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Abstract

Noise brake squeal is still an issue since it generates haylnawty costs for the automotive industry
and irritation for customers. Key parameters must be knoworder to reduce it. Stability analysis is
a common way of studying nonlinear phenomena and has beertywided by the scientific and the
engineering communities for solving disc brake squeal jgo. This type of analysis provides areas
of stability versus instability for driven parameters, risley making it possible to define design criteria.
Nevertheless, this technique does not permit obtainingitbrating state of the brake system and non-
linear methods have to be employed. Temporal integrati@vill known method for computing the
dynamic solution but as it is time consuming, nonlinear ragdthsuch the Harmonic Balance Method
are preferred. This paper presents a novel nonlinear methlbed the Constrained Harmonic Balance
Method (CHBM) that works for nonlinear systems subject tttdiuinstability. An additional constrain-
ing based condition is proposed that omits the static dxyuiilin point (i.e. the trivial static solution of
the nonlinear problem that would be obtained by applyingcthssical Harmonic Balance Method), and
therefore focus on predicting both the Fourier coefficientd the fundamental frequency of the station-
ary nonlinear system.

The effectiveness of the proposed nonlinear approachustidited by an analysis of disc brake squeal.
The brake system under consideration is a reduced finiteegilemodel of a pad and a disc. Both sta-
bility and nonlinear analyses are performed and the reanisompared with a classical variable order
solver integration algorithm.

Therefore the objectives of the following paper are to pneés®t only an extension of the Harmonic
Balance Method (the Constrained Harmonic Balance Meth®tBi@), but also to demonstrate an ap-
plication to the specific problem of disc brake squeal witteagively parametric studies that investigate
the effects of the friction coefficient, piston pressur@jimear stiffness and structural damping.

1 Introduction

Disc brake squeal is a complex phenomenon and has been engiad issue for many researchers for a
long time. There is no precise definition of brake squeallpty,it could be defined as a monoharmonic



sound emitted at a frequency over a range of 1 kHz to 20 kHamduai braking event. Squeal is a
fugitive noise, i.e. at each braking action a brake systery aramay not be noisy. Although brake
squeal is undesirable, it is the sign that the brake is relift]. Ouyang et al. [3] demonstrated that
parametric resonances can occur when an elastic elemertaied around an annular disc with friction
having a negative slope with velocity. They also indicatacekastic system can oscillate in the stick-
slip mode (that is a low sliding speed phenomenon caused titeestatic friction coefficient is higher
than the dynamic coefficient) in the plane of a disc due to maah friction nonlinearity [4]. Spurr
[5] analyzed squeal as a sprag-slip phenomenon. He indi¢hét the tribological property cannot be
considered as the only reason for brake squeal, and thattidbrcould occur when the friction coefficient
remains fairly constant with speed. Later, the sprag slgngimenon was generalized as a geometrically
induced or kinematic constraint instability. For examplaervis and Mills [6] and Millner [7] worked
on mass-spring models and showed that autonomous vibsatioe due to friction that couples two
modes together, thus instability occurs even if the frictmpefficient is constant. Brake squeal has
been identified by Oden and Martins [8] as a result of fricioduced vibration. Hence, if friction force
couples two degrees of freedom (dof), unstable modes coeitdarand generate squeal. Liles [9] studied
a large finite element model and confirmed that brake squéalkego the friction coupling effect, leading
to mode coalescence. The friction coefficient appears thdessential parameter for detecting squeal
phenomena. Moreover, Ouyang et al. [10] proposed to stuelstidbility analysis of a car disc brake
system (with pads, calliper and mounting) by consideringraliined analytical and numerical method
that uses the finite element method.

Stability analysis is a classical method for studying thekibrsqueal phenomenon [9,11-14]. An ana-
Iytical finite element model with nonlinear contents sucle@stact and frictional elements is considered.
A complex eigenvalue computation of the respective lirmstisystem is then performed, followed by a
study of the corresponding real parts. A positive real paitdates that the corresponding eigenmode is
unstable and squeal may occur. Parametric studies ared¢aui and several design criteria are derived.
However, as mentioned by Ouyang et al. [15], eigenvalueutation is insufficient due to linearization
which provides valid results only close to the steady s@idstate. The real part of an eigenvalue indi-
cates the growth rate of oscillations; however it does novigde information on the amplitude of the
dynamic response [9]. Moreover, eigenvalues analysisestienates the number of unstable modes and
they cannot all be observed in experiments [16]. Finallg, gtarting vibration mechanism is unknown.
As a result, transient analysis is the natural second stsfudying brake squeal. Contrary to eigenvalue
analysis, transient analysis can include nonlinear asp#dhe model. The models can be refined and
the use of time-dependent loading, sophisticated frickkovs and so on is possible. Better qualitative
and quantitative results are derived, considerably douting to the improvement of brake systems. A
large number of transient analyses of finite element modmle lheen performed in the past. Nagy et
al. [17] was one of the first to perform a numerical integnatio a finite element disc brake. Chargin et
al [18] carried out a transient computation on a very simpéké system by using an implicit integration
scheme. Mahajan et al [19] ran both complex and temporabagpes and found that both methods are
useful for design modifications. Hu et al [20] performed aplieit time integration analysis combined
with Taguchi’s method and found that the characteristic§iofion materials are an important factor,
along with rotor thickness, pad chamfer and pad slot. Mocemty, Massi et al [16] performed a dy-
namic transient computation on a large dofs disc brake mwedklan in-house finite element code and
correlated the modal complex analysis with the time sinnfein the sense that the vibrating steady state
matched one of the unstable modes found in the complex analybe major drawback of the works
mentioned above concerns the excessive calculation tioqéresl to obtain the stationary state of os-
cillations, which penalizes design modifications. Shoc@nputation times can be achieved with these



methods at the cost of over-simplified finite element modalsuBakar and Ouyang [21] performed a
transient analysis for three different contact regimes BAQUS and found only one that gives accept-
able results, i.e. the oscillation frequency is similar e @f the results obtained by complex analysis.
Computation took more than 24 hours before calculationsrdad. One way of tackling these drawbacks
is to carry out the solution in the frequency domain. A venllykeaown method for solving nonlinear
problems is the Harmonic Balance Method (HBM) in combiratigth the Alternate Frequency Time
Domain Method proposed by Cameron and Griffin [22]. This radthas been used by many authors to
solve nonlinear problems [23-26]. The key factor of HBM is tomputation of the steady-state solu-
tion without the transient part. HBM is well designed for tgyas under periodic excitations. It is less
time consuming and requires less disc storage. In the phaticase of self-excited systems subjected
to Hopf bifurcations, it is a little more complicated to aphis method since the uniqueness of the
solution is lost [11] and both static and dynamic solutionexist. Hence the system is driven only by
initial conditions and leads to a unique final solution. Iro@timization domain, that corresponds to two
local minima the solver computes either the static solutiotihhe dynamical one without any control, but
the static solution is always reached whatever the initaditions. This reflects the fact that the static
solution corresponds to an "exact solution” of the nonlimggstem in the Fourier domain (the solution
is only composed by the static Fourier coefficients), whetha dynamic solution will be an approxima-
tion of the nonlinear system due to the truncated Fourigeseil his is a major drawback that has been
tackled in this study.

