free convolutions of two symmetric Bernoulli laws.

3.3.1. Multiplicative case. Here, we shall compute the multiplicative t-free convolution of δ−1+δ1
2

(considered as a law on the unit circle) with itself.

Theorem 3.6. For all t ≥ 0, δ−1+δ1
2 ⊙t

δ−1+δ1
2 is the only law on the unit circle which is invariant

under the symmetries with respect to the real and imaginary axes and whose push-forward by
the map z 7→ z2 has the law of u4t, a free unitary Brownian motion taken at time 4t.

Remark 3.7. The moments of u4t have been computed by P. Biane at Lemma 1 of [B97a]: for
all n ≥ 1,

τ(un
4t) =

e−2nt

n

n−1
∑

k=0

(−4nt)k

k!

(

n

k + 1

)

.

Proof. In a non-commutative probability space (M, τ), consider two independent normal

elements a, b with law δ−1+δ1
2 . Let (ut) be a free unitary Brownian motion which is free with

{a, b}. Then δ−1+δ1
2 ⊙t

δ−1+δ1
2 is the distribution of the unitary element autbu

∗
t . Since the joint

distribution of (a, b, ut) is the same as the one of (−a, b, ut),
δ−1+δ1

2 ⊙t
δ−1+δ1

2 is invariant under
the transformation z 7→ −z. Moreover, (autbu

∗
t )

∗ = utbu
∗
t a has the same distribution as autbu

∗
t

(because τ is tracial and ut has the same law as u∗
t ), hence δ−1+δ1

2 ⊙t
δ−1+δ1

2 is invariant under

the transformation z 7→ z̄. This proves that δ−1+δ1
2 ⊙t

δ−1+δ1
2 is invariant under the symmetries

with respect to the real and imaginary axes.
Since any distribution on the unit circle is determined by its moments, to prove that the

push-forward of δ−1+δ1
2 ⊙t

δ−1+δ1
2 by the map z 7→ z2 is the law of u4t, it suffices to prove that
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for all n ≥ 1,

τ((autbu
∗
t )

2n) = τ(un
4t),

i.e. to prove that the functions

F1(t, z) =
∑

n≥1

τ((autbu
∗
t )

2n)e2ntzn and F2(t, z) =
∑

n≥1

τ(un
4t)e

2ntzn

are equal. It follows from Proposition 3.5 that F1 is the only solution, in a neighborhood of
(0, 0) in [0,+∞)×C, to equation (7) satisfying F1(0, z) = z

1−z . But it follows from Lemma 1 of

[B97a] that F2 is also a solution of (7) with the same initial conditions. By uniqueness, it closes
the proof. �

For all t ∈ [0, 1], let us define β(t) = 2
√

t(1 − t) + arccos(1 − 2t). Then β(t) is an increasing
function of t which goes from 0 to π when t goes from 0 to 1. P. Biane has proved in [B97b, Prop.
10] that the distribution of u4t is absolutely continuous with respect to the Lebesgue measure on
the unit circle, that its support is the full unit circle for t ≥ 1, and the set {eiθ : |θ| ≤ β(t)} for
all t ∈ [0, 1]. Moreover, the density of this distribution with respect to the uniform probability
measure on the unit circle, which we denote by ρ4t, is positive and analytic on the interior of
its support for all t ≥ 0, except at −1 for t = 1. From these facts, one deduces easily the next
result.

Corollary 3.8. For all t > 0, the measure δ−1+δ1
2 ⊙t

δ−1+δ1
2 has a density with respect to the

uniform probability measure on the unit circle, which we shall denote by σt and which is given by
the formula σt(z) = ρ4t(z

2) for all z in the unit circle. In particular, the support of this measure
is the full unit circle for t ≥ 1 and the set {eiθ : |θ| ≤ 1

2β(t) or |π − θ| ≤ 1
2β(t)} for t ∈ [0, 1].

The density σt is positive and analytic on the interior of its support for all t ≥ 0, except at ±i

for t = 1.

3.3.2. Additive case. Here, we shall compute the additive t-free convolution of δ−1+δ1
2 (considered

as a law on the real line) with itself.

Theorem 3.9. For all t ≥ 0, δ−1+δ1
2 ∗t

δ−1+δ1
2 is the only symmetric law on the real line whose

push-forward by the map x 7→ x2 has the law of 2 + v + v∗, with v unitary element distributed

according to δ−1+δ1
2 ⊙t

δ−1+δ1
2 .

