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Abstract

Noise brake squeal is still an issue since it generates high warranty costs for the automotive industry
and irritation for customers. Key parameters must be known in order to reduce it. Stability analysis is
a common way of studying nonlinear phenomena and has been widely used by the scientific and the
engineering communities for solving disc brake squeal problems. This type of analysis provides areas
of stability versus instability for driven parameters, thereby making it possible to define design criteria.
Nevertheless, this technique does not permit obtaining thevibrating state of the brake system and non-
linear methods have to be employed. Temporal integration isa well known method for computing the
dynamic solution but as it is time consuming, nonlinear methods such the Harmonic Balance Method
are preferred. This paper presents a novel nonlinear methodcalled the Constrained Harmonic Balance
Method (CHBM) that works for nonlinear systems subject to flutter instability. An additional constrain-
ing based condition is proposed that omits the static equilibrium point (i.e. the trivial static solution of
the nonlinear problem that would be obtained by applying theclassical Harmonic Balance Method), and
therefore focus on predicting both the Fourier coefficientsand the fundamental frequency of the station-
ary nonlinear system.
The effectiveness of the proposed nonlinear approach is illustrated by an analysis of disc brake squeal.
The brake system under consideration is a reduced finite element model of a pad and a disc. Both sta-
bility and nonlinear analyses are performed and the resultsare compared with a classical variable order
solver integration algorithm.
Therefore the objectives of the following paper are to present not only an extension of the Harmonic
Balance Method (the Constrained Harmonic Balance Method -CHBM), but also to demonstrate an ap-
plication to the specific problem of disc brake squeal with extensively parametric studies that investigate
the effects of the friction coefficient, piston pressure,nonlinear stiffness and structural damping.

1 Introduction

Disc brake squeal is a complex phenomenon and has been a challenging issue for many researchers for a
long time. There is no precise definition of brake squeal [1],but it could be defined as a monoharmonic

1



sound emitted at a frequency over a range of 1 kHz to 20 kHz during a braking event. Squeal is a
fugitive noise, i.e. at each braking action a brake system may or may not be noisy. Although brake
squeal is undesirable, it is the sign that the brake is reliable [2]. Ouyang et al. [3] demonstrated that
parametric resonances can occur when an elastic element is rotated around an annular disc with friction
having a negative slope with velocity. They also indicated an elastic system can oscillate in the stick-
slip mode (that is a low sliding speed phenomenon caused whenthe static friction coefficient is higher
than the dynamic coefficient) in the plane of a disc due to nonsmooth friction nonlinearity [4]. Spurr
[5] analyzed squeal as a sprag-slip phenomenon. He indicated that the tribological property cannot be
considered as the only reason for brake squeal, and that vibration could occur when the friction coefficient
remains fairly constant with speed. Later, the sprag slip phenomenon was generalized as a geometrically
induced or kinematic constraint instability. For example,Jarvis and Mills [6] and Millner [7] worked
on mass-spring models and showed that autonomous vibrations are due to friction that couples two
modes together, thus instability occurs even if the friction coefficient is constant. Brake squeal has
been identified by Oden and Martins [8] as a result of friction-induced vibration. Hence, if friction force
couples two degrees of freedom (dof), unstable modes could merge and generate squeal. Liles [9] studied
a large finite element model and confirmed that brake squeal isdue to the friction coupling effect, leading
to mode coalescence. The friction coefficient appears to be the essential parameter for detecting squeal
phenomena. Moreover, Ouyang et al. [10] proposed to study the stability analysis of a car disc brake
system (with pads, calliper and mounting) by considering a combined analytical and numerical method
that uses the finite element method.

Stability analysis is a classical method for studying the brake squeal phenomenon [9,11–14]. An ana-
lytical finite element model with nonlinear contents such ascontact and frictional elements is considered.
A complex eigenvalue computation of the respective linearized system is then performed, followed by a
study of the corresponding real parts. A positive real part indicates that the corresponding eigenmode is
unstable and squeal may occur. Parametric studies are carried out and several design criteria are derived.
However, as mentioned by Ouyang et al. [15], eigenvalue calculation is insufficient due to linearization
which provides valid results only close to the steady sliding state. The real part of an eigenvalue indi-
cates the growth rate of oscillations; however it does not provide information on the amplitude of the
dynamic response [9]. Moreover, eigenvalues analysis overestimates the number of unstable modes and
they cannot all be observed in experiments [16]. Finally, the starting vibration mechanism is unknown.
As a result, transient analysis is the natural second step instudying brake squeal. Contrary to eigenvalue
analysis, transient analysis can include nonlinear aspects of the model. The models can be refined and
the use of time-dependent loading, sophisticated frictionlaws and so on is possible. Better qualitative
and quantitative results are derived, considerably contributing to the improvement of brake systems. A
large number of transient analyses of finite element models have been performed in the past. Nagy et
al. [17] was one of the first to perform a numerical integration in a finite element disc brake. Chargin et
al [18] carried out a transient computation on a very simple brake system by using an implicit integration
scheme. Mahajan et al [19] ran both complex and temporal approaches and found that both methods are
useful for design modifications. Hu et al [20] performed an explicit time integration analysis combined
with Taguchi’s method and found that the characteristics offriction materials are an important factor,
along with rotor thickness, pad chamfer and pad slot. More recently, Massi et al [16] performed a dy-
namic transient computation on a large dofs disc brake modelwith an in-house finite element code and
correlated the modal complex analysis with the time simulation in the sense that the vibrating steady state
matched one of the unstable modes found in the complex analysis. The major drawback of the works
mentioned above concerns the excessive calculation time required to obtain the stationary state of os-
cillations, which penalizes design modifications. Shortercomputation times can be achieved with these
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methods at the cost of over-simplified finite element models.AbuBakar and Ouyang [21] performed a
transient analysis for three different contact regimes in ABAQUS and found only one that gives accept-
able results, i.e. the oscillation frequency is similar to one of the results obtained by complex analysis.
Computation took more than 24 hours before calculations diverged. One way of tackling these drawbacks
is to carry out the solution in the frequency domain. A very well-known method for solving nonlinear
problems is the Harmonic Balance Method (HBM) in combination with the Alternate Frequency Time
Domain Method proposed by Cameron and Griffin [22]. This method has been used by many authors to
solve nonlinear problems [23–26]. The key factor of HBM is the computation of the steady-state solu-
tion without the transient part. HBM is well designed for systems under periodic excitations. It is less
time consuming and requires less disc storage. In the particular case of self-excited systems subjected
to Hopf bifurcations, it is a little more complicated to apply this method since the uniqueness of the
solution is lost [11] and both static and dynamic solutions coexist. Hence the system is driven only by
initial conditions and leads to a unique final solution. In anoptimization domain, that corresponds to two
local minima the solver computes either the static solutionor the dynamical one without any control, but
the static solution is always reached whatever the initial conditions. This reflects the fact that the static
solution corresponds to an ”exact solution” of the nonlinear system in the Fourier domain (the solution
is only composed by the static Fourier coefficients), whereas the dynamic solution will be an approxima-
tion of the nonlinear system due to the truncated Fourier series. This is a major drawback that has been
tackled in this study.
In this paper, we propose a novel nonlinear approach, calledthe Constrained Harmonic Balance Method
(CHBM) that works for nonlinear systems subjected to flutterinstability. An additional constraining
based condition is proposed for predicting both the Fouriercoefficients and the fundamental frequency
of the stationary nonlinear dynamic system amplitudes, called the ”limit cycles amplitudes”.
This paper is divided into four sections. The first one deals with the presentation of the brake system
under study. Secondly, the stability analysis of the nonlinear brake system is performed. The third part
concerns the nonlinear analysis with the CHBM and the results are compared with a classical tempo-
ral integration scheme. The advantages and drawbacks of both methods are discussed. The last one is
devoted to parameter analyses where the advantages of the new CHBM are illustrated.

