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We propose a generalized version of the Dantzig selector. We show that it satisfies sparsity oracle inequalities in prediction and estimation. We consider then the particular case of high-dimensional linear regression model selection with the Huber loss function. In this case we derive the sup-norm convergence rate and the sign concentration property of the Dantzig estimators under a mutual coherence assumption on the dictionary.

Introduction

Let Z = X × Y be a measurable space. We observe a set of n i.i.d. random pairs Z i = (X i , Y i ), i = 1, . . . , n where X i ∈ X and Y i ∈ Y. Denote by P the joint distribution of (X i , Y i ) on X × Y, and by P X the marginal distribution of X i . Let Z = (X, Y ) be a random pair in Z distributed according to P . For any real-valued function g on X , define ||g|| ∞ = ess sup x∈X |g(x)|, g = X g(x) 2 P X (dx)

1/2 and ||g|| n = 1 n n i=1 g(X i ) 2 1/2 . Let D = {f 1 , . . . , f M } be a set of real-valued functions on X called the dictionary where M 2. We assume that the functions of the dictionary are normalized, so that f j = 1 for all j = 1, . . . , M . We also assume that ||f j || ∞ L for some L > 0. For any θ ∈ R M , define f θ = M j=1 θ j f j and J(θ) = {j : θ j = 0}. Let M (θ) = |J(θ)| be the cardinality of J(θ) and sign(θ) = (sign(θ 1 ), . . . , sign(θ M )) T where

sign(t) =      1 if t > 0, 0 if t = 0, -1 if t < 0.
For any vector θ ∈ R M and any subset J of {1, . . . , M }, we denote by θ J the vector in R M which has the same coordinates as θ on J and zero coordinates on We assume furthermore that γ(y, •) is convex and differentiable for any y ∈ Y.

We assume that for any y ∈ Y the derivative ∂ u γ(y, •) is absolutely continuous. Then ∂ u γ(y, •) admits a derivative almost everywhere which we denote by ∂ 2 u γ(y, •). Consider the loss function

Q : Z × R M → R + defined by Q(z, θ) = γ(y, f θ (x)). (1) 
The expected and empirical risk measures at point θ in R M are defined respectively by

R(θ) △ = E (Q(Z, θ)) ,
where E is the expectation sign, and Rn (θ)

△ = 1 n n i=1 Q(Z i , θ).
Define the target vector as a minimizer of R(•) over R M :

θ * △ = arg min θ∈R M R(θ).
Note that the target vector is not necessarily unique. From now on, we assume that there exists a s-sparse solution θ * , i.e., a solution with M (θ * ) s, and that this sparse solution is unique. We will see that this is indeed the case under the coherence condition on the dictionary (cf. Section 3 below).

Define the excess risk of the vector θ by

E(θ) = R(θ) -R(θ * ),
and its empirical version by

E n (θ) = R n (θ) -R n (θ * ).
Our goal is to derive sparsity oracle inequalities for the excess risk and for the risk of θ * in the l 1 norm and in the sup-norm. We consider the following minimization problem:

min θ∈Θ |θ| 1 subject to ∇ Rn (θ) ∞ r, (2) 
where ∇ Rn △ = (∂ θ1 Rn , . . . , ∂ θM Rn ) T , r > 0 is a tuning parameter defined later and Θ is a convex subset of R M specified later. Solutions of (2), if they exist, will be taken as estimators of θ * . Note that we will prove in Lemma 3 that under Assumption 2 the set {θ ∈ Θ : ∇ Rn (θ) ∞ r} is non-empty with probability close to one. Note also that in the applications considered in Section 3, the constraint |∇ Rn (θ)| ∞ r can be defined as a system of inequalities involving convex functions. Thus, solutions to (2) exist and can be efficiently computed via convex optimization. In particular, for the regression model with the Huber loss, the gradient ∇ Rn (θ) is piecewise linear so that (2) reduces in this case to a standard linear programming problem. Denote by Θ the set of all solutions of (2). For the reasons above, we assume from now on that Θ = ∅ with probability close to one.