Remark 3.10. One can recover the fact that as t goes from 0 to +∞, δ−1+δ1
2 ∗t

δ−1+δ1
2 passes

from δ−1+δ1
2 ∗ δ−1+δ1

2 = 1
4(δ−2 + 2δ0 + δ2) to δ−1+δ1

2 ⊞
δ−1+δ1

2 = 1[−2,2](x) dx
π
√

2−x2
.

Proof. In a non-commutative probability space (M, τ), consider two independents normal

elements a, b with law δ−1+δ1
2 . Let (ut) be a free unitary Brownian motion which is free with

{a, b}. Then δ−1+δ1
2 ∗t

δ−1+δ1
2 is the distribution of a + utbu

∗
t . Since the joint distribution of

(a, b, ut) is the same as the one of (−a,−b, ut),
δ−1+δ1

2 ∗t
δ−1+δ1

2 is symmetric. Note that since

a2 and b2 have δ1 for distribution, one can suppose that a2 = b2 = 1. In this case,

(a + utbu
∗
t )

2 = 2 + autbu
∗
t + utbu

∗
t a = 2 + autbu

∗
t + (autbu

∗
t )

∗,

and the result is obvious by definition of ⊙t. �

From the last result and Proposition 3.8, we deduce the following.
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Corollary 3.11. For all t > 0, the measure δ−1+δ1
2 ∗t

δ−1+δ1
2 has a density with respect to the

Lebesgue measure on [−2, 2], which we shall denote by ηt and which is given by the formula

∀x ∈ [−2, 2] , ηt(x) = ρ4t(e
4i arccos x

2 )
1

π
√

4 − x2
.

The support of this measure is the interval [−2, 2] for t ≥ 1, and the set
[

−2,−2 cos
β(t)

4

]

∪
[

−2 sin
β(t)

4
, 2 sin

β(t)

4

]

∪
[

2 cos
β(t)

4
, 2

]

for t ∈ [0, 1]. The density ηt is positive and analytic on the interior of its support for all t ≥ 0,
except at ±

√
2 for t = 1.

4. The lack of cumulants

In this section, we investigate the existence of an analogue of classical and free cumulants in
the context of t-freeness. Informally, the problem is to find multilinear forms defined on any
non-commutative probability space which vanish when evaluated on a family of elements which
can be split into two non-empty subfamilies which are t-free.

More precisely, given a non-commutative probability space (M, ϕ), we would like to know
if there exists a family (kn)n≥2 of multilinear forms on M, with kn an n-linear form for all
n ≥ 2, such that, for all n ≥ 2, all n1, n2 > 0 such that n1 + n2 = n, all m1, . . . ,mn in M
such that {m1, . . . ,mn1} and {mn1+1, . . . ,mn1+n2} are t-free, and finally for all σ ∈ Sn, one has
kn(mσ(1), . . . ,mσ(n)) = 0.

Our main result is negative: there does not exist in general such a family of multilinear forms,
at least in a large class which we describe now.

Definition 4.1. Let (M, ϕ) be a non-commutative probability space. Let n ≥ 1 be an integer.
Let σ be an element of Sn. We define the n-linear form ϕσ on M as follows:

∀m1, . . . ,mn ∈ M , ϕσ(m1, . . . ,mn) =
∏

c cycle of σ
c=(i1...ir)

ϕ(mi1 . . . mir).

Using only the algebra structure of M and the linear form ϕ, a linear combination of the
forms {ϕσ : σ ∈ Sn} seems to be the most general n-linear form that one can construct on M.
We seek cumulants within this wide class of n-linear forms. Our definition does not require that
the vanishing of cumulants characterize t-freeness. We only insist that mixed cumulants of t-free
variable vanish.

Definition 4.2. Let n ≥ 2 be an integer. Let t ≥ 0 be a real number. A t-free cumulant of order

n is a collection (c(σ))σ∈Sn
of complex numbers such that

∑

σ n−cycle

c(σ) 6= 0 and the following

properties hold for every non-commutative probability space (M, ϕ).
Let A and B be two sub-algebras of M which are t-free with respect to ϕ. Let m1, . . . ,mn be n

elements of A ∪ B, which do not all belong to A, and not all to B. Then

(13)
∑

σ∈Sn

c(σ)ϕσ(m1, . . . ,mn) = 0.