In this paper, we propose a novel nonlinear approach, cHie€onstrained Harmonic Balance Method
(CHBM) that works for nonlinear systems subjected to fluitestability. An additional constraining
based condition is proposed for predicting both the Fowtafficients and the fundamental frequency
of the stationary nonlinear dynamic system amplitudededahe "limit cycles amplitudes”.

This paper is divided into four sections. The first one dedth the presentation of the brake system
under study. Secondly, the stability analysis of the naambrake system is performed. The third part
concerns the nonlinear analysis with the CHBM and the resut compared with a classical tempo-
ral integration scheme. The advantages and drawbacks lofrbethods are discussed. The last one is
devoted to parameter analyses where the advantages ofth@mBM are illustrated.

2 Finite Element Model of the brake system

Figure 1 shows the finite element model of the car front braldeu consideration, developed using the
ABAQUS finite element software package. The model considfseatwo main components contributing
to squeal: the disc (see Figure 1(a)) and the pad (see Fig¢u)e There are about 60000 nodes and ten-
node quadratic tetrahedron elements are used. They areisefyl for meshing complex shapes and are
second order elements which provide accurate results wtitteguiring very fine meshing [27].

2.1 Model reduction

As seen previously in Figure 1, finite element models of the make components need a large number
of dofs to represent geometrical details of the brake syst®me of the first classical processes is to
reduce the finite element models of the pad and disc by usingiig @xd Bampton technique [28] for
keeping certain contact nodes and generalized dofs.

It consists in building a projection basis combining coaistr modesI'c and a truncated basiB, N
of normal modes computed with a fixed interface. Hence trediogiship between physical boundaries
(orinterface dofsjip, interior dofsuy, modal coordinates of constraint moags and modal coordinates
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of normal modesy,, is given by:

) me T )

The constraint mode® ¢ are computed by assuming unit displacements ao

Kgs Kgi < uB > _ Rp (2)
Kis Kn uy <0>
where<> denotes prescribed quantities. Then the correspondingrspdice for the static condensation
is written as:
I
Tc = - 3
© [_KII 1KIB:| ®)

wherel defines the identity matrixT, is achieved by resolving an eigenvalue problem with fixed
interface dofaug.

<—w2 |:MBB MBI] n |:KBB Km]) { <0> } _ { R, } %)
Mg Mnp K Kir 1 <0>
where <> denotes prescribed quantities. Findlly, x is deduced by retainingy modes computed in

Equation (4).
0
T, N = 5
o LOLNJ ®)

Finally, stiffness matri¥K and mass matridI are given by

. K K K 0
K = [Tc Tso,N]T[ BB BI} [Tc TeN] Z[ (()30 KNN:| (6)

9 T Mcc Mcen

M=[Tc Tyn] [MIB MIJ To Ton] = [MNC MNN} (7)
where0 defines the zero matrix. For the sake of convenience, in flewing of the paper the hat above
the reduced matrices is deleted. Nine contact nodes areokegach structure at the disc/pad interface
and four extra nodes are retained on the back-pad wherengimtee is applied. Moreover, the first fifty
modes of each structure are held. Boundary conditions dmie\ad by embedding disc in the hub while
the pad is only free to translate in the normal contact divectThe resulting model is 858 dofs system.

2.2 Non-linear system

Many contact definitions could be used to model the contaetdsn structures in finite element models
but the simplest is the the penalty method mentioned by Quirahis review [15]. It consists in adding
contact stiffness at the disc/pad interface. The frictiomaterial is a mixture of many components and is
about one thousand times less stiff the disc, thus its defoom under loading is greater and nonlinearity
behavior occurs. Thus contact stiffnesses values are chodé the first and the third order of the pad
compression curves obtained in the tests.



Cu-ﬂ!acl nodes

Figure 1: Finite element models of the brake system (a) Palidc

The computation of the nonlinear contact force takes thefor

k(Ui — Uy) + k(U = U;)®if (Us = Uj) >0

E = .
contact { 0 otherwise

(8)

with £ andk,, linear and nonlinear contact stiffnesses respectivelylarahdU; displacements of inter-
faces nodeg and; that are related to the pad and the disc respectively. Toioini forces are deduced
from the contact forces by using the classical Coulomb laweAnanent sliding state is considered and
a constant friction coefficient is assumed:

Firiction = ,UFcontacthr(Ur) (9)

with ;. being the friction coefficient and, the relative velocity between both bodies.
Thus the vectors of the nonlinear forces take the form:

Fu (X) = Fcontact (X) + Ffriction (X) (10)
Hence the reduced final model of the brake system is written as
Mx 4+ Cx + Kx + Fy; (X) = Fpiston (11)

wherex is the response displacement of dofs, the dot denotes thatilen with respect to timeav, C,
K are respectively the mass, damping and stiffness matridbée systemF ,ison iS the piston pressure
force and vectolF',, (x) corresponds to nonlinear force€: is built by projecting the modal damping
matrix D onto the undamped, non-frictional inverse modal bdsis of the reduced model:

C=o1"Dap! (12)

The modal damping matrilo is built so that modal damping is added on both the modesvadain
the instability. Initially, equal damping distribution ¢®nsidered.

D =diag(0...0 D1 D20...0) (13)
with D1 = D2 =1;



3 Stability Analysis

As mentioned before, the stability analysis is the first $tgstudying nonlinear systems subjected to
instability phenomena. For a given set of parameters, & gquilibrium position can become unstable
and stationary periodic oscillations, called limit cyclescur.