The definition of our estimator (2) can be motivated as follows. Since the loss function Q(z, •) is convex and differentiable for any fixed z ∈ Z, the expected risk R is also a convex function of θ and it is differentiable under mild conditions. Thus, minimizing R is equivalent to finding the zeros of ∇R. The quantity ∇ Rn (θ) is the empirical version of ∇R(θ). We choose the constant r such that the vector θ * satisfies the constraint |∇ Rn (θ * )| r with probability close to 1. Then among all the vectors satisfying this constraint, we choose those with minimum l 1 norm. Note that if we consider the linear regression problem with the quadratic loss, we recognize in (2) the Dantzig minimization problem of Candes and Tao [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF]. From now on, we will call (2) the generalized Dantzig minimization problem.

Bickel et al. [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF], Candes and Tao [START_REF] Candes | The Dantzig selector: statistical estimation when p is much larger than n[END_REF] and Koltchinskii [START_REF] Koltchinskii | Dantzig selector and sparsity oracle inequalities[END_REF] proved that the Dantzig estimator performs well in high-dimensional regression problems with the quadratic loss. In particular they proved sparsity oracle inequalities on the excess risk and the estimation of θ * for the l p norm with 1 p 2.

The problem (2) is closely related to the minimization problem:

min θ∈Θ Rn (θ) + r|θ| 1 , (3) 
which is a generalized version of the Lasso. For the Lasso estimator, Bunea et al [START_REF] Bunea | Aggregation for Gaussian regression[END_REF] proved similar results in high-dimensional regression problems with the quadratic loss under a mutual coherence assumption [START_REF] Donoho | Stable recovery of Sparse Overcomplete representations in the Presence of Noise[END_REF] and Bickel et al [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF] under a weaker Restricted Eigenvalue assumption. Koltchinskii [START_REF] Koltchinskii | Sparsity in penalized empirical risk minimization[END_REF] derived similar results for the Lasso in the context of high-dimensional regresssion with twice differentiable Lipschtiz continuous loss functions under a restricted isometry assumption. Van de Geer [START_REF] Van Der Geer | High dimensional generalized linear models and the Lasso[END_REF][START_REF] Van Der Geer | The Deterministic Lasso[END_REF] obtained similar results for the Lasso in the context of generalized linear models with Lipschtiz continuous loss functions.

Lounici [START_REF] Lounici | Sup norm convergence and sign concentration property of the Lasso and Dantzig estimators[END_REF] derived sup-norm convergence rates and sign consistency of the Lasso and Dantzig estimators in a high-dimensional linear regression model with the quadratic loss under a mutual coherence assumption. The paper is organized as follows. In Section 2 we derive sparsity oracle inequalities for the excess risk and for estimation of θ * for the generalized Dantzig estimators defined by (2) in a stochastic optimization framework. In section 3 we apply the results of Section 2 to the linear regression model with the Huber loss and to the logistic regression model. In Section 4 we prove the variable selection consistency with rates under a mutual coherence assumption for the linear regression model with the Huber loss. In section 5 we show a sign concentration property of the thresholded generalized Dantzig estimators for the linear regression model with the Huber loss.

2 Sparsity oracle inequalities for prediction and estimation with the l 1 norm

We need an assumption on the dictionary to derive prediction and estimation results for the generalized Dantzig estimators. We first state the Restricted Eigenvalue assumption [START_REF] Bickel | Simultaneous analysis of Lasso and Dantzig selector[END_REF].

Assumption 1. ζ(s) △ = min J0⊂{1,...,M}:|J0| s min ∆ =0:|∆ J c 0 |1 |∆J 0 |1 ||f ∆ || |∆ J0 | 2 > 0.
It implies an "equivalence" between the two norms |∆| 2 and f ∆ on the subset {∆ = 0 :

|∆ J(∆) c | 1 |∆ J(∆) | 1 } of R M .
We need the following assumption on f θ * ∞ .

Assumption 2. There exists a constant K > 0 such that f θ * ∞ K.