Let us emphasize that what we call cumulant is not a specific multilinear form, but rather a
collection of coefficients which allows one to define a multilinear form on any non-commutative
probability space.



FROM CLASSICAL TO FREE INDEPENDENCE 19

If (c(σ))σ∈Sn
is a t-free cumulant of order n and m1, . . . ,mn are elements of a non-commutative

probability space (M, ϕ), at least one of which is equal to 1, then

(14)
∑

σ∈Sn

c(σ)ϕσ(m1, . . . ,mn) = 0.

Indeed, the subalgebra C.1 of M is t-free with any subalgebra of M.
We extend the previous definition by including the free case t = +∞. We will mainly consider

collections (c(σ))σ∈Sn
with the property that c(ρσρ−1) = c(σ) for all σ, ρ ∈ Sn. We call such

collections conjugation-invariant. They are in fact indexed by conjugacy classes of Sn, that is,
integer partitions of n. Thus, we write use as well the notation (cλ)λ⊢n for a conjugation-invariant
collection.

Our main results are the following.

Theorem 4.3. For all t ∈ [0,+∞] and all n ∈ {2, 3, 4, 5, 6}, there exists, up to scaling, a unique
conjugation-invariant t-free cumulant of order n.

Theorem 4.4. There exists a t-free cumulant of order 7 if and only if t = 0 or t = +∞.

Let us start by proving that we lose nothing by focusing on conjugation-invariant t-free cu-
mulants.

Lemma 4.5. If for some t and some n there exists a t-free cumulant of order n, then there
exists such a cumulant (c(σ))σ∈Sn

such that moreover c(σ) = c(ρσρ−1) for all σ, ρ ∈ Sn.

Proof. The point is that the order of the arguments is arbitrary in (13). Hence, if (13) is satisfied,
then for all ρ ∈ Sn,

0 =
∑

σ∈Sn

c(σ)ϕσ(mρ−1(1), . . . ,mρ−1(n)) =
∑

σ∈Sn

c(σ)ϕρ−1σρ(m1, . . . ,mn)

=
∑

σ∈Sn

c(ρσρ−1)ϕσ(m1, . . . ,mn).

Hence, if (c(σ))σ∈Sn
is a t-free cumulant, then so is (c(ρσρ−1))σ∈Sn

. By averaging over ρ, we
get a conjugation-invariant cumulant. �

Observe that the assumption made in the definition of a cumulant that the sum of c(σ) when
σ spans the n-cycles is nonzero implies that cn 6= 0 for any conjugation-invariant cumulant.

Let us introduce some notation. Given a permutation σ of {1, . . . , n}, we denote by {{σ}} the
partition of {1, . . . , n} whose blocks are the sets underlying the cycles of σ. Let P(n) denote the
set of partitions of the set {1, . . . , n}. Let (A, ϕ) be a commutative non-commutative probability
space. For each partition π ∈ P(n), we define an n-linear form ϕπ on A by setting ϕπ = ϕσ ,
where σ is any permutation of {1, . . . , n} such that {{σ}} = π. Since A is commutative, this
definition does not depend on the choice of σ. Finally, when σ is a permutation of {1, . . . , n},
we say that i, j ∈ {1, . . . , n} are consecutive in a cycle of σ if σ(i) = j or σ(j) = i. We will use
repeatedly the following fact, which is a consequence of Proposition 2.7 and Proposition 1 of
[B98].

Lemma 4.6. Choose two integers k, l > 0 and set n = k + l.
1. There exists universal coefficients (C(σ, π, π′))σ∈Sn,π∈P(k),π′∈P(l) such that the following prop-
erty holds:

Let A and B be two commutative sub-algebras of some non-commutative probability space
(M, ϕ) which are t-free with respect to ϕ. Consider σ ∈ Sn. For all a1, . . . , ak ∈ A and all
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b1, . . . , bl ∈ B,

(15) ϕσ(a1, . . . , ak, b1, . . . , bl) =
∑

π∈P(k),π′∈P(l)

C(σ, π, π′)ϕπ(a1, . . . , ak)ϕπ′(b1, . . . , bl).

2. The coefficient C(σ, π, π′) can be non-zero only if every block of π is contained in a block of
{{σ}}.
3. If two elements i and j of {1, . . . , k} are consecutive in a cycle of σ, then C(σ, π, π′) can be
non-zero only if i and j are in the same block of π.