2 Finite Element Model of the brake system

Figure 1 shows the finite element model of the car front brake under consideration, developed using the
ABAQUS finite element software package. The model consists of the two main components contributing
to squeal: the disc (see Figure 1(a)) and the pad (see Figure 1(b)). There are about 60000 nodes and ten-
node quadratic tetrahedron elements are used. They are veryuseful for meshing complex shapes and are
second order elements which provide accurate results without requiring very fine meshing [27].

2.1 Model reduction

As seen previously in Figure 1, finite element models of the two brake components need a large number
of dofs to represent geometrical details of the brake system. One of the first classical processes is to
reduce the finite element models of the pad and disc by using a Craig and Bampton technique [28] for
keeping certain contact nodes and generalized dofs.

It consists in building a projection basis combining constraint modesTC and a truncated basisTϕ,N

of normal modes computed with a fixed interface. Hence the relationship between physical boundaries
(or interface dofs)uB, interior dofsuI, modal coordinates of constraint modesqB and modal coordinates
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of normal modesqϕ is given by:

u =

{

uB

uI

}

=
[

TC Tϕ,N

]

{

qB

qϕ

}

(1)

The constraint modesTC are computed by assuming unit displacements ontouB.

[

KBB KBI

KIB KII

]{

< uB >
uI

}

=

{

RB

< 0 >

}

(2)

where<> denotes prescribed quantities. Then the corresponding under-space for the static condensation
is written as:

TC =

[

I

−KII
−1KIB

]

(3)

whereI defines the identity matrix.Tϕ is achieved by resolving an eigenvalue problem with fixed
interface dofsuB.

(

−ω2

[

MBB MBI

MIB MII

]

+

[

KBB KBI

KIB KII

]){

< 0 >
ϕI

}

=

{

Rϕ

< 0 >

}

(4)

where<> denotes prescribed quantities. FinallyTϕ,N is deduced by retainingN modes computed in
Equation (4).

Tϕ,N =

[

0

ϕ1:N,I

]

(5)

Finally, stiffness matrix̂K and mass matrix̂M are given by

K̂ =
[

TC Tϕ,N

]T

[

KBB KBI

KIB KII

]

[

TC Tϕ,N

]

=

[

K̂CC 0

0 K̂NN

]

(6)

M̂ =
[

TC Tϕ,N

]T

[

MBB MBI

MIB MII

]

[

TC Tϕ,N

]

=

[

M̂CC M̂CN

M̂NC M̂NN

]

(7)

where0 defines the zero matrix. For the sake of convenience, in the following of the paper the hat above
the reduced matrices is deleted. Nine contact nodes are kepton each structure at the disc/pad interface
and four extra nodes are retained on the back-pad where piston force is applied. Moreover, the first fifty
modes of each structure are held. Boundary conditions are achieved by embedding disc in the hub while
the pad is only free to translate in the normal contact direction. The resulting model is a158 dofs system.

2.2 Non-linear system

Many contact definitions could be used to model the contact between structures in finite element models
but the simplest is the the penalty method mentioned by Ouyang in his review [15]. It consists in adding
contact stiffness at the disc/pad interface. The frictional material is a mixture of many components and is
about one thousand times less stiff the disc, thus its deformation under loading is greater and nonlinearity
behavior occurs. Thus contact stiffnesses values are chosen to fit the first and the third order of the pad
compression curves obtained in the tests.
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a b

Figure 1: Finite element models of the brake system (a) Pad (b) Disc

The computation of the nonlinear contact force takes the form:

Fcontact =

{

kl (Ui − Uj) + knl(Ui − Uj)
3 if (Ui − Uj) > 0

0 otherwise
(8)

with kl andknl linear and nonlinear contact stiffnesses respectively andUi andUj displacements of inter-
faces nodesi andj that are related to the pad and the disc respectively. The friction forces are deduced
from the contact forces by using the classical Coulomb law. Apermanent sliding state is considered and
a constant friction coefficient is assumed:

Ffriction = µFcontactsgn(vr) (9)

with µ being the friction coefficient andvr the relative velocity between both bodies.
Thus the vectors of the nonlinear forces take the form:

Fnl (x) = Fcontact (x) + Ffriction (x) (10)

Hence the reduced final model of the brake system is written as:

Mẍ+Cẋ+Kx+ Fnl (x) = Fpiston (11)

wherex is the response displacement of dofs, the dot denotes the derivation with respect to time,M, C,
K are respectively the mass, damping and stiffness matrices of the system.Fpiston is the piston pressure
force and vectorFnl (x) corresponds to nonlinear forces.C is built by projecting the modal damping
matrixD onto the undamped, non-frictional inverse modal basisΦ−1 of the reduced model:

C = Φ−1TDΦ−1 (12)

The modal damping matrixD is built so that modal damping is added on both the modes involved in
the instability. Initially, equal damping distribution isconsidered.