From now on we take for Θ the set

Θ = {θ ∈ R M : f θ ∞ K}.
The following assumption is a version of the margin condition (cf. [START_REF] Tsybakov | Optimal aggregation of classifiers in statistical learning[END_REF]). It links the excess risk to the functional norm • . Assumption 3. For any θ ∈ Θ there exits a constant c > 0 depending possibly on K such that

f θ -f θ * c(R(θ) -R(θ * )) 1/κ ,
where 1 < κ 2.

We will prove in Section 2.1 below that this condition is always satisfied with the constant κ = 2 for the regression model with Huber loss and for the logistic regression model. We also need the following technical assumption. Assumption 4. The constants K and L satisfy

1 K, L n log M . Define the quantity r = 4 √ 2L log M n + 2 √ 6 log M n . (4) 
We assume from now on that r 1.

The main results of this section are the following sparsity oracle inequalities for the excess risk and for estimation of θ * in the l 1 norm. Define

r = 6 ∂ u γ ∞ r. ( 5 
)
Theorem 1. Let Assumptions 1 -4 be satisfied. Take r as in [START_REF] Bunea | Aggregation for Gaussian regression[END_REF]. Assume that M (θ * ) s. Then, with probability at least

1 -M -1 -M -K -3M -2K log n log M , we have sup θ∈ Θ E( θ) 2(1 + 2K)cr √ s ζ(s) κ κ-1 + 12 ∂ u γ ∞ κ κ -1 r2 , (6) 
and

sup θ∈ Θ | θ -θ * | 1 2c √ s ζ(s) κ κ-1 ((1 + 2K)r) 1 κ-1 + 2K (κ -1)(1 + 2K) r. ( 7 
)
Note that the regularization parameter r does not depend on the variance of the noise if we consider the regression model with non-quadratic loss. In this case, the use of Lipschtiz losses enables us to treat cases where the noise variable does not admit a finite second moment, e.g., the Cauchy distribution. The price to pay is that we need to assume that f θ * ∞ K with known K.

Proof. For any θ ∈ Θ define ∆ = θθ * . We have

E( θ) E n ( θ) + E( θ) -E n ( θ) = E n ( θ) + E( θ) -E n ( θ) |∆| 1 + r (|∆| 1 + r) E n ( θ) + sup θ∈Θ:θ =θ * E(θ) -E n (θ) |θ -θ * | 1 + r (|∆| 1 + r). (8) 
By Lemma 1 it holds on an event A 1 of probability at least 1 -

M -K - 3M -2K log n log M that sup θ∈Θ:θ =θ * E(θ) -E n (θ) |θ -θ * | 1 + r 2Kr. (9) 
For any θ ∈ Θ, we have by definition of the Dantzig estimator that

| θ| 1 |θ * | 1 . Thus |∆ J(θ * ) c | 1 = j∈J(θ * ) c | θj | j∈J(θ * ) |θ * j | -| θj | |∆ J(θ * ) | 1 . (10) 
Define the function g : t → R n (θ * + t∆). Clearly g is convex and differentiable on [0, 1]. Thus, the function g ′ is nondecreasing on [0, 1] with derivative

g ′ (t) = ∇R n (θ * + t∆) T ∆. The constraint ∇ Rn (θ) ∞ r in (2) and Lemma 3 yield, on an event A 2 of probability at least 1 -M -1 , E n ( θ) = R n ( θ) -R n (θ * ) = 1 0 ∇R n (θ * + t∆) T ∆dt r|∆| 1 , (11) 
for some numerical constant C > 0.

Combining ( 8)-( 11) yields that on the event

A 1 ∩ A 2 E( θ) (2 + 4K)r|∆ J(θ * ) | 1 + 12 ∂ u γ ∞ K r2 . (12) 
Next,

2(1 + 2K)r|∆ J(θ * ) | 1 2(1 + 2K)r √ s|∆ J(θ * ) | 2 2(1 + 2K)cr √ s ζ(s) f ∆ c 1 κ ′ 2cr √ s ζ(s) κ ′ + 1 κ f ∆ c κ 1 κ ′ 2(1 + 2K)cr √ s ζ(s) κ ′ + 1 κ E( θD ), (13) 
where we have used the Cauchy-Schwarz inequality in the first line, the inequality xy |x| κ /κ + |y| κ ′ /κ ′ that holds for any x, y in R and for any κ, κ ′ in (1, ∞) such that 1/κ + 1/κ ′ = 1 in the third line, and Assumption 2 in the last line.