With the notation of the lemma above, we associate to every collection (c(σ))σ∈Sn
the fol-

lowing family of coefficients:

(16) ∀π ∈ P(k), π′ ∈ P(l), Dc(π, π′) =
∑

σ∈Sn

c(σ)C(σ, π, π′),

which will play an important role in the proofs of Theorems 4.4 and 4.3.

Proof. (Theorem 4.4) Let us choose t > 0 a positive real. We prove by contradiction that there
exists no t-free cumulant of order 7. So, let us assume that there exists one and let (c(σ))σ∈S7

be one of them, which we choose to be conjugation-invariant thanks to Lemma 4.5. Thus, we
denote it also by (cλ)λ⊢7. Since c7 6= 0, we may and will assume that c7 = 1. Then, we proceed
as follows.

Let us consider a non-commutative probability space (M, ϕ) and two commutative sub-
algebras A and B of M which are t-free with respect to ϕ. Let us choose a1, a2, a3 ∈ A
and b1, b2, b3, b4, b5 ∈ B, which we assume to be all centered. Set k7 =

∑

σ∈S7
c(σ)ϕσ . By using

the t-freeness of A and B, we will express k7(a1, a2, b1, b2, b3, b4, b5) and k7(a1, a2, a3, b1, b2, b3, b4)
in terms of the coefficients (cλ)λ⊢7, the joint moments of a1, a2, a3, and the joint moments of
b1, b2, b3, b4, b5. By the assumption that k7 is a t-free cumulant, the two expressions that we
get must vanish. Since the distribution of the a’s and b’s is arbitrary, every coefficient of a
given product of moments of the a’s and b’s must vanish. This gives us linear relations on the
coefficients (cλ)λ⊢7, which will turn out to be incompatible.

Let us start with k7(a1, a2, b1, b2, b3, b4, b5). By Lemma 4.6, this quantity can be written as
∑

σ∈S7,π∈P(2),π′∈P(5)

c(σ)C(σ, π, π′)ϕπ(a1, a2)ϕπ′(b1, b2, b3, b4, b5)

=
∑

π∈P(2),π′∈P(5)

Dc(π, π′)ϕπ(a1, a2)ϕπ′(b1, b2, b3, b4, b5).(17)

We are thus interested in computing, for each pair (π, π′), the coefficient Dc(π, π′). It turns out
to be convenient to think of b1, . . . , b5 as occupying the slots 3 to 7 rather than 1 to 5 and to see
π′ as a partition of the set {3, . . . , 7} accordingly. We hope that no ambiguity will result from
this change in our conventions.

Since we have chosen to consider elements which are centered, the sum (17) can be re-
stricted to pairs of partitions without singletons. This leaves us with the following pairs (π, π′):
({{1, 2}}, {{3, 4, 5, 6, 7}}), ({{1, 2}}, {{3, 4}, {5, 6, 7}}) and those which are deduced from the
latter by permuting 3, 4, 5, 6, 7.

Let us compute Dc({{1, 2}}, {{3, 4, 5, 6, 7}}). By the second assertion of Lemma 4.6, the
permutations σ which contribute to this term must have 1, 2 on one hand, and 3, 4, 5, 6, 7 on the
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other hand, in the same cycle. This can occur if σ is either a 7-cycle or the product of a 2-cycle
and a 5-cycle.

Let us first compute the contribution of 7-cycles. The coefficient C(σ, {1, 2}, {3, 4, 5, 6, 7})
is not the same for all 7-cycles σ. We must distinguish between those in which 1 and 2 are
consecutive and those in which they are not. There are 2!5! 7-cycles in which 1 and 2 are
consecutive. For each such cycle σ, C(σ, {1, 2}, {3, 4, 5, 6, 7}) = 1, thanks to (10). In a cycle
where 1 and 2 are not consecutive, there may be one, two, three or four elements of {3, 4, 5, 6, 7}
between 1 and 2. In each case, there are 5! cycles, each contributing a factor e−2t, thanks to
(11).

Let us now compute the contribution of products of a transposition and a 5-cycle. There are
1!4! permutations with two cycles, one which contains 1, 2 and the other 3, 4, 5, 6, 7. Each such
permutation contributes a factor c52.