This analysis is performed in two steps [29]. The first onesgsia in performing the static loading of the
system defined in Equation (11) corresponding in an actiothbydriver on the brake pedal. Pressure
is applied onto the piston which acts on the pads enterirgdantact with the disc. The corresponding
nonlinear static equation is written as:

Kx + Fp (x0) = Fpiston (14)

wherexq corresponds to the static equilibrium of the nonlinear brajkstem. Note that the static equi-
librium is achieved with a non-zero rotational disc speeaalving friction forces.
Then the system (11) is linearized about the static eqiuhibrpositionx, by using the perturbation
technique. Such a perturbation:

X =Xg+ X (15)

Replacing Equation (15) into Equation (11) leads to:
MX + Cx + K (xg + %) + Fy1 (%0 + X) = Fpiston (16)

Supposing thaF,,; belong to theC! class, developing the nonlinear force as a Taylor seriekaagding
the first order leads to:
F. (Xo + }_C) ~ Fp (Xo) + KhL}_( a7

KX, corresponds to the linearized nonlinear forces Jacobiarixwehich is composed by the following
elementary matrix for each contact element:

ox; ox;
L _ ol J lx
KNwy = | 0F,, [ 0Fu, | (18)
@.I‘Z‘ o @.I‘j
x x0o
And writing k;, = 8(5;‘;1' , the elementary stiffness matrix takes the following form:
0
[0 —pk;, O 0  pk, O]
0 Kk 00 =k O
L |0 0 0 0 0 0
Kxw, = o pk, 0 0 —pk, 0 (19)
0 -k, 00 Kk, O
K 0 0 0 0 0]

It should be pointed out that the friction force is only weittin thex direction that corresponds to the
longitudinal direction of the vehicle. Hence the nonlinsgstem (11) is approximated at the equilibrium
position by the following linearized one:

M + Cx + (K + K,) X =0 (20)
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Figure 2: Stability analysis (a) Evolution of the real pastshe stable and unstable modes (b) Coales-
cence of the two corresponding eigenvalues

The previous model (20) is then written in the following stapace and complex eigenvalues are de-

rived :
0 I

-M 1 (K+KE;,) -MIC

Since the stiffness matrix (19) is asymmetrical due to the&trdaution of friction forces, the computed
eigenvalues are complex and are written as:

A= (21)

A=a+iw (22)

whereaq is the real part of the eigenvalue that corresponds to theitgroate of the amplitude and

is the imaginary part of the eigenvalue that correspondéegpulsation of the mode. A negative real
part indicates that the corresponding mode is stable. lerotfords, a perturbation about the static
equilibrium sliding state will not modify the equilibriumogition of the system. A positive real part
equivalent to a negative damping leads to an unstable modes modifying one of the parameters
will induce growing oscillations about the static equilibn position of the system until the dynamical
steady-state is reached. Figure 2 shows evolutions of rimedaeal parts and normalized frequencies of
the associated eigenvalue versysvhich is normalized with respect to the Hopf bifurcationrig.y. As
seen in Figure 2(a), the real parts curves split into two ¢ihas near the Hopf bifurcation poing. One
goes towards the positive real part half-space and becomsivieowhereas the other branch decreases
and remains in the negative real part half-space. Figurg {bws the typical lock-in phenomenon
between both modes of the system wjitlincreasing. It can be seen that coalescence between the two
modes is perfect since they are equally damped. The efféetgually and non-equally damped modes
will be illustrated in the last part of this paper. It is theosgible to define stable areas versus unstable
areas of the linearized system for a given set of parametarthe following, the paper is devoted to
nonlinear dynamic computation.



4 Non-linear dynamic and self-excited limit cycles

The classical approach of nonlinear analysis consistsiilgusmporal integration schemes to compute
nonlinear dynamic solutions. However, it can be observadtlttiis kind of method is costly in terms of
computation time and resources for large finite element hsode

Enhanced nonlinear methods have to be employed to save Extensive reviews on this topic have
been given in [30]. In the following part of the paper, an or@ adaptation of the harmonic balance
method for self-excited nonlinear systems will be introglll@nd discussed.

4.1 The Constrained Harmonic Balance Method

In this section, we propose to introduce an extension of #renbnic balance method, called the Con-
strained Harmonic Balance Method (CHBM), for approxim@tgtationary nonlinear responses of self-
excited systems subjected to flutter instabilities. Tiadél harmonic balance methods are well-known
numerical methods that have been commonly used to solveneanlproblems in engineering [30].
However, they do not permit obtaining the stationary nadinvibrational responses of self-excited sys-
tems due to the fact that the static nonlinear solution spwads to the trivial solution of the problem.

In this section, the classical harmonic balance method &vitbndensation procedure on the nonlinear
dofs is presented first. Then the additional constrainingddmn allowing the determination of the limit
cycle amplitudes and an optimized initial condition pracase presented and discussed.

4.1.1 The Harmonic Balance Method with a condensation prockire

Considering harmonic balance methods, a nonlinear saligiassumed to be a truncated Fourier series
and the exact nonlinear periodic soluti&n(¢) is replaced as:

Nh Nh
Xapp (1) = Z US cos (kwt) + Z UP sin (kwt) (23)
k=0 k=1

whereUS andU? are vectors of Fourier coefficients anddefines the final pulsation of the nonlinear
limit cycles. It can be seen thatis an unknown parameter in this study since we are in the poesef a
self-excited system and the frequency of the stability ysialdiffers slightly from that of the nonlinear
steady-state solution. Thus it cannot be used as a fixed pgganV, is the number of the harmonic
coefficients retained for the approximated nonlinear ity solution. Velocities and accelerations are
obtained by derivation of Equation (23) with respect to tineet The advantage of harmonic balance
method is that it allows keeping only the first terms of Equat{23) where, generally, a preponderant
energy part of the signal is concentrated.