Combining [START_REF] Koltchinskii | Dantzig selector and sparsity oracle inequalities[END_REF] and ( 13) and the fact that r 1 yields the first inequality. The second inequality is a consequence of ( 6) and [START_REF] Koltchinskii | Oracle inequalities in empirical risk minimization and sparse recovery problems[END_REF].

We state and prove below intermediate results used in the proof of Theorem 1.

Lemma 1. Let Assumptions 2 and 4 be satisfied. Then, with probability at least

1 -M -K -3M -2K log n log M , we have sup θ∈Θ |E(θ) -E n (θ)| |θ -θ * | 1 + r 2Kr, ( 14 
)
where r is defined in Theorem 1.

Proof. For any A > 0, define the random variable

T A = sup θ∈Θ:|θ-θ * |1 A |E n (θ) -E(θ)|.
For any θ in Θ and (x, y) in Z we have

|γ(y, f θ (x)) -γ(y, f θ * (x))| ∂ u γ ∞ (L|θ -θ * | 1 ∧ 2K) ,
and

E |γ(Y, f θ (X)) -γ(Y, f θ * (X))| 2 ∂ u γ 2 ∞ |θ -θ * | 2 1 ∧ 2K 2 . Assumption 3 and Bousquet's concentration inequality (cf. Theorem 4 in Section 6 below) with x = (A ∨ 2K) log M , c = 2 ∂ u γ ∞ (AL ∧ 2K) and σ = √ 2 ∂ u γ ∞ (A ∧ √ 2K) yield P (T A E(T A ) + 2AK ∂ u γ ∞ r) M -(2K)∨A .
We study now the quantity E(T A ). By standard symmetrization and contraction arguments (cf. Theorems 5 and 6 in Section 6) we obtain

E(T A ) 4 ∂ u γ ∞ E sup θ∈Θ : |θ-θ * |1 A 1 n n i=1 ǫ i f θ-θ * (X i ) .
Then, observe that the mapping u → 1 n n i=1 ǫ i f u (X i ) is linear, thus its supremum on a simplex is attained at one of its vertices. This yields

E(T A ) 4 ∂ u γ ∞ AE max 1 j M 1 n n i=1 ǫ i f j (X i ) .
Combining Assumption 4 and Lemma 2 we obtain

E(T A ) 4 ∂ u γ ∞ Ar. Thus P (T A 6AK ∂ u γ ∞ r) M -(2K)∨A . (15) 
Define the following subsets of Θ

Θ(I) = {θ ∈ Θ : |θ -θ * | 1 r} , Θ(II) = {θ ∈ Θ : r < |θ -θ * | 1 2K} , Θ(III) = {θ ∈ Θ : |θ -θ * | 1 > 2K} .
For any t > 0 define the probabilities

P I = P sup θ∈Θ(I) |E(θ) -E n (θ)| |θ -θ * | 1 + r t P II = P sup θ∈Θ(II) |E(θ) -E n (θ)| |θ -θ * | 1 + r t P III = P sup θ∈Θ(III) |E(θ) -E n (θ)| |θ -θ * | 1 + r t
For any t > 0 we have

P sup θ∈Θ |E(θ) -E n (θ) |θ -θ * | 1 + r t P I + P II + P III .
Now, we bound from above the three probabilities on the right hand side of the above expression. Take t = 12 ∂ u γ ∞ K r. Applying [START_REF] Lounici | Sup norm convergence and sign concentration property of the Lasso and Dantzig estimators[END_REF] to P I yields that

P I P T r 6 ∂ u γ ∞ K r2 M -2K ,
since we have r K by Assumption 4. Consider now P II . We have