D = diag(0 . . . 0D1 D2 0 . . . 0) (13)

with D1 = D2 = 1;

5



3 Stability Analysis

As mentioned before, the stability analysis is the first stepfor studying nonlinear systems subjected to
instability phenomena. For a given set of parameters, a static equilibrium position can become unstable
and stationary periodic oscillations, called limit cycles, occur.
This analysis is performed in two steps [29]. The first one consists in performing the static loading of the
system defined in Equation (11) corresponding in an action bythe driver on the brake pedal. Pressure
is applied onto the piston which acts on the pads entering into contact with the disc. The corresponding
nonlinear static equation is written as:

Kx0 + Fnl (x0) = Fpiston (14)

wherex0 corresponds to the static equilibrium of the nonlinear brake system. Note that the static equi-
librium is achieved with a non-zero rotational disc speed involving friction forces.
Then the system (11) is linearized about the static equilibrium positionx0 by using the perturbation
technique. Such a perturbation:

x = x0 + x̄ (15)

Replacing Equation (15) into Equation (11) leads to:

M¨̄x+C ˙̄x+K (x0 + x̄) + Fnl (x0 + x̄) = Fpiston (16)

Supposing thatFnl belong to theC1 class, developing the nonlinear force as a Taylor series andkeeping
the first order leads to:

Fnl (x0 + x̄) ≈ Fnl (x0) +KL

NLx̄ (17)

KL

NL
corresponds to the linearized nonlinear forces Jacobian matrix which is composed by the following

elementary matrix for each contact element:

KL

NLij
=









∂Fnli

∂xi

∣

∣

∣

∣

x0

∂Fnli

∂xj

∣

∣

∣

∣

x0

∂Fnlj

∂xi

∣

∣

∣

∣

x0

∂Fnlj

∂xj

∣

∣

∣

∣

x0









(18)

And writing kli =
∂Fnli

∂xi

∣

∣

∣

x0

, the elementary stiffness matrix takes the following form:

KL

NLij
=

















0 −µkli 0 0 µkli 0
0 kli 0 0 −kli 0
0 0 0 0 0 0
0 µkli 0 0 −µkli 0
0 −kli 0 0 kli 0
0 0 0 0 0 0

















(19)

It should be pointed out that the friction force is only written in thex direction that corresponds to the
longitudinal direction of the vehicle. Hence the nonlinearsystem (11) is approximated at the equilibrium
position by the following linearized one:

M¨̄x+C ˙̄x+
(

K+KL

NL

)

x̄ = 0 (20)
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Figure 2: Stability analysis (a) Evolution of the real partsof the stable and unstable modes (b) Coales-
cence of the two corresponding eigenvalues

The previous model (20) is then written in the following state-space and complex eigenvalues are de-
rived :

A =

[

0 I

−M−1
(

K+KL

NL

)

−M−1C

]

(21)

Since the stiffness matrix (19) is asymmetrical due to the contribution of friction forces, the computed
eigenvalues are complex and are written as:

λ = a+ iω (22)

wherea is the real part of the eigenvalue that corresponds to the growth rate of the amplitude andω
is the imaginary part of the eigenvalue that corresponds to the pulsation of the mode. A negative real
part indicates that the corresponding mode is stable. In other words, a perturbation about the static
equilibrium sliding state will not modify the equilibrium position of the system. A positive real part
equivalent to a negative damping leads to an unstable mode. Thus modifying one of the parameters
will induce growing oscillations about the static equilibrium position of the system until the dynamical
steady-state is reached. Figure 2 shows evolutions of normalized real parts and normalized frequencies of
the associated eigenvalue versusµ, which is normalized with respect to the Hopf bifurcation point µ0. As
seen in Figure 2(a), the real parts curves split into two branches near the Hopf bifurcation pointµ0. One
goes towards the positive real part half-space and become positive whereas the other branch decreases
and remains in the negative real part half-space. Figure 2(b) shows the typical lock-in phenomenon
between both modes of the system withµ increasing. It can be seen that coalescence between the two
modes is perfect since they are equally damped. The effects of equally and non-equally damped modes
will be illustrated in the last part of this paper. It is then possible to define stable areas versus unstable
areas of the linearized system for a given set of parameters.In the following, the paper is devoted to
nonlinear dynamic computation.
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4 Non-linear dynamic and self-excited limit cycles

The classical approach of nonlinear analysis consists in using temporal integration schemes to compute
nonlinear dynamic solutions. However, it can be observed that this kind of method is costly in terms of
computation time and resources for large finite element models.
Enhanced nonlinear methods have to be employed to save time.Extensive reviews on this topic have
been given in [30]. In the following part of the paper, an original adaptation of the harmonic balance
method for self-excited nonlinear systems will be introduced and discussed.

4.1 The Constrained Harmonic Balance Method

In this section, we propose to introduce an extension of the harmonic balance method, called the Con-
strained Harmonic Balance Method (CHBM), for approximating stationary nonlinear responses of self-
excited systems subjected to flutter instabilities. Traditional harmonic balance methods are well-known
numerical methods that have been commonly used to solve nonlinear problems in engineering [30].
However, they do not permit obtaining the stationary nonlinear vibrational responses of self-excited sys-
tems due to the fact that the static nonlinear solution corresponds to the trivial solution of the problem.
In this section, the classical harmonic balance method witha condensation procedure on the nonlinear
dofs is presented first. Then the additional constraining condition allowing the determination of the limit
cycle amplitudes and an optimized initial condition process are presented and discussed.

4.1.1 The Harmonic Balance Method with a condensation procedure

Considering harmonic balance methods, a nonlinear solution is assumed to be a truncated Fourier series
and the exact nonlinear periodic solutionX (t) is replaced as:

Xapp (t) =

Nh
∑

k=0

UC

k cos (kωt) +

Nh
∑

k=1

US

k sin (kωt) (23)

whereUC

k andUS

k are vectors of Fourier coefficients andω defines the final pulsation of the nonlinear
limit cycles. It can be seen thatω is an unknown parameter in this study since we are in the presence of a
self-excited system and the frequency of the stability analysis differs slightly from that of the nonlinear
steady-state solution. Thus it cannot be used as a fixed parameter. Nh is the number of the harmonic
coefficients retained for the approximated nonlinear stationary solution. Velocities and accelerations are
obtained by derivation of Equation (23) with respect to the time. The advantage of harmonic balance
method is that it allows keeping only the first terms of Equation (23) where, generally, a preponderant
energy part of the signal is concentrated.
Replacing the approximated solutionXapp (t) into Equation (11) leads to

RNh
(t) =

Nh
∑

k=0

[(

K− (kω)2M
)

UC

k + (kωC)US

k

]

cos (kωt)+

Nh
∑

k=1

[(

K− (kω)2M
)

US

k − (kωC)UC

k

]

sin (kωt) + Fnl

(

U
C,S
k

)

− Fpiston

(24)

Projecting the residue on sine and cosine orthonormal bases, and writing the multi-harmonics vector̃U
such that:
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Ũ =
[

UC
0

T
UC

1

T
US

1

T
· · · UC

Nh

T
US

Nh

T
]T

(25)

leads to the following approximated equation:

ΛŨ+ F̃nl

(

Ũ
)

= F̃out (26)

with

Λ =





















K 0 0 0 0 0

0 Λh,1 0 0 0 0

0 0
. . . 0 0 0

0 0 0 Λh,k 0 0

0 0 0 0
. . . 0

0 0 0 0 0 Λh,Nh





















(27)

and

Λh,k =

[

−(kω)2M+K kωC
−kωC −(kω)2M+K

]

for k = 1 : Nh (28)