Replacing the approximated solutidfy,,,;, (¢) into Equation (11) leads to

Np,

Ry, ()= [(K ~ (kw)? M) US + (kwC) Ug} cos (kwt) +
i (24)
> [(K = (k) M) UF — (kwC) U sin (kot) + Fut (USS) = Friion
k=1

Projecting the residue on sine and cosine orthonormal baseswriting the multi-harmonics vectds
such that:



T

- T T T T T
U= |ug® uft Ut . oug”t ug (25)
leads to the following approximated equation:
AT+ Fy (fj) — Fou (26)
with _ ;
K 0 0 0 0 0
0 App O 0 0 0
0 0 0 0 0
A= 0 0 0 App O 0 (27)
0 0 0 0 0
|0 0 O 0 0 Ann,|
and ()’
| —(kw)*M + K kwC L
Ah,k = e —(]Cw)QM 1K fork=1:N, (28)

Ay, 1, is the dynamical stiffness matrix associated with&Heharmonic andF,,; are the external forces.
Equation (25) gathers the Fourier coefficients that haveetbdlanced to obtain the periodic solution of
the nonlinear system. Non-linear force Fourier coefficatepend ofU and their determination can be
fastidious analytically because of the size of the systeththe number of harmonics. The Alternate
Frequency Time Domain Method proposed by Cameron and Gfffhpermits omitting this issue as
outlined below:

U

X(t) — Fyu(X(t)) — Fu (U

FFi;l FFT = ( = ) (29)

When a nonlinear system has a significant number of dofs butzoiew of then are related to nonlinear
components, it is possible to reduce system (26) on themeanlidofs without loss of accuracy [31, 32].
Linear and nonlinear nodes are separated (i.e. the newnisaoch that the nonlinear dofs are stored at
the vector’s end). Equation (26) may be rewritten in thedielhg form

Aln In Aln n1:| { fIln } { 0 } { Fout In }
) ’ - _|_ ~ g ~ ’ 30
[Anl,ln Anni| | Uy Fp Fout,n1 (30)
whereU), andU,, define the linear dofs and nonlinear dofs, respectivBly,; 1, andF ;1 are the as-
sociated linear and nonlinear external forces. In the caimreodel, only external linear force is available,
i.e. the piston force.
The purpose of the condensation aims at solving the algebrilinear system of equations only for

nonlinear dofs, leaving the other linear ones to be detexthiater by a linear transformation. Hence
rewriting (30) on nonlinear dofs leads to:

Aeqﬁnl + Fnl (Unl) = Feq (31)
with
Aeq = Anl,nl - Anl,ln (Aln,ln)_l Aln,nl (32)
and - - =
Feq = Fout,nl - Anl,ln (Aln,hl)il Fout,ln (33)
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Thus system (31) has the size of the number of nonlinear dafssalighter than (30). Equation (31) is
rewritten in the following form to be solved:

f (ﬁnl) = Aeqﬁnl + Fnl (ﬁnl) - Feq (34)
When optimization is finished arid,, is known, linear displacements are obtained with:

Uy, = A} (Fout,ln - Aln,nlﬁnl) (35)

In,In

4.1.2 The additional constraining condition

Equation (34) is a cost function that has a minimum wk&p is a solution of the system and can be
solved by nonlinear least-square algorithms such as thdbe Gauss-Newton and Leveberg-Marquardt
methods. As stated before, the uniqueness of the solutitostidor systems at the Hopf bifurcation
point [11]: the exact and trivial solution of Equation (34)responds to the static equilibrium point
which is unstable. If the classical Harmonic balance Metisaged, the only solution that will be found
will be this static solution due to the fact that the residfi&guation (34) will be equal to zero for the
static equilibrium point. So, in order to reject this triv&atic solution and obtain the stationary nonlinear
dynamical oscillations that correspond to the limit cychepditudes, it is necessary to add a constraint
to the Harmonic Balance Method to reach only the minimum afdign (34) which corresponds to the
stationary nonlinear periodic motion. The constrainingditon will be outlined in this paragraph.

By considering the nonlinear autonomous system (11) antihgrit in the state space gives:

Y = AY + Fp + Fnr (Y) (36)
with
X 0 0
R 3 R (VS N S B
and
0 I
A= [—M—lK —M—IC] (38)
A nonlinear periodic solutiofY . (¢) of Equation (36) is such that a reBlexists so that:
Y (t+T)=Y(t)andYo(t +T) £ Ye(t) for 0<T <T (39)

T is the period of the solution. It may be noted tfiats an unknown parameter due to the absence of
forced excitations and the difference between the stalfiltiquency analysis and that of the nonlinear
system.

By disturbing a solutiorlY . (¢) with a perturbatiore(t) we obtain:

Y (t) = Ye(t) + €(t) (40)
And by substituting Equation (40) in Equation (39), we obtai
Y.+é=A(Ye+e)+Fp+Fnr(Yete) (41)
By supposing thaFnr, is C! class, its development in the Taylor serie¥atat the first order gives

Ye+érnr A(Ye+e)+Fp+Fni (Yeo) + Inpe (42)

10



with Jnr, the Jacobian matrix of the first derivatives of the nonlinfeacesF g, respect to the periodic
solutionY(t).
SinceY,(t) is the solution of Equation (36), Equation (42) is under tbrerf

€~ Ae+ Inpe = Je (43)

with
J=A+JNL (44)

J is the Jacobian matrix of the nonlinear system (36) and dipen the dynamical solutiol(t).
Thereby the eigenvalues dfdefine the evolution of the limit cycles amplitudes of the limar system.
If one or more eigenvalues are positive, the approximatedimear solution of the system is increasing
and is governed by the unstable modes. If all the eigenvauesiegative, the nonlinear solution is
decreasing (i.e. we are still in transient motion). If ongegivalue is equal to zero whereas all the others
are negative, the nonlinear approximated solution defimestationary motion of the nonlinear system
subjected to flutter instability.

The replacement of the nonlinear contributidngy, by a linear approximatiodny, is done to mini-
mize the difference&

C =FnNL (Ye(t)) - JNLYe(t) (45)

This kind of transformation refers to the equivalent lineation concept proposed by Iwan [33]. Finally,
¢ can be minimized by using a least square method.

It may be noted thalwy, is the Jacobian matrix of the periodic nonlinear forces ameschot depend on
time. The eigenvalues df are clearly related to the evolution of the nonlinear padalutionY(t).
Indeed, the real part of the corresponding unstable modaenbes equal to zero while the other real parts
are negative when the computed solution has reached dyabstéady-state.

Hence the unstable real part is used as an extra equatiohgaobt finding algorithm. In such a
case, it will converge towards the steady-state solutioerevlthe dynamical equation and the real part
are minimized.

In conclusion, the final set of equations that has to be mizechis given by the two following functions

bil (ﬁnl,w) and f, (ﬁnl,w)
f1 (ﬁnlaw) = Aeq (W) Uy + Fy (ﬁnl,w) —Feq < e (46)

fo (Uu,w) = [Re (V)| < e (47)

where \ defines the eigenvalue df that has the maximum real part; ande; are chosen residual
coefficients.