Θ(II) ⊂ j0 j=0 {θ ∈ Θ : A j+1 |θ -θ * | 1 A j } ,
where A j = 2 1-j K, j = 0, . . . , j 0 and j 0 is chosen such that 2 1-j0 K > r and 2 -j0 K r. Thus

P II j0 j=0 P T Aj 12 ∂ u γ ∞ A j+1 K r j0 j=0 P T Aj 6 ∂ u γ ∞ A j K r (j 0 + 1)M -2K 3 log n log M -1 M -2K .
Consider finally P III . We have

Θ(III) ⊂ ∞ j=0 θ ∈ Θ : Āj-1 < |θ -θ * | 1 Āj ,
where Āj = 2 1+j K, j 0. Thus

P III ∞ j=1 P T Āj 12 ∂ u γ ∞ Āj-1 K r j0 j=0 P T Aj 6 ∂ u γ ∞ Āj K r ∞ j=1 M -Āj M -K .
We now study the quantity E max 1 j M

1 n n i=1 ǫ i f j (X i )
. This is done in the next lemma.

Lemma 2. We have

E max 1 j M 1 n n i=1 ǫ i f j (X i ) r, ( 16 
)
where r is defined in (4).

Proof. Define the random variables

U j = 1 √ n n i=1 ǫ i f j (X i ).
The Bernstein inequality yields, for any j = 1, . . . , M and t > 0,

P (|U j | t) exp - t 2 2(t f j ∞ /(3 √ n) + f j 2 ) . ( 17 
) Set b j = f j ∞ /(3 √ n).
Define the random variables T j = U j 1I |Yj|> fj 2 /bj and T ′ j = U j 1I |Yj| fj 2 /bj . For all t > 0 we have

P (|T j | > t) 2 exp - t 4b j , P |T ′ j | > t 2 exp - t 2 4 f j 2 .
Define the function h ν (x) = exp(x ν ) -1, where ν > 0. This function is clearly convex for any ν > 0. We have

E h 1 |T j | 12b j = ∞ 0 e t P(|T j | > 12b j t)dt 1,
where we have used Fubini's Theorem in the first equality. Since the function h 1 is convex and nonnegative, we have

h 1 E max 1 j M |T j | 12b j E h 1 max 1 j M |T j | 12b j E   M j=1 h 1 |T j | 12b j   M,
where we have used the Jensen inequality. Since the function h

-1 1 (x) = log(1+x) is increasing, we have E max 1 j M |T j | 12b j log(1 + M ) E max 1 j M |T j | 4 log(1 + M ) √ n max 1 j M f j ∞ . ( 18 
)
Applying the same argument to the function h 2 , we prove that

E max 1 j M |T ′ j | 2 √ 3 log(1 + M ) max 1 j M f j . (19) 
Combining ( 18) and ( 19) yields the result.

Lemma 3. Let Assumptions 2 and 4 be satisfied. Then, with probability at least

1 -M -1 , we have |∇ Rn (θ * )| ∞ r,
where r is defined in Theorem 1.

Proof. For any 1 j M define

Z j = 1 n n i=1 ∂ u γ(Y i , f θ * (X i ))f j (X i ). Since the function θ → γ(y, f θ (x)) is differentiable w.r.t. θ and |∂ u γ(y, f θ (x))f j (x)| ∂ u γ ∞ L for any (x, y) ∈ X × Y and θ ∈ R M , we have E(Z j ) = ∂R(θ * ) ∂θ j = 0.
Next, similarly as in Lemmas 1 and 2, we prove that

E(|∇ Rn (θ * )| ∞ ) 4 ∂ u γ ∞ r.
Finally Bousquet's concentration inequality (cf. Theorem 4 in Section 6 below) yields that, with probability at least 1 -M -1 ,

|∇ Rn (θ * )| ∞ E(|∇ Rn (θ * )| ∞ ) + 2 log M n ∂ u γ 2 ∞ + 2 ∂ u γ ∞ LE(|∇ Rn (θ * )| ∞ ) + ∂ u γ ∞ L log M 3n 6 ∂ u γ ∞ r.

Examples

Robust regression with the Huber loss

We consider the linear regression model

Y = f θ * (X) + W, (20) 
where X ∈ R d is a random vector, W ∈ R is a random variable independent of X whose distribution is symmetric w.r.t. 0 and θ * ∈ R M is the unknown vector of parameters. Consider the function

φ(x) = 1 2 x 2 1I |x| 2K+α + (2K + α)|x| - (2K + α) 2 2 1I |x|>2K+α ,
where α > 0. The Huber loss function is defined by

Q(z, θ) = φ(y -f θ (x)), (21) 
where z = (x, y) ∈ R d × R and θ ∈ Θ.

In the following lemma we prove that for this loss function Assumption 3 is satisfied with κ = 2 and c = (2/P(|W | α)) 1/2 . Lemma 4. Let Q be defined by [START_REF] Tsybakov | Optimal aggregation of classifiers in statistical learning[END_REF]. Then for any θ ∈ Θ we have

P(|W | α) 2 f θ -f θ * 2 E(θ).
Proof. Set ∆ = θθ * . Since φ ′ is absolutely continuous, we have for any θ ∈ Θ

Q(Z, θ) -Q(Z, θ * ) = φ ′ (W )f -∆ (X) + 1 0 1I |W +tf-∆(X)| 2K+α (1 -t)dt f ∆ (X) 2 φ ′ (W )f -∆ (X) + 1 2 1I (|W | α) f ∆ (X) 2 ,
since f θ ∞ K for any θ ∈ Θ. Taking the expectations we get

R(θ) -R(θ * ) P(|W | α) 2 f ∆ 2 ,
for any α > 0 since φ ′ is odd and the distribution of W is symmetric w.r.t. 0.

We have the following corollary of Theorem 1.

Corollary 1. Let Assumptions 1, 2 and 4 be satisfied. If M (θ * ) s, then, with probability at least 1 -M -1 -M -K -3M -2K log n log M , we have

sup θ∈ Θ E( θ) 8(1 + 2K) 2 P(|W | α)ζ(s) 2 sr 2 + 2 3 r 2 ,
and

sup θ∈ Θ | θ -θ * | 1 8(1 + 2K) P(|W | α)ζ(s) 2 sr + K 3(1 + 2K) r.

Logistic regression and similar models

We consider Z = (X, Y ) ∈ X × {0, 1} where X is a Borel subset of R d . The conditional probability P(Y = 1 |X = x) = π(x) is unknown where π is a function on X with values in [0, 1]. We assume that π is of the form

π(x) = Φ ′ (f θ * (x)), (22) 
where the function Φ : R → R * is convex, twice differentiable, of derivative Φ ′ with values in [0, 1] and the vector θ * ∈ R M is unknown. Consider, e.g., the logit loss function Φ(u) = log(1 + e u ). We assume that Φ is known. Define the quantity

τ (R) = 1 2 inf |u| R Φ (2) (u), ( 23 
)
for any R 0. We want to estimate θ * with the procedure (2) and the convex loss function

Q(z, θ) = -yf θ (x) + Φ(f θ (x)), ( 24 
)
where z = (x, y) ∈ R d × {0, 1}. Thus we need to check Assumption 3 to apply Theorem 1.

Lemma 5. Let the loss function be of the form [START_REF] Van Der Vaart | Weak Convergence and Empirical Processes: With Applications to Statistics[END_REF] where Φ satisfies the above assumptions. Then for any θ ∈ R M we have

τ (K) f θ -f θ * 2 E(θ).
Proof. For any θ ∈ Θ, we have

Q(Z, θ) -Q(Z, θ * ) = ∇Q(Z, θ * ) T (θ -θ * ) + 1 0 Φ (2) (H(X) T (θ * + t(θ -θ * )))(1 -t)dt f ∆ (X) 2 ∇Q(Z, θ * ) T (θ -θ * ) + τ ( f θ ∞ ∨ f θ * ∞ )f ∆ (X) 2 .
Since ∇Q(•, •) ∞ < ∞, we can differentiate under the expectation sign, so that

E(∇Q(Z, θ * ) T (θ -θ * )) = ∇R(θ * ) = 0. Thus