Λh,k is the dynamical stiffness matrix associated with thekth harmonic and̃Fout are the external forces.
Equation (25) gathers the Fourier coefficients that have to be balanced to obtain the periodic solution of
the nonlinear system. Non-linear force Fourier coefficients depend oñU and their determination can be
fastidious analytically because of the size of the system and the number of harmonics. The Alternate
Frequency Time Domain Method proposed by Cameron and Griffin[22] permits omitting this issue as
outlined below:

Ũ
FFT−1

−→ X (t) −→ Fnl (X(t))
FFT
−→ F̃nl

(

Ũ
)

(29)

When a nonlinear system has a significant number of dofs but only a few of then are related to nonlinear
components, it is possible to reduce system (26) on the nonlinear dofs without loss of accuracy [31,32].
Linear and nonlinear nodes are separated (i.e. the new vector is such that the nonlinear dofs are stored at
the vector’s end). Equation (26) may be rewritten in the following form

[

Λln,ln Λln,nl

Λnl,ln Λnl,nl

]{

Ũln

Ũnl

}

+

{

0

F̃nl

}

=

{

F̃out,ln

F̃out,nl

}

(30)

whereUln andUnl define the linear dofs and nonlinear dofs, respectively.Fout,ln andFout,nl are the as-
sociated linear and nonlinear external forces. In the current model, only external linear force is available,
i.e. the piston force.
The purpose of the condensation aims at solving the algebraic nonlinear system of equations only for
nonlinear dofs, leaving the other linear ones to be determined later by a linear transformation. Hence
rewriting (30) on nonlinear dofs leads to:

ΛeqŨnl + F̃nl (Unl) = F̃eq (31)

with
Λeq = Λnl,nl −Λnl,ln (Λln,ln)

−1
Λln,nl (32)

and
F̃eq = F̃out,nl −Λnl,ln (Λln,ln)

−1
F̃out,ln (33)
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Thus system (31) has the size of the number of nonlinear dofs and is lighter than (30). Equation (31) is
rewritten in the following form to be solved:

f
(

Ũnl

)

= ΛeqŨnl + F̃nl

(

Ũnl

)

− F̃eq (34)

When optimization is finished and̃Unl is known, linear displacements are obtained with:

Ũln = Λ−1
ln,ln

(

F̃out,ln −Λln,nlŨnl

)

(35)

4.1.2 The additional constraining condition

Equation (34) is a cost function that has a minimum whenŨnl is a solution of the system and can be
solved by nonlinear least-square algorithms such as those of the Gauss-Newton and Leveberg-Marquardt
methods. As stated before, the uniqueness of the solution islost for systems at the Hopf bifurcation
point [11]: the exact and trivial solution of Equation (34) corresponds to the static equilibrium point
which is unstable. If the classical Harmonic balance Methodis used, the only solution that will be found
will be this static solution due to the fact that the residue of Equation (34) will be equal to zero for the
static equilibrium point. So, in order to reject this trivial static solution and obtain the stationary nonlinear
dynamical oscillations that correspond to the limit cycle amplitudes, it is necessary to add a constraint
to the Harmonic Balance Method to reach only the minimum of Equation (34) which corresponds to the
stationary nonlinear periodic motion. The constraining condition will be outlined in this paragraph.
By considering the nonlinear autonomous system (11) and writing it in the state space gives:

Ẏ = AY + FP + FNL (Y) (36)

with

Y =

{

X

Ẋ

}

, FP =

{

0

M−1Fpiston

}

, FNL =

{

0

−M−1Fnl

}

(37)

and

A =

[

0 I

−M−1K −M−1C

]

(38)

A nonlinear periodic solutionYe(t) of Equation (36) is such that a realT exists so that:

Ye(t+ T ) = Ye(t) andYe(t+ T̆ ) 6= Ye(t) for 0 < T̆ < T (39)

T is the period of the solution. It may be noted thatT is an unknown parameter due to the absence of
forced excitations and the difference between the stability frequency analysis and that of the nonlinear
system.
By disturbing a solutionYe(t) with a perturbationǫ(t) we obtain:

Y(t) = Ye(t) + ǫ(t) (40)

And by substituting Equation (40) in Equation (39), we obtain:

Ẏe + ǫ̇ = A (Ye + ǫ) + FP + FNL (Ye + ǫ) (41)

By supposing thatFNL is C1 class, its development in the Taylor series atYe at the first order gives

Ẏe + ǫ̇ ≈ A (Ye + ǫ) + FP + FNL (Ye) + JNLǫ (42)
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with JNL the Jacobian matrix of the first derivatives of the nonlinearforcesFNL respect to the periodic
solutionYe(t).
SinceYe(t) is the solution of Equation (36), Equation (42) is under the form

ǫ̇ ≈ Aǫ+ JNLǫ = Jǫ (43)

with
J = A+ JNL (44)

J is the Jacobian matrix of the nonlinear system (36) and depends on the dynamical solutionYe(t).
Thereby the eigenvalues ofJ define the evolution of the limit cycles amplitudes of the nonlinear system.
If one or more eigenvalues are positive, the approximated nonlinear solution of the system is increasing
and is governed by the unstable modes. If all the eigenvaluesare negative, the nonlinear solution is
decreasing (i.e. we are still in transient motion). If one eigenvalue is equal to zero whereas all the others
are negative, the nonlinear approximated solution defines the stationary motion of the nonlinear system
subjected to flutter instability.

The replacement of the nonlinear contributionsFNL by a linear approximationJNL is done to mini-
mize the differenceζ

ζ = FNL (Ye(t))− JNLYe(t) (45)

This kind of transformation refers to the equivalent linearization concept proposed by Iwan [33]. Finally,
ζ can be minimized by using a least square method.
It may be noted thatJNL is the Jacobian matrix of the periodic nonlinear forces and does not depend on
time. The eigenvalues ofJ are clearly related to the evolution of the nonlinear periodic solutionYe(t).
Indeed, the real part of the corresponding unstable mode becomes equal to zero while the other real parts
are negative when the computed solution has reached dynamical steady-state.

Hence the unstable real part is used as an extra equation for the root finding algorithm. In such a
case, it will converge towards the steady-state solution where the dynamical equation and the real part
are minimized.
In conclusion, the final set of equations that has to be minimized is given by the two following functions

f1

(

Ũnl, ω
)

andf2
(

Ũnl, ω
)

f1

(

Ũnl, ω
)

= Λeq (ω) Ũnl + F̃nl

(

Ũnl, ω
)

− F̃eq < ǫ1 (46)

f2

(

Ũnl, ω
)

= |Re (λ) | < ǫ2 (47)

whereλ defines the eigenvalue ofJ that has the maximum real part.ǫ1 and ǫ2 are chosen residual
coefficients.
The complete procedure and description of the Constrained Harmonic Balance Method is given in Figure
3.