The complete procedure and description of the Constrairechbnic Balance Method is given in Figure
3.

4.1.3 The optimized additional initial conditions

As explained previously, the unknown parameters that hawpe tletermined are the Fourier coefficients
U, and the frequency of the stationary periodic signal.
Firstly, when employing the static equilibrium positiontag initial condition, computation can be very

difficult and expensive. Hence they are too far from the fitetienary nonlinear dynamical solution and

11



so another initial estimation must be determined to save &md improve the computation procedure.
In this part of the paper, optimized additional initial catimhs based on the complex nonlinear modal
analysis [34] are introduced and discussed.

As explained previously by Sinou et al. [34], starting frohe thypothesis that the nonlinear unstable
mode drives the dynamical solution, the evolution of therapimated solution curve, defined by con-
sidering only the contribution of the unstable mode, is gitog:

Yo(tp,\) = p (@ + &) (48)

whereW¥ defines the nonlinear unstable mode ainits conjugate.\ is the eigenvalue that corresponds
to the unstable mode ands an arbitrary chosen coefficient.

The optimized additional initial conditions are defined las decomposition into Fourier coefficients of
the previous expression & (¢, p, A). In this caseW is the eigenvector of the nonlinear unstable mode
that has been obtained from the stability analysis. Thesien@ed initial conditions work for quite a
wide range ofp and lead to the convergence of the harmonic balance metldtddirst calculation.
Afterwards it is easy to compute solutions for given sets affameters starting from previous results.
Secondly, when using the harmonic balance method it is sape$o know the frequency of the periodic
signal since the dynamical matrices are frequency-deperatel thus convergence may be laborious or
even impossible if the chosen frequency is too approxireatithe initial frequency value is selected to
be equal to the unstable mode frequency computed by syadildlysis. Figure 3 displays the algorithm
procedure of the Constrained Harmonic Balance Method.

5 Results

In this part of the paper, the effectiveness of the Constchtdarmonic Balance Method will be illustrated
for the nonlinear brake system presented in Section 2.

5.1 Non-linear stationary solutions

Limit cycles are computed far = pq for cases withl, 2, 3 and 10 harmonics. Results are compared
with those obtained by applying temporal integration. Tésuits shown in Figures 4 (a-b) correspond
to a physical interface node where previous static redostftave been performed together with a modal
displacement (c-d). First of all, the case with only one hamio is discussed. Considering Figure 4,
it clearly appears that the approximated solution obtainid one harmonic does not converge exactly
with the final temporal solution. However, this solution &gva initial approximation of the limit cycle
amplitudes, indicating that the first harmonic is one of thestsignificant components for the complete
nonlinear solution. Hence estimations of the approximatealinear solutions computed withor 3
harmonics are considered. The nonlinear limit cycles shayoad fit with the temporal integration
results in Figure 4. Moreover, the computed unknown frequdrom the CHBM is very close to that
of the temporal integration since the difference is lesa th&3% for 1,2, 3 and10 harmonics. To make
understanding easier for the reader, the evolutions of és@lue of the nonlinear equation are given
in Figure 7 for each case. Computational tests have beeorpetl by assuming that the frequency
of the limit cycles is different from the frequency obtaindm the stability analysis. For the reader
comprehension, neglecting changes in frequency of theegelfed nonlinear vibrations does not allow
good estimation of the limit cycle amplitudes even if thdetiénce between the frequency obtained from
the stability analysis and the fundamental frequency ofrtbie-linear oscillations appears to be very
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When looking at Figures 4 (c-d), it is obvious that more cagw@olutions are better estimated when
augmenting the number of harmonics. Slight differencegappetweer2 and3 harmonics because the
third order becomes no more negligible and has to be takeraictount for matching curves from the
numerical integration well. This is even true for higher hogarities which generally involve coupling
between Fourier coefficients and thus higher order resgonsdl the limit cycles computed with0
harmonics match numerical integration correctly. Tableihsarizes the results and relative errors for
the three cases studied.

Finally, Figure 5 shows the power spectrum ratios of thetlioyicles computed gt = g for each
harmonic. Computation is done by summing power of each dad fiven harmonic:




1H 2H 3H 10H
Average relative error (%) Displacemen33.5 0.3 0.1 0.1
Velocity 30.3 49 4.8 4.2

Table 1: Relative error fot, 2, 3 and10 harmonics

where P; is the power of the” harmonic,a; andb; are the cosine and the sine coefficients of #tie
dofs.

Then, the power ratio is computed. This consists in dividdagh power harmonic by the total power of
limit cycles computed by the temporal integration:

Rj=—— (50)

P, temporal

where R; defines the power ratio of thg” harmonic andp; is the power of thej* harmonic of the
CHBM and Pye.poral is the total power of the temporal integration solution. Mafsthe energy appears

to be concentrated in the first terms of the Fourier seriebleTa displays the mean error between the
numerical integration and the CHBM for the four differensea. As expected, the error decreases as
the number of harmonics increases. Calculations witharmonics have been carried out to ensure the
convergence of computed solutions towards numerical iat@gm and negligible differences have been
detected. Moreover, limit cycles withand10 harmonics are close and the mean error of both methods
is almost equal. Even when using olyrarmonics for computing, the steady-state solution seerhe t
adequate in the present study. It can be seen that it is easysider a large number of harmonics with
the proposed method. Furthermore, considering the lingkecfrequency as an unknown is fundamental
in CHBM, otherwise the computation of the dynamical solutiails.