Altogether, we have found that

(18) Dc({{1, 2}}, {{3, 4, 5, 6, 7}}) = 24(c52 + 10(1 + 2e−2t)).

Let us now compute Dc({{1, 2}}, {{3, 4}, {5, 6, 7}}). By the second assertion of Lemma 4.6,
there are five possibilities for the partition {{σ}} underlying a permutation σ which contributes
to this coefficient. We study them one after the other.

•{{σ}} = {{1, 2, 3, 4, 5, 6, 7}}. Since, by the third assertion of Lemma 4.6, any two elements
of {3, 4, 5, 6, 7} which are consecutive in σ must be in the same block of π′ = {{3, 4}, {5, 6, 7}},
no element of {3, 4} can be consecutive to an element of {5, 6, 7} in σ. Since there are only two
a’s, the only possibility is that 3 and 4 on one hand, and 5, 6, and 7 on the other hand, are
consecutive in σ and separated by 1 and 2. There are 2!2!3! 7-cycles with this property. Each
of them contributes to the sum with a factor 1 − e−2t, according to (11).

•{{σ}} = {{1, 2}, {3, 4, 5, 6, 7}}. By the third assertion of Lemma 4.6, these permutations do
not contribute.

•{{σ}} = {{1, 2, 3, 4}, {5, 6, 7}}. There are two possible structures for the 4-cycle of σ in this
case. Either the a’s and the b’s are consecutive, or they are intertwined. In the first situation,
there are 2!2!2! permutations, each of which contributes c43, thanks to (10). In the second
situation, there are 2!2! permutations, because of a higher symmetry, each of which contributes
e−2tc43, thanks to (11).

•{{σ}} = {{1, 2, 5, 6, 7}, {3, 4}}. Again, there are two possible structures for the 5-cycle of
σ, depending on whether the a’s are consecutive or not. There are 2!3! permutations where
they are, and each contributes c52. There are also 2!3! permutations where they are not, each
contributing e−2tc52.

•{{σ}} = {{1, 2}, {3, 4}, {5, 6, 7}}. This is the simplest situation. There are 2 permutations
with this cycle structure and each contributes c322.

Finally,
(19)

Dc({{1, 2}}, {{3, 4}, {5, 6, 7}}) = 2
(

c322 + 2(2 + e−2t)c43 + 6(1 + e−2t)c52 + 12(1 − e−2t)
)

.

Let us perform the same kind of computations on

k7(a1, a2, a3, b1, b2, b3, b4) =
∑

π∈P({1,2,3}),π′∈P({4,5,6,7})
Dc(π, π′)ϕπ(a1, a2, a3)ϕπ′(b1, b2, b3, b4).

Since our variables are centered, the only pairs of partitions which occur in the sum are
({{1, 2, 3}}, {{4, 5, 6, 7}}), ({{1, 2, 3}}, {{4, 5}, {6, 7}}) and those which are deduced from the
latter by permuting 4, 5, 6, 7.
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Let us compute Dc({{1, 2, 3}}, {{4, 5, 6, 7}}). The permutations which contribute to this
coefficient are 7-cycles and products of a 3-cycle and a 4-cycle. As before, all 7-cycles do not
contribute in the same way. If the a’s are consecutive, which is the case for 3!4! 7-cycles, the
contribution is simply 1. If two a’s are consecutive and the third is on its own, the 7-cycle
contributes e−2t. In this case, there can be one, two or three b’s between the isolated a and the
pair of consecutive a’s, in the cyclic order. In each case, there are 3!4! possible 7-cycles. Finally,
the three a’s can be isolated. This happens in 3!4! 7-cycles, and each contributes e−3t, thanks
to (12). So far, we have a contribution of 144(1 + 3e−2t + e−3t). The contribution of products
of a 3-cycle and a 4-cycle is much simpler to compute: it is 2!3!c43. We find

(20) Dc({{1, 2, 3}}, {{4, 5, 6, 7}}) = 12(c43 + 12(1 + 3e−2t + e−3t)).

Let us finally compute Dc({{1, 2, 3}}, {{4, 5}, {6, 7}}). Again, by Lemma 4.6, there are five
possibilities for the partition {{σ}}, which we examine one after the other.