4.1.3 The optimized additional initial conditions

As explained previously, the unknown parameters that have to be determined are the Fourier coefficients
Ũnl and the frequencyω of the stationary periodic signal.
Firstly, when employing the static equilibrium position asthe initial condition, computation can be very
difficult and expensive. Hence they are too far from the final stationary nonlinear dynamical solution and
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so another initial estimation must be determined to save time and improve the computation procedure.
In this part of the paper, optimized additional initial conditions based on the complex nonlinear modal
analysis [34] are introduced and discussed.
As explained previously by Sinou et al. [34], starting from the hypothesis that the nonlinear unstable
mode drives the dynamical solution, the evolution of the approximated solution curve, defined by con-
sidering only the contribution of the unstable mode, is given by:

Y0(t, p, λ) = p
(

Ψeλt + Ψ̄eλ̄t
)

(48)

whereΨ defines the nonlinear unstable mode andΨ̄ its conjugate.λ is the eigenvalue that corresponds
to the unstable mode andp is an arbitrary chosen coefficient.
The optimized additional initial conditions are defined as the decomposition into Fourier coefficients of
the previous expression ofY0 (t, p, λ). In this case,Ψ is the eigenvector of the nonlinear unstable mode
that has been obtained from the stability analysis. These optimized initial conditions work for quite a
wide range ofp and lead to the convergence of the harmonic balance method for the first calculation.
Afterwards it is easy to compute solutions for given sets of parameters starting from previous results.
Secondly, when using the harmonic balance method it is necessary to know the frequency of the periodic
signal since the dynamical matrices are frequency-dependent and thus convergence may be laborious or
even impossible if the chosen frequency is too approximative. The initial frequency value is selected to
be equal to the unstable mode frequency computed by stability analysis. Figure 3 displays the algorithm
procedure of the Constrained Harmonic Balance Method.

5 Results

In this part of the paper, the effectiveness of the Constrained Harmonic Balance Method will be illustrated
for the nonlinear brake system presented in Section 2.

5.1 Non-linear stationary solutions

Limit cycles are computed forµ = µ0 for cases with1, 2, 3 and10 harmonics. Results are compared
with those obtained by applying temporal integration. The results shown in Figures 4 (a-b) correspond
to a physical interface node where previous static reductions have been performed together with a modal
displacement (c-d). First of all, the case with only one harmonic is discussed. Considering Figure 4,
it clearly appears that the approximated solution obtainedwith one harmonic does not converge exactly
with the final temporal solution. However, this solution gives a initial approximation of the limit cycle
amplitudes, indicating that the first harmonic is one of the most significant components for the complete
nonlinear solution. Hence estimations of the approximatednonlinear solutions computed with2 or 3
harmonics are considered. The nonlinear limit cycles show agood fit with the temporal integration
results in Figure 4. Moreover, the computed unknown frequency from the CHBM is very close to that
of the temporal integration since the difference is less than 0.03% for 1,2, 3 and10 harmonics. To make
understanding easier for the reader, the evolutions of the residue of the nonlinear equation are given
in Figure 7 for each case. Computational tests have been performed by assuming that the frequency
of the limit cycles is different from the frequency obtainedfrom the stability analysis. For the reader
comprehension, neglecting changes in frequency of the self-excited nonlinear vibrations does not allow
good estimation of the limit cycle amplitudes even if the difference between the frequency obtained from
the stability analysis and the fundamental frequency of thenon-linear oscillations appears to be very
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Figure 3: Algorithm procedure

small.
When looking at Figures 4 (c-d), it is obvious that more complex solutions are better estimated when
augmenting the number of harmonics. Slight differences appear between2 and3 harmonics because the
third order becomes no more negligible and has to be taken into account for matching curves from the
numerical integration well. This is even true for higher nonlinearities which generally involve coupling
between Fourier coefficients and thus higher order responses. All the limit cycles computed with10
harmonics match numerical integration correctly. Table 1 summarizes the results and relative errors for
the three cases studied.
Finally, Figure 5 shows the power spectrum ratios of the limit cycles computed atµ = µ0 for each
harmonic. Computation is done by summing power of each dof for a given harmonic:

Pj =
1

2

Ndof
∑

i=1

(

a2i,j + b2i,j
)

(49)
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1 H 2 H 3 H 10 H
Average relative error (%) Displacement33.5 0.3 0.1 0.1

Velocity 30.3 4.9 4.8 4.2

Table 1: Relative error for1, 2, 3 and10 harmonics

wherePj is the power of thejth harmonic,ai andbi are the cosine and the sine coefficients of theith

dofs.
Then, the power ratio is computed. This consists in dividingeach power harmonic by the total power of
limit cycles computed by the temporal integration:

Rj =
Pj

Ptemporal
(50)

whereRj defines the power ratio of thejth harmonic andPj is the power of thejth harmonic of the
CHBM andPtemporal is the total power of the temporal integration solution. Most of the energy appears
to be concentrated in the first terms of the Fourier series. Table 1 displays the mean error between the
numerical integration and the CHBM for the four different cases. As expected, the error decreases as
the number of harmonics increases. Calculations with10 harmonics have been carried out to ensure the
convergence of computed solutions towards numerical integration and negligible differences have been
detected. Moreover, limit cycles with3 and10 harmonics are close and the mean error of both methods
is almost equal. Even when using only3 harmonics for computing, the steady-state solution seems to be
adequate in the present study. It can be seen that it is easy toconsider a large number of harmonics with
the proposed method. Furthermore, considering the limit cycle frequency as an unknown is fundamental
in CHBM, otherwise the computation of the dynamical solution fails.