5.2 Convergence and Time Computation

This section concerns the convergence of the Constraineaid¢iac Balance Method. Figure 6 displays
the evolutions of real parts during the optimization comagions. Whatever the number of harmonics,
the real part converges to zero at the end of optimizatiaticating the nonlinear stationary self-excited
vibration of the brake system. Figure 7 shows the residuenrfor every iteration. Although using
several harmonics generally involves many iterationsy dnl iterations were needed f@ and 3 har-
monics in this case. Using) harmonics requires the convergencesaxtra harmonics. Computation
with 1 harmonic is not significant since the final approximated tsmtudoes not exactly match with the
exact nonlinear solution. Thus it appears that the algoritias difficulties in finding a root and seeks a
convergence path that is costly in terms of iterations. @&btlisplays the computation time needed by
temporal integration and CHBM to reach the dynamical sotutBoth methods were run on MATLAB.
Even though the number of iterations for b@thnd3 harmonics is equal, computation time is somewhat
different with respectivelyl85 and 753 seconds required. This is obviously due to the fact that more
harmonics mean more unknowns and thus more Jacobian égakiat the optimization process. Com-
putation time can be improved by using continuation methbdsthis is not the aim of the paper. Using
10 harmonics is costlier and needs abautour CPU time. However, CHBM computation time is still
very low compared to the00 hours needed for temporal integration. Moreover, massise storage

is needed for temporal integration with more than one gigglby stored data (each dof is computed at
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Figure 4: Limit cycles using the classical temporal intégraand the modified HBM at(; — temporal
integration, —1 harmonic, - -2 harmonics, -.3 harmonics, ..10 harmonics; (b,d) zoom

each timet and stored on the disc) compared to a few kilobytes used bidheer coefficients of the
CHBM. In the following part of this paped harmonics will be used, regarding noticeably low relative
errors both on displacement and on velocity. Moreover irsffa good compromise between accuracy
and computation time. In conclusion, the proposed ComstchHarmonic Balance Method is well de-
signed for a self-excited system because the results aveasieaegarding the temporal approach and it
is cheaper in terms of time consumption and disc storage.

6 Parametric studies : Interest of the CHBM

In this section of the paper, parametric studies will be uadken for both the stability analysis and the
limit cycles amplitudes.
6.1 Friction coefficient

The friction coefficient is generally considered as one efrtfost important parameters in brake systems.
Good brake performances often signify a high friction cegfint yielding a high sound pressure level.
Limit cycles are computed fagt = g, p = 1.2p0, = L.4pg, p = 1.6p9 andp = 2 and displayed
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Methods Temporal Integration HBWVH HBM 2H HBM 3H HBM 10H
Iteration Numbers - 60 11 11 16
Time Computation 200 hours 1550 seconds 485 seconds 753 seconds 3591 seconds

Disc Storage 1.4 Go 4 ko 6 ko 8 ko 9 ko

Table 2: Performance computation

on Figure 8.

In the rest of the study, the real parts as well as the freqasrammputed and displayed in tables are
normalized in relation to those in the nominal model (i, k5, ;10 and D1 = D2 = 1). To demonstrate
the interest of considering the frequency as an unknownemtmnlinear method proposed in this paper,
Table 3 gives the differencAf between the initial frequency of the unstable mode thatless obtained
via the stability analysis for the nominal parameters ardfithal frequency of the self-excited vibration
that has been obtained via the nonlinear method.

Considering Figures 8, it clearly appears that increadmagftiction coefficient involves the higher vi-
bration amplitudes for both pad and disc. Moreover, evohsiof the equilibrium point are observed, as
indicated in Figure 8(a).

It can be seen that the Constrained Harmonic Balance Metflmdsadetermining the limit cycle ampli-
tudes not only in the vicinity of the Hopf bifurcation pointitialso far from the Hopf bifurcation point
wo. In Table 3, a difference between the frequency of the lipide amplitudes and the frequency of the
unstable mode can be observed.
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Case \Values Af(Hz)
1 140 -0.044

2 124 045
3 1dpy 071
4  16py  0.90
5 2u 1.2

Table 3: Hopf bifurcation points and frequencies for valdiiction coefficient

6.2 Piston pressure

A variation in piston pressure has an effect on the pressstetuition at the disc/pad interface and the
stability analysis of the brake system may be affected. sigiees are computed for three different
pressure$).8F,, Py and1.2F, where P, is the operational piston pressure. The evolutions of thé re
parts and the coalescences of the unstable and stable medidlssirated in Figures 9(a-b). Table 4
gives the evolution of the Hopf bifurcation point. It appe#nat the pressure has an important effect of
the stability. Basically, a higher piston pressure incesahe degree of instability by moving the Hopf
bifurcation point towards lower values without modifyirgetpattern shapes of the evolution of the real
part or frequency coalescences. However, the frequendgsameEnce point is affected by a change in
piston pressure, typically a high piston pressure resnltshigher coupled frequency.
Figures 9(c-d) illustrate the limit cycle amplitudes foetpad and the disc. To facilitate comprehension,
the nonlinear vibrations are obtained at a fixed normalizexdidn coefficienty, = 1.05u0. Hence pad
interface deformation is equivalent for the three casdmwaljh the static positions are more affected for
nodes at the pad/piston interface (see Figures 9(c)). Heisclan be clearly explained by considering
that higher piston pressure results in greater pad conmipresthe piston/pad interface is moved towards
pad/disc interface. Disc deformation interface (Figured) (s slightly impacted with an increase in
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Case Values p/pg Af(Hz) Af(Hz)atp = 1.4u0

1 Py 1 0.14 0.72
5 0.8F 1.04 0.15 0.72
6 1.2P) 0.96 0.13 0.72

Table 4: Hopf bifurcation points and frequencies for valegiston pressure

vibration amplitudes as the piston pressure increases.

6.3 Contact Stiffness

This part is devoted to the analysis of contact stiffnesdieggo the problem of brake squeal phe-
nomenon. This parameter is very dependent on contact bdfhess and contact surface shapes. Since
the disc is about a thousand times stiffer than the pad, costdfness usually depends on frictional
materials. Both analyses are performed for three contéfitefses corresponding to a variation of the
pad friction material’ properties. For the sake of simglick is considered as a function of linelgrand
nonlineark,,; contact stiffness springgs = f(k;, k,,;). The evolution of the real parts and frequencies
of the stable and unstable modes are shown in Figures 10(Bab)e 5 gives the evolution of the Hopf
bifurcation point. As for the piston pressure case, an geeein the contact stiffness destabilizes the
nonlinear system by decreasing the Hopf bifurcation poMevertheless, the patterns look alike and
only a translation is observed for varyithg. Frequency lock-in is changed and a higher contact stiéfnes
results in augmenting the coalescence frequency. Thisitis mgical since high contact stiffness tends
to rigidify the whole system and thus increase the resonfrgeencies.