•{{σ}} = {{1, 2, 3, 4, 5, 6, 7}}. No element of {4, 5} can be consecutive with an element of
{6, 7} in σ. Still, there are several possibilities. Let us first consider the 7-cycles where 4, 5 on
one hand and 6, 7 on the other hand are consecutive. These two groups must be separated by
a’s. There are 2!2!2!3! such 7-cycles, and each contributes for 1 − e−2t, according to (11). Since
there are only three a’s, one at least of the two pairs {4, 5} and {6, 7} must be consecutive.
However, it can happen that one is not. This happens in 2!2!2!3! 7-cycles, and according to (12),
each contributes for e−2t − e−3t.

•{{σ}} = {{1, 2, 3}, {4, 5, 6, 7}}. These permutations do not contribute.
•{{σ}} = {{1, 2, 3, 4, 5}, {6, 7}}. As usual by now, there are two possibilities in the 5-cycle of

σ. Either the two b’s are consecutive, which happens in 2!3! cases with the contribution c52, or
they are not. This happens in 2!3! cases, and each case contributes for e−2tc52.

•{{σ}} = {{1, 2, 3, 6, 7}, {4, 5}}. By symmetry, this contribution is equal to the one above.
•{{σ}} = {{1, 2, 3}, {4, 5}, {6, 7}}. There are 2 permutations, each contributing for c322.
Finally,

(21) Dc({{1, 2, 3}}, {{4, 5}, {6, 7}}) = 2(c322 + 12(1 + e−2t)c52 + 24(1 − e−3t)).

Let us summarize our results. We have proved that, if there exists a t-free cumulant of order
7, denoted by k7, then for all centered a1, a2, a3 ∈ A and b1, . . . , b5 ∈ B, the following equalities
hold:

k7(a1, a2, b1, b2, b3, b4, b5) = 24(c52 + 10(1 + 2e−2t))ϕ(a1a2)ϕ(b1b2b3b4b5)

+ 2
(

c322 + 2(2 + e−2t)c43 + 6(1 + e−2t)c52 + 12(1 − e−2t)
)

ϕ(a1a2)ϕ(b1b2)ϕ(b3b4b5)

+ 2
(

c322 + 2(2 + e−2t)c43 + 6(1 + e−2t)c52 + 12(1 − e−2t)
)

ϕ(a1a2)ϕ(b1b3)ϕ(b2b4b5)

+ . . . ,

where all partitions of {b1, b2, b3, b4, b5} into a pair and a triple appear, and

k7(a1, a2, a3, b1, b2, b3, b4) = 12(c43 + 12(1 + 3e−2t + e−3t))ϕ(a1a2a3)ϕ(b1b2b3b4)

+ 2(c322 + 12(1 + e−2t)c52 + 24(1 − e−3t))ϕ(a1a2a3)ϕ(b1b2)ϕ(b3b4)

+ 2(c322 + 12(1 + e−2t)c52 + 24(1 − e−3t))ϕ(a1a2a3)ϕ(b1b3)ϕ(b2b4)

+ 2(c322 + 12(1 + e−2t)c52 + 24(1 − e−3t))ϕ(a1a2a3)ϕ(b1b4)ϕ(b2b3).

Since k7 is a t-free cumulant, these two expressions must be zero for all choices of a’s and b’s.
Since the distribution of the a’s and b’s is unspecified, this implies that the coefficients which
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appear in these equalities in front of the various products of moments of a’s and b’s must vanish.
This implies the following relations:

c52 = −10(1 + 2e−2t),

c43 = −12(1 + 3e−2t + e−3t),

c322 = −2(2 + e−2t)c43 − 6(1 + e−2t)c52 − 12(1 − e−2t),

c322 = −12(1 + e−2t)c52 − 24(1 − e−3t).

It does not take a long computation to see that the two expressions of c322 are different, since
the first involves e−5t, whereas the second does not. We leave it to the reader to check that the
difference between the two values of c322 that we have obtained is equal to 24e−3t(1 − e−t)2.
This quantity vanishes only for t = 0 or t = +∞. �

In order to prove that t-free cumulants of order at most 6 exist, we are going to construct
them. We prove first a lemma which settles the problem of the coefficients cλ for the partitions
λ whose smallest part is 1.