5.2 Convergence and Time Computation

This section concerns the convergence of the Constrained Harmonic Balance Method. Figure 6 displays
the evolutions of real parts during the optimization computations. Whatever the number of harmonics,
the real part converges to zero at the end of optimization, indicating the nonlinear stationary self-excited
vibration of the brake system. Figure 7 shows the residue norm for every iteration. Although using
several harmonics generally involves many iterations, only 11 iterations were needed for2 and3 har-
monics in this case. Using10 harmonics requires the convergence of5 extra harmonics. Computation
with 1 harmonic is not significant since the final approximated solution does not exactly match with the
exact nonlinear solution. Thus it appears that the algorithm has difficulties in finding a root and seeks a
convergence path that is costly in terms of iterations. Table 2 displays the computation time needed by
temporal integration and CHBM to reach the dynamical solution. Both methods were run on MATLAB.
Even though the number of iterations for both2 and3 harmonics is equal, computation time is somewhat
different with respectively485 and753 seconds required. This is obviously due to the fact that more
harmonics mean more unknowns and thus more Jacobian evaluations in the optimization process. Com-
putation time can be improved by using continuation methods, but this is not the aim of the paper. Using
10 harmonics is costlier and needs about1 hour CPU time. However, CHBM computation time is still
very low compared to the200 hours needed for temporal integration. Moreover, massive disc storage
is needed for temporal integration with more than one gigabyte of stored data (each dof is computed at
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Figure 4: Limit cycles using the classical temporal integration and the modified HBM atµ0; — temporal
integration, —1 harmonic, - -2 harmonics, -.-3 harmonics, ...10 harmonics; (b,d) zoom

each timet and stored on the disc) compared to a few kilobytes used by theFourier coefficients of the
CHBM. In the following part of this paper3 harmonics will be used, regarding noticeably low relative
errors both on displacement and on velocity. Moreover it offers a good compromise between accuracy
and computation time. In conclusion, the proposed Constrained Harmonic Balance Method is well de-
signed for a self-excited system because the results are accurate regarding the temporal approach and it
is cheaper in terms of time consumption and disc storage.

6 Parametric studies : Interest of the CHBM

In this section of the paper, parametric studies will be undertaken for both the stability analysis and the
limit cycles amplitudes.

6.1 Friction coefficient

The friction coefficient is generally considered as one of the most important parameters in brake systems.
Good brake performances often signify a high friction coefficient yielding a high sound pressure level.
Limit cycles are computed forµ = µ0, µ = 1.2µ0, µ = 1.4µ0, µ = 1.6µ0 andµ = 2µ0 and displayed
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Figure 5: Power ratio for the first10 harmonics

Methods Temporal Integration HBM1H HBM 2H HBM 3H HBM 10H
Iteration Numbers – 60 11 11 16
Time Computation 200 hours 1550 seconds 485 seconds 753 seconds 3591 seconds

Disc Storage 1.4 Go 4 ko 6 ko 8 ko 9 ko

Table 2: Performance computation

on Figure 8.
In the rest of the study, the real parts as well as the frequencies computed and displayed in tables are
normalized in relation to those in the nominal model (i.e.P0, ks, µ0 andD1 = D2 = 1). To demonstrate
the interest of considering the frequency as an unknown in the nonlinear method proposed in this paper,
Table 3 gives the difference∆f between the initial frequency of the unstable mode that hasbeen obtained
via the stability analysis for the nominal parameters and the final frequency of the self-excited vibration
that has been obtained via the nonlinear method.
Considering Figures 8, it clearly appears that increasing the friction coefficient involves the higher vi-
bration amplitudes for both pad and disc. Moreover, evolutions of the equilibrium point are observed, as
indicated in Figure 8(a).
It can be seen that the Constrained Harmonic Balance Method allows determining the limit cycle ampli-
tudes not only in the vicinity of the Hopf bifurcation point but also far from the Hopf bifurcation point
µ0. In Table 3, a difference between the frequency of the limit cycle amplitudes and the frequency of the
unstable mode can be observed.
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Figure 6: Evolution of the real part; —1 harmonic, - -2 harmonics, -.-3 harmonics, ...10 harmonics (a)
all cases (b) zoom on2, 3 and10 harmonics

Case Values ∆f (Hz)
1 µ0 -0.044
2 1.2µ0 0.45
3 1.4µ0 0.71
4 1.6µ0 0.90
5 2µ0 1.2

Table 3: Hopf bifurcation points and frequencies for variable friction coefficient

6.2 Piston pressure

A variation in piston pressure has an effect on the pressure distribution at the disc/pad interface and the
stability analysis of the brake system may be affected. Eigenvalues are computed for three different
pressures0.8P0, P0 and1.2P0 whereP0 is the operational piston pressure. The evolutions of the real
parts and the coalescences of the unstable and stable modes are illustrated in Figures 9(a-b). Table 4
gives the evolution of the Hopf bifurcation point. It appears that the pressure has an important effect of
the stability. Basically, a higher piston pressure increases the degree of instability by moving the Hopf
bifurcation point towards lower values without modifying the pattern shapes of the evolution of the real
part or frequency coalescences. However, the frequency coalescence point is affected by a change in
piston pressure, typically a high piston pressure results in a higher coupled frequency.
Figures 9(c-d) illustrate the limit cycle amplitudes for the pad and the disc. To facilitate comprehension,
the nonlinear vibrations are obtained at a fixed normalized friction coefficientµ = 1.05µ0. Hence pad
interface deformation is equivalent for the three cases although the static positions are more affected for
nodes at the pad/piston interface (see Figures 9(c)). This fact can be clearly explained by considering
that higher piston pressure results in greater pad compression. The piston/pad interface is moved towards
pad/disc interface. Disc deformation interface (Figure 9 (d)) is slightly impacted with an increase in
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Figure 7: Evolution of residues during optimization; —1 harmonic, - -2 harmonics, -.-3 harmonics, ...
10 harmonics (a) all cases (b) zoom on2, 3 and10 harmonics

Case Values µ/µ0 ∆f (Hz) ∆f (Hz) atµ = 1.4µ0

1 P0 1 0.14 0.72
5 0.8P0 1.04 0.15 0.72
6 1.2P0 0.96 0.13 0.72

Table 4: Hopf bifurcation points and frequencies for variable piston pressure

vibration amplitudes as the piston pressure increases.

6.3 Contact Stiffness

This part is devoted to the analysis of contact stiffness applied to the problem of brake squeal phe-
nomenon. This parameter is very dependent on contact body stiffness and contact surface shapes. Since
the disc is about a thousand times stiffer than the pad, contact stiffness usually depends on frictional
materials. Both analyses are performed for three contact stiffnesses corresponding to a variation of the
pad friction material’ properties. For the sake of simplicity, ks is considered as a function of linearkl and
nonlinearknl contact stiffness springs,ks = f(kl, knl). The evolution of the real parts and frequencies
of the stable and unstable modes are shown in Figures 10(a-b). Table 5 gives the evolution of the Hopf
bifurcation point. As for the piston pressure case, an increase in the contact stiffness destabilizes the
nonlinear system by decreasing the Hopf bifurcation point.Nevertheless, the patterns look alike and
only a translation is observed for varyingks. Frequency lock-in is changed and a higher contact stiffness
results in augmenting the coalescence frequency. This is quite logical since high contact stiffness tends
to rigidify the whole system and thus increase the resonancefrequencies.
When looking at limit cycles on Figure 10(c-d) which are computed forµ = 1.03µ0, it can be seen
that increasing the contact stiffness decreases the nonlinear vibrations. Nevertheless, amplitudes do not
change with the same ratio compared to the variable stiffness. A 30% increase in stiffness only changes
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Figure 8: Limit cycles for pad and disc nodes;— µ0 , — 1.2µ0, - - 1.4µ0, ... 1.6µ0, -.-. 2µ0 (a) Pad, (b)
Disc

Case Values µ/µ0 ∆f (Hz) ∆f (Hz) atµ = 1.4µ0

1 ks 1 0.08 0.72
7 0.7ks 1.03 0.08 0.73
8 1.3ks 0.98 0.09 0.70

Table 5: Hopf bifurcation points and frequencies for variable stiffness

the amplitudes by a factor of1.1 while a30% drop in contact stiffness results in lowering the limit cycle
amplitudes by a mean factor of3.3. Moreover, the static position of the equilibrium point canchange
drastically, as illustrated in Figure 10(c).
Hence contact stiffness seems to be a key parameter in reducing brake squeal noise; nevertheless it has
to satisfy other specifications which concern brake efficiency that are considered as the most important
factors.