When looking at limit cycles on Figure 10(c-d) which are canga forpu = 1.03u0, it can be seen
that increasing the contact stiffness decreases the manmlinbrations. Nevertheless, amplitudes do not
change with the same ratio compared to the variable stéfnas0% increase in stiffness only changes
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Case Values pu/pg Af(Hz) Af(Hz)atp = 1.4u0

1 ks 1 0.08 0.72
7 0.7ks  1.03 0.08 0.73
8 1.3ks  0.98 0.09 0.70

Table 5: Hopf bifurcation points and frequencies for valeadtiffness

the amplitudes by a factor af1 while a30% drop in contact stiffness results in lowering the limit aycl
amplitudes by a mean factor 8f3. Moreover, the static position of the equilibrium point camange
drastically, as illustrated in Figure 10(c).

Hence contact stiffness seems to be a key parameter in nedoike squeal noise; nevertheless it has
to satisfy other specifications which concern brake efficyathat are considered as the most important
factors.

6.4 Damping

Damping seems to be a major parameter in reducing disc brpleak Squeal problems are resolved
by applying damping shims on back plates, which works wetistimes. However, damping influences
self-excited systems in which the coalescence of two maestiyet fully understood and many studies
have been performed to study this phenomenon. Hoffmann @i [35] performed a stability analysis

of a two dof system and showed that adding damping withowgutson can lead to a paradoxical effect
i.e. it can destabilize the system. Sinou and JézéquékfBfied the impact of modal damping on both
stable and nonlinear systems and found that non-equallypddmodes lead to a destabilization of the
system and increase the amplitudes of limit cycles. Shih\y&#ked on a two dof system representing
both pad and disc modes and shown that the equally dampedtediiezes the system by diminishing

limit cycles when higher damping is applied but this is nogenthe case when adding damping on only
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one mode. While the amplitude of the more highly damped aystecreases, the amplitude of the other
one increases. More recently, Fritz et al. [38,39] perfarsiability analyses on a complete finite element
model brake system. He confirmed that the ratio of the dampirnige two modes involved in squeal is

an essential key for controlling the stability of systemer &qually damped modes, the stability curves
are lower and thus instability occurs for a higher frictiopetficient. Nevertheless, in the case of large
non-equally damped modes a smoothing effect occurs ancepuble Hopf bifurcation point towards

lower values, thus instability appears for a lower frictiooefficient compared to the equally damped

case.

In the following, we investigate the effects of modal dangpon stability and its impact on limit cycle

0.8

09 1 11 12 13 14
Normalized Friction Coefficient

15 16

-4

-7 -6 -5
Displacement (m)

1.2P, (a) Evolution of real parts (b)

amplitudes. Both the cases of equally and non-equally ddmmpoales will be considered.
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6.4.1 Equally damped modes

D1 and D2 are considered as the respective modal damping of Maated Mode2 which are involved

in instability. Three cases at equally distributed modahgangs are investigated.

Firstly, Figures 11(a-b) illustrate the evolutions of tlealrparts and the frequencies of the unstable and
stable equally damped modes. As explained previously ky Etial. [38, 39], increasing equal modal
damping causes a lowering effect and by consequence aztapitffect, by lowering the branches of
the real part in the stable area. The critical Hopf bifurmatpoint is moved towards higher values for
higher equal modal damping. Evolutions of the Hopf bifuimafpoint are given in Table 6. Moreover, it
appears that the frequency lock-in phenomenon remainscdéim the three cases. Modeurns out to
be the stable mode while Mod@ds the unstable one.

Secondly, Figures 12 (a)-(b) display nonlinear behaviat #e limit cycle amplitudes for one DOF of
the pad and one DOF of the disc computed;foe 1.07u4. The effects of damping appear to be very
complex. Not only limit cycle amplitudes but also changeshia static position of the limit cycles are
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Case D1 D2 D1/D2 u./pg Af(Hz) Af(Hz)atp = 1.4u0

1 1 1 1 1 0.21 0.72
2 5 5 1 1.01 0.18 0.70
3 10 10 1 1.07 0.10 0.63
4 1 2 0.5 0.97 0.68 1.28
5 1 5 0.2 0.84 1.64 1.98
6 2 1 2 0.96 -0.50 0.24
7 5 1 5 0.84 -0.87 -0.18

Table 6: Hopf bifurcation points and frequencies for darggiarameters

observed, as indicated in Figure 12(a). Surprisingly, fgélil damped case does not necessarily induce
low vibration amplitudes. Although the vibration amplieglof the pad are slightly higher for the lower
damped case, the highest dynamical response of the disarid for the highest damped case, with an
amplitude ratio of almost in relation to the lowest damped case.

Figures 12 (c)-(d) show limit cycles computed by increadimg friction coefficient = 1.4 in the
current case). As explained previously in section 6.1, advidriction coefficient involves higher limit
cycle amplitudes. It can be seen that the effects of equaltybd modes cannot be neglected and that
the combined effect of the friction coefficient and dampiaqot trivial. For example, it appears that
the influence of damping is weaker for = 1.41¢ compared to the case in the vicinity of the Hopf
bifurcation point atu = 1.07u. For the disc, the amplitude is still highest for the largangbed case,
but the amplitude ratio in relation to the lowest damped ¢agess significant, with a value @f3.
Moreover, it can be noted that the nonlinear amplitudes @flithit cycles do not follow proportionally
the growth rate of the positive real part and the commonlyl todlief that the added damping would
result in lower vibrations is not necessarily true.

6.5 Non-equally damped modes

Now we investigate the influence of non-equally damped méadesvo cases that ar®1/D2 = 0.5
andD1/D2 = 0.2. Figures 11(c-d) illustrate the associated evolutionefreal parts and frequencies
of the unstable and stable equally damped modes. The reteremains the equally damped case where
D1/D2 = 1. It should be noted that the damping of unstable M&dierns out to be higher.
The lowering effect due to high damping remains but its $itabg effect is counterbalanced by the well-
known smoothing effect occurring in the vicinity of the Hdmfurcation point (see Figure 11(c)), as
mentioned by [35—-39]. The real part branches of non-equiimped modes split with a smoother slope
and become positive at a lower friction coefficient than #ed part branch of the equally damped mode.
This effect is stronger for higher asymmetrical modal dargpiases, for example whénl /D2 = 0.2.
Figure 13 (a-b) illustrates the nonlinear limit cycles thad computed gt = po. The largest limit
cycle amplitudes appear for the lowest damping ralié/ D2 = 0.2 although the unstable mode is the
more highly damped one. More complex behavior is found fat geformation wherD1/D2 = 0.2.
With a higher friction coefficient, the real part curves @@sach other at around = 1.03u and case
D1/D2 = 1 has the larger positive real part, contrary to thé/D2 = 0.2 case which becomes the
most stable beyond = 1.03u. Figure 13 (c-d) presents the limit cycles of both the nodesidered
previously, computed at = 1.4uy.
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Figure 11: Evolution of real parts and frequency coalesesifa-b) equally damped: 4<* case, - 2"¢
case, ..3"¢ case (c-d) non-equally damped: £ case, - 6" case, ..7t" case