Let us introduce some notation. Let µ = (µ1 ≥ . . . ≥ µr) be a partition of some integer n.
We denote by ℓ(µ) the number of non-zero parts of µ and we write µ ⊢⊢ n if µℓ(µ) ≥ 2, that is, if
µ has no part equal to 1. Let i ≥ 1 an integer. We denote by µ + δi the partition of n + 1 whose
parts are µ1, . . . , µi−1, µi + 1, µi+1, . . . , µr, rearranged in non-increasing order. If i > ℓ(µ), then
µ + δi is simply the partition µ to which a part equal to 1 has been appended.

Proposition 4.7. Let n ≥ 2 be an integer. Choose t ∈ [0,+∞]. A collection (cλ)λ⊢n is a t-free
cumulant if and only if the following two conditions hold:
1. The relation (13) is satisfied for all m1, . . . ,mn which are centered.
2. For all µ ⊢ n − 1,

(22) cµ+δℓ(µ)+1
= −

ℓ(µ)
∑

i=1

µicµ+δi
.

Moreover, a collection of complex numbers (cλ)λ⊢⊢n which satisfies (13) for all m1, . . . ,mn

which are centered can be extended in a unique way into a t-free cumulant of order n.

When σ is a permutation of {1, . . . , n}, let us denote by [σ] the partition of the integer n

given by the lengths of the cycles of σ.

Proof. Let c be a t-free cumulant of order n. In order to check that (22) is satisfied, let us choose
m1, . . . ,mn−1 in some probability space (M, ϕ) and write the fact that kn(m1, . . . ,mn−1, 1) = 0.
We find

(23)
∑

λ⊢n

cλ

∑

σ∈Sn

[σ]=λ

ϕσ(m1, . . . ,mn−1, 1) = 0.

Let rn : Sn → Sn−1 denote the following function: for all σ ∈ Sn, rn(σ) is the permutation of
{1, . . . , n − 1} obtained by removing n from the cycle of σ which contains it. For each σ, we
have the equality ϕσ(m1, . . . ,mn−1, 1) = ϕrn(σ)(m1, . . . ,mn−1). Now a permutation τ ∈ Sn−1

has exactly n preimages by rn. Moreover, if [τ ] = µ = (µ1 ≥ . . . ≥ µℓ(µ) > 0) ⊢ n − 1, then
all preimages of τ belong to one of the conjugacy classes µ + δi for i = 1, . . . , ℓ(µ) + 1. Finally,
r−1
n (τ) contains exactly one element of µ + δℓ(µ)+1 and µi elements of µ + δi for i = 1, . . . , ℓ(µ).
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We can thus rewrite (23) as follows:

(24)
∑

µ⊢n−1





ℓ(µ)
∑

i=1

µicµ+δi
+ cµ+δℓ(µ)+1





∑

τ∈Sn−1

[τ ]=µ

ϕτ (m1, . . . ,mn−1) = 0.

Since the distribution of m1, . . . ,mn is arbitrary, all the coefficients between the brackets must
vanish. It follows that (22) is satisfied.

Conversely, let (c(σ))σ∈Sn
be a collection which satisfies (13) for centered elements and (22).

Then, by the computation that we have just done, this collection satisfies (14) and hence, by
multilinearity, (13) for arbitrary elements.

Let us prove the last assertion. For any λ ⊢ n with at least one part equal to 1, the relation
(22) expresses the value of cλ in terms of cλ′ for partitions λ′ of n which have strictly less
parts equal to 1 than λ. The collection (cλ)λ⊢n is thus completely and uniquely determined by
(cλ)λ⊢⊢n. The fact that the resulting collection is a t-free cumulant is granted by the first part
of the proposition. �

The last result simplifies greatly the search for t-free cumulants, since it allows one to restrict
to centered elements and partitions in parts at least equal to 2. We apply it to find cumulants
of order less than 6.

Proof. (Theorem 4.3) Let us prove that there exist t-free cumulants up to order 6. We proceed
by first establishing enough conditions that their coefficients must satisfy, in order to determine
these coefficients. Then, we check that we actually have a t-free cumulant.

We will always normalize our cumulants by the condition cn = 1.
• n = 2. By Proposition 4.7, the condition c2 = 1 suffices to determine the whole cumulant,

and c11 = −1. The relation (10) implies that we have indeed got a t-free cumulant.
• n = 3. Again, the condition c3 = 1 determines completely the cumulant. Using (22), we

find c21 = −2 and c111 = 4. The relation (10) implies again that the collection thus obtained is
a t-free cumulant. Indeed, the product of any three centered elements, one being t-free with the
two others, is centered. Hence, our collection satisfies (13) on centered elements.