6.4 Damping

Damping seems to be a major parameter in reducing disc brake squeal. Squeal problems are resolved
by applying damping shims on back plates, which works well sometimes. However, damping influences
self-excited systems in which the coalescence of two modes is not yet fully understood and many studies
have been performed to study this phenomenon. Hoffmann and Gaul [35] performed a stability analysis
of a two dof system and showed that adding damping without precaution can lead to a paradoxical effect
i.e. it can destabilize the system. Sinou and Jézéquel [36] studied the impact of modal damping on both
stable and nonlinear systems and found that non-equally damped modes lead to a destabilization of the
system and increase the amplitudes of limit cycles. Shin [37] worked on a two dof system representing
both pad and disc modes and shown that the equally damped casestabilizes the system by diminishing
limit cycles when higher damping is applied but this is no longer the case when adding damping on only
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Figure 9: Influence of piston pressure; —P0 , - - 0.8P0 , ... 1.2P0 (a) Evolution of real parts (b)
Frequency coalescences; Limit cycles for (c) Pad, (d) Disc

one mode. While the amplitude of the more highly damped system decreases, the amplitude of the other
one increases. More recently, Fritz et al. [38,39] performed stability analyses on a complete finite element
model brake system. He confirmed that the ratio of the dampingof the two modes involved in squeal is
an essential key for controlling the stability of systems. For equally damped modes, the stability curves
are lower and thus instability occurs for a higher friction coefficient. Nevertheless, in the case of large
non-equally damped modes a smoothing effect occurs and pushes the Hopf bifurcation point towards
lower values, thus instability appears for a lower frictioncoefficient compared to the equally damped
case.
In the following, we investigate the effects of modal damping on stability and its impact on limit cycle
amplitudes. Both the cases of equally and non-equally damped modes will be considered.
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Figure 10: Influence of contact stiffness; —ks , - - 0.7ks , ... 1.3ks (a) Evolution of real parts (b)
Frequency coalescences; Limit cycles for (c) Pad, (d) Disc

6.4.1 Equally damped modes

D1 andD2 are considered as the respective modal damping of Mode1 and Mode2 which are involved
in instability. Three cases at equally distributed modal dampings are investigated.
Firstly, Figures 11(a-b) illustrate the evolutions of the real parts and the frequencies of the unstable and
stable equally damped modes. As explained previously by Fritz et al. [38, 39], increasing equal modal
damping causes a lowering effect and by consequence a stabilizing effect, by lowering the branches of
the real part in the stable area. The critical Hopf bifurcation point is moved towards higher values for
higher equal modal damping. Evolutions of the Hopf bifurcation point are given in Table 6. Moreover, it
appears that the frequency lock-in phenomenon remains identical in the three cases. Mode1 turns out to
be the stable mode while Mode2 is the unstable one.
Secondly, Figures 12 (a)-(b) display nonlinear behavior and the limit cycle amplitudes for one DOF of
the pad and one DOF of the disc computed forµ = 1.07µ0. The effects of damping appear to be very
complex. Not only limit cycle amplitudes but also changes inthe static position of the limit cycles are
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Case D1 D2 D1/D2 µc/µH ∆f (Hz) ∆f (Hz) atµ = 1.4µ0

1 1 1 1 1 0.21 0.72
2 5 5 1 1.01 0.18 0.70
3 10 10 1 1.07 0.10 0.63
4 1 2 0.5 0.97 0.68 1.28
5 1 5 0.2 0.84 1.64 1.98
6 2 1 2 0.96 -0.50 0.24
7 5 1 5 0.84 -0.87 -0.18

Table 6: Hopf bifurcation points and frequencies for damping parameters

observed, as indicated in Figure 12(a). Surprisingly, the highly damped case does not necessarily induce
low vibration amplitudes. Although the vibration amplitudes of the pad are slightly higher for the lower
damped case, the highest dynamical response of the disc is found for the highest damped case, with an
amplitude ratio of almost4 in relation to the lowest damped case.
Figures 12 (c)-(d) show limit cycles computed by increasingthe friction coefficient (µ = 1.4µ0 in the
current case). As explained previously in section 6.1, a higher friction coefficient involves higher limit
cycle amplitudes. It can be seen that the effects of equally damped modes cannot be neglected and that
the combined effect of the friction coefficient and damping is not trivial. For example, it appears that
the influence of damping is weaker forµ = 1.4µ0 compared to the case in the vicinity of the Hopf
bifurcation point atµ = 1.07µ0. For the disc, the amplitude is still highest for the larger damped case,
but the amplitude ratio in relation to the lowest damped caseis less significant, with a value of1.3.
Moreover, it can be noted that the nonlinear amplitudes of the limit cycles do not follow proportionally
the growth rate of the positive real part and the commonly held belief that the added damping would
result in lower vibrations is not necessarily true.

6.5 Non-equally damped modes

Now we investigate the influence of non-equally damped modesfor two cases that areD1/D2 = 0.5
andD1/D2 = 0.2. Figures 11(c-d) illustrate the associated evolutions of the real parts and frequencies
of the unstable and stable equally damped modes. The reference remains the equally damped case where
D1/D2 = 1. It should be noted that the damping of unstable Mode2 turns out to be higher.
The lowering effect due to high damping remains but its stabilizing effect is counterbalanced by the well-
known smoothing effect occurring in the vicinity of the Hopfbifurcation point (see Figure 11(c)), as
mentioned by [35–39]. The real part branches of non-equallydamped modes split with a smoother slope
and become positive at a lower friction coefficient than the real part branch of the equally damped mode.
This effect is stronger for higher asymmetrical modal damping cases, for example whenD1/D2 = 0.2.