Large pad amplitudes are obtained for low damping ratiosamedonsidered as the most stable cases
aty = 1.4u0 by the stability analysis. Nevertheless, the highest aogsis for the disc are derived from
the most unstable case, which is the equally damped onen liecalearly observed that it is not possible
to establish a link between the values of the real parts arrésgmonding vibrating states since they can
be higher or lower depending on the different effects of thgsical parameters on both stability and
nonlinear behavior. Moreover, it is noted that the statigil@mrium point changes with the variation of
non-equally damped modes, as indicated in Figure 13 (a).

To further investigate the influence of modal damping, weppse to invert damping ratid1/D2 =
2, D1/D2 = 5 and perform a stability analysis and determine the nonfitigat cycles. It should be
borne in mind henceforth that stable Motlés the more highly damped one, whereas the damping of
unstable Mode is decreased. The evolutions of the real parts and fregegmndithe stable and unstable
modes are similar to the previous case thus the conclusiossability are identical.

Figure 14 (a-b) and (c-d) illustrates the nonlinear limitleg fory = 1.07ug andp = 1.44, respec-
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tively. In the vicinity of the Hopf bifurcation point (i.eus = 1.07u), the highest amplitude is still
obtained for the largest difference in damping, ifel /D2 = 5, but with an amplitude ratio of almost
57 compared to an amplitude ratio 8T for the preceding case. When considering a case far from the
Hopf bifurcation point (afx = 1.4 for example), the evolution of the limit cycles are complex dt
appears more difficult to give a general rule on the effectdamhping. For example, although the real
part of the unstable mode for the more asymmetrical dampasg ¢.e.D1/D2 = 5) is the lowest one,
this configuration involves the higher vibrating state fottbpad and disc. It must be compared to the
previous case study where the more asymmetrical dampirgy(cas D1/D2 = 0.2) exhibited higher
amplitudes only for the pad. Here, the unstable mode is the mveakly damped one and even if the
corresponding real part is below that of cdsehe corresponding amplitudes are higher.
Inverting modal damping has a weak influence in the vicinityhe Hopf bifurcation point, as seen
in Figure 13 (a-b) and Figure 14 (a-b) but it has a strong efiecdisc deformation when augmenting
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the friction coefficient. When the unstable mode is the mtnengly damped one, the limit cycles are
smaller than the equally damped case by a factor of 2 (Fig8r&d)), but the conclusions are totally
different when inverting the damping ratio: The corresgagdimit cycles are about 3 times larger than
for the equally damped case (Figure 14 (d)) .

This example shows that inverting modal damping distrdouthas considerable effects not only on
the stability of the system but also on the nonlinear amgédituof the limit cycles. For example, case
D1/D2 = 0.2 displays the smallest disc oscillations while cd3e/D2 = 5 has the largest disc os-
cillations and the conclusions for finding the best modeltatally different. Considering the previous
results, it appears that structural damping is a key factoerwdealing with nonlinear autonomous sys-
tems, but nevertheless it is a complex phenomenon and ibHaes ¢considered with care to ensure good
silent brake system design. Not only the quantity but alsodilstribution of damping have to be taken
into account thoroughly to avoid unexpected results.

25



\
v
’
+
1
N

Velocity (m.5%)
o
TSN
Velocity (m.5Y)
o
o

-1 ~o S0 4 Seo__-"
e .- -z -2
_2,
“““““““ a
_3,
- . . . . . . . -6 . . . . .
1.45 15 1.55 1.6 1.65 1.7 1.75 1.8 1.85 -6 -4 -2 0 2 4 6
Displacement (m) x 107 Displacement (m) 10
c d
15 15
10r o [
—~ 57 —~ 5 . T T ~
qu Ty ’ *
E E 3 J i
> 0 > 0 ' 1
‘© o \ J
o o \ ’
o ° . .
> > So 7
-5t -5 Seo -7
-10f 100 e o
—15 . . . . . _15 . . . .
0.6 08 1 12 1.4 16 18 =15 -1 -0.5 0 0.5 1
Displacement (m) x 107 Displacement (m) x10°
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7 Conclusion

In this paper proposed a novel nonlinear method called thesttained Harmonic Balance Method. This
original approach allows the determination of the statigrmaonlinear periodic solution of a nonlinear
mechanical system subject to flutter instability, by theitold of an extra-constraint in the classical Har-
monic Balance Method. This additional constraint allowim@lating the static equilibrium point (i.e.
the trivial static solution of the nonlinear problem thatwiabe obtained by applying the classical Har-
monic Balance Method)) and gives only the stationary nealiroscillations. Moreover, the frequency is
added as an unknown since the frequency of a self-excitedrayis not knowra priori and may change
for varying parameters. Also, the dynamical solution cdr®computed if only using the frequency
resulting from the stability analysis. An application tedbrake squeal was performed to illustrate the
effectiveness of the nonlinear method.

26



Numerical results correlated well with a classical time émalgorithm in terms of both amplitude and
frequency. The results of the CHBM is highly dependent onniln@ber of harmonics. A power ratio
computation shows that the major part of the energy is cdrateal in the first harmonic, but retaining
only the latter does not lead to the steady-state solutioorder to adapt to the complex behaviors of the
solutions, more harmonics are required in the Fourier sefléne computation time of the new method
is very short compared to that of a classical temporal itiggn algorithm and thus is well designed for
intensive computation in the case of parameter-depengstérss.

The effectiveness of this method’s application to a dis&dsystem is emphasized in the last part of the
paper, which describes the parametric studies performast lifnit cycle computations were achieved
for a large number of operational parameters and conclasigre obtained. The complementarity be-
tween the stability analysis and the complex nonlinearatibnal behavior appears to be essential for
carrying out a complete design study of a brake system. Mered was shown that not only the friction
coefficient, but also piston pressure, nonlinear stiffreess structural damping are important factors to
take into account to avoid poor design.
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