• n = 4. This is the first case where the relation c4 = 1 does not suffice determine the cumulant.
Indeed, we must compute c22. For this, let us choose in some probability space elements a1, a2, . . .

and b1, b2, . . ., such that {a1, a2, . . .} and {b1, b2, . . .} are t-free. We will use this notation again
in this proof without redefining it. Let us assume that a t-free cumulant c of order 4 is given
and let us compute Dc({{1, 2}}, {{3, 4}}) (see (16)). There are 4-cycles which contribute to this
coefficient. In 2!2! of them, 1 and 2 are consecutive and they contribute for 1 each. In 2! others,
1 and 2 are not consecutive and each such cycle contributes for e−2t. There is also one product
of two 2-cycles, which contributes for c22. Finally, Dc({{1, 2}}, {{3, 4}}) = c22 +2(2+e−2t). The
nullity of this coefficient implies c22 = −2(2 + e−2t). Using (22), we determine the remaining
coefficients, and find

c4 = 1, c31 = −3, c22 = −2(2 + e−2t), c211 = 2(5 + e−2t), c1111 = −6(5 + e−2t).

Now let us check that the collection thus defined satisfies (13) for centered elements. Set k4 =
∑

σ c(σ)ϕσ . If we expand k4(a1, b1, b2, b3) according to (15), then all terms involve ϕ(a1) and
vanish. Now k4(a1, a2, b1, b2) also vanishes, because this is how we have chosen the value of c22.
Finally, we do have a t-free cumulant of order 4.

• n = 5. Let c be a t-free cumulant of order 5. Let us compute c32 by writing the nullity
of Dc({{1, 2, 3}}, {{4, 5}}). There are 3!2! 5-cycles in which 4 and 5 are consecutive, and they
contribute for 1 each. There are also 3!2! 5-cycles in which they are not consecutive, and each
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contributes for e−2t. There are finally 2! products of a 3-cycle and a 2-cycle, which contribute
for c32 each. Hence, we must have c32 = −6(1 + e−2t). Using as usual (22), we find that the
other values of c must be

c5 = 1, c41 = −4, c32 = −6(1 + e−2t), c311 = 6(3 + e−2t), c221 = 12(1 + e−2t),

c2111 = −12(5 + 2e−2t), c11111 = 48(5 + 2e−2t).

The fact that k5
∑

σ c(σ)ϕσ is a cumulant is checked just as in the case n = 4: the identity
k5(a1, b1, b2, b3, b4) = 0 is granted by (15) and k5(a1, a2, b1, b2, b3) = 0 by the choice of c32.

• n = 6. Let c be a t-free cumulant of order 5. The value of c42, deduced as usual from the nul-
lity of Dc({{1, 2, 3, 4}}, {{5, 6}}), is c42 = −4(2+ 3e−2t). Similarly, Dc({{1, 2, 3}}, {{4, 5, 6}}) =
0 gives us c33 = −3(3 + 6e−2t + e−3t). Finally, Dc({{1, 2}}, {{3, 4}, {5, 6}}) = 0 implies
c222 = 8(7 + 17e−2t + 6e−4t). The other coefficients follow as usual from (22) and we find

c6 = 1, c51 = −5, c42 = −4(2 + 3e−2t), c411 = 4(7 + 3e−2t), c33 = −3(3 + 6e−2t + e−3t)

c321 = 6(7 + e−3t + 12e−2t), c3111 = −12(14 + 15e−2t + e−3t), c222 = 8(7 + 17e−2t + 6e−4t)

c2211 = −8(28 + 53e−2t + 3e−3t + 6e−4t), c21111 = 48(21 + 34e−2t + 2e−3t + 3e−4t)

c111111 = −240(21 + 34e−2t + 2e−3t + 3e−4t).

Let us set k6 =
∑

σ c(σ)ϕσ . The nullity of k6(a1, b1, . . . , b5) follows as usual from (15). That of
k6(a1, a2, b1, b2, b3, b4) results from the choices of c42 and c222. Finally, k6(a1, a2, a3, b1, b2, b3) = 0
is granted by the choice of c33.

Nowhere there has been any freedom in the definition of the cumulants. This shows the
uniqueness of conjugation-invariant t-free cumulants of order at most than 6. �
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