Figure 13 (a-b) illustrates the nonlinear limit cycles thatare computed atµ = µ0. The largest limit
cycle amplitudes appear for the lowest damping ratio,D1/D2 = 0.2 although the unstable mode is the
more highly damped one. More complex behavior is found for pad deformation whenD1/D2 = 0.2.
With a higher friction coefficient, the real part curves cross each other at aroundµ = 1.03µ0 and case
D1/D2 = 1 has the larger positive real part, contrary to theD1/D2 = 0.2 case which becomes the
most stable beyondµ = 1.03µ0. Figure 13 (c-d) presents the limit cycles of both the nodes considered
previously, computed atµ = 1.4µ0.
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Figure 11: Evolution of real parts and frequency coalescences (a-b) equally damped: —1st case, - -2nd

case, ...3rd case (c-d) non-equally damped: —1st case, - -6th case, ...7th case

Large pad amplitudes are obtained for low damping ratios andare considered as the most stable cases
atµ = 1.4µ0 by the stability analysis. Nevertheless, the highest amplitudes for the disc are derived from
the most unstable case, which is the equally damped one. It can be clearly observed that it is not possible
to establish a link between the values of the real parts and corresponding vibrating states since they can
be higher or lower depending on the different effects of the physical parameters on both stability and
nonlinear behavior. Moreover, it is noted that the static equilibrium point changes with the variation of
non-equally damped modes, as indicated in Figure 13 (a).

To further investigate the influence of modal damping, we propose to invert damping ratiosD1/D2 =
2, D1/D2 = 5 and perform a stability analysis and determine the nonlinear limit cycles. It should be
borne in mind henceforth that stable Mode1 is the more highly damped one, whereas the damping of
unstable Mode2 is decreased. The evolutions of the real parts and frequencies of the stable and unstable
modes are similar to the previous case thus the conclusions on stability are identical.
Figure 14 (a-b) and (c-d) illustrates the nonlinear limit cycles forµ = 1.07µ0 andµ = 1.4µ0, respec-
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Figure 12: Limit cycles for equally damped modes and plottedfor two differentµ (a-b) Limit cycles
plotted atµ = 1.07µ0 — 1st case, - -2nd case, ...3rd case (c-d) Limit cycles plotted atµ = 1.4µ0 — 1st

case, - -2nd case, ...3rd case; (a-c) Pad, (b-d) Disc

tively. In the vicinity of the Hopf bifurcation point (i.e.µ = 1.07µ0), the highest amplitude is still
obtained for the largest difference in damping, i.e.D1/D2 = 5, but with an amplitude ratio of almost
57 compared to an amplitude ratio of37 for the preceding case. When considering a case far from the
Hopf bifurcation point (atµ = 1.4µ0 for example), the evolution of the limit cycles are complex and it
appears more difficult to give a general rule on the effects ofdamping. For example, although the real
part of the unstable mode for the more asymmetrical damping case (i.e.D1/D2 = 5) is the lowest one,
this configuration involves the higher vibrating state for both pad and disc. It must be compared to the
previous case study where the more asymmetrical damping case (i.e. D1/D2 = 0.2) exhibited higher
amplitudes only for the pad. Here, the unstable mode is the more weakly damped one and even if the
corresponding real part is below that of case1, the corresponding amplitudes are higher.

Inverting modal damping has a weak influence in the vicinity of the Hopf bifurcation point, as seen
in Figure 13 (a-b) and Figure 14 (a-b) but it has a strong effect on disc deformation when augmenting
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Figure 13: Limit cycles for non-equally damped modes and plotted for two differentµ (a-b) Limit cycles
plotted atµ = µ0 — 1st case, - -4th case, ...5th case (c-d) Limit cycles plotted atµ = 1.4µ0 — 1st

case, - -4th case, ...5th case; (a-c) Pad, (b-d) Disc

the friction coefficient. When the unstable mode is the more strongly damped one, the limit cycles are
smaller than the equally damped case by a factor of 2 (Figure 13 (d)), but the conclusions are totally
different when inverting the damping ratio: The corresponding limit cycles are about 3 times larger than
for the equally damped case (Figure 14 (d)) .

This example shows that inverting modal damping distribution has considerable effects not only on
the stability of the system but also on the nonlinear amplitudes of the limit cycles. For example, case
D1/D2 = 0.2 displays the smallest disc oscillations while caseD1/D2 = 5 has the largest disc os-
cillations and the conclusions for finding the best model aretotally different. Considering the previous
results, it appears that structural damping is a key factor when dealing with nonlinear autonomous sys-
tems, but nevertheless it is a complex phenomenon and it has to be considered with care to ensure good
silent brake system design. Not only the quantity but also the distribution of damping have to be taken
into account thoroughly to avoid unexpected results.
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Figure 14: Limit cycles for non-equally damped modes and plotted for two differentµ (a-b)Limit cycles
plotted atµ = µ0 — 1st case, - -6th case, ...7th case (c-d) Limit cycles plotted atµ = 1.4µ0; — 1st

case, - -6th case, ...7th case; (a-c) Pad (b-d) Disc

7 Conclusion

In this paper proposed a novel nonlinear method called the Constrained Harmonic Balance Method. This
original approach allows the determination of the stationary nonlinear periodic solution of a nonlinear
mechanical system subject to flutter instability, by the addition of an extra-constraint in the classical Har-
monic Balance Method. This additional constraint allows eliminating the static equilibrium point (i.e.
the trivial static solution of the nonlinear problem that would be obtained by applying the classical Har-
monic Balance Method)) and gives only the stationary nonlinear oscillations. Moreover, the frequency is
added as an unknown since the frequency of a self-excited system is not knowna priori and may change
for varying parameters. Also, the dynamical solution cannot be computed if only using the frequency
resulting from the stability analysis. An application to disc brake squeal was performed to illustrate the
effectiveness of the nonlinear method.
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Numerical results correlated well with a classical time domain algorithm in terms of both amplitude and
frequency. The results of the CHBM is highly dependent on thenumber of harmonics. A power ratio
computation shows that the major part of the energy is concentrated in the first harmonic, but retaining
only the latter does not lead to the steady-state solution. In order to adapt to the complex behaviors of the
solutions, more harmonics are required in the Fourier series. The computation time of the new method
is very short compared to that of a classical temporal integration algorithm and thus is well designed for
intensive computation in the case of parameter-dependent systems.
The effectiveness of this method’s application to a disc brake system is emphasized in the last part of the
paper, which describes the parametric studies performed. Fast limit cycle computations were achieved
for a large number of operational parameters and conclusions were obtained. The complementarity be-
tween the stability analysis and the complex nonlinear vibrational behavior appears to be essential for
carrying out a complete design study of a brake system. Moreover, it was shown that not only the friction
coefficient, but also piston pressure, nonlinear stiffnessand structural damping are important factors to
take into account to avoid poor design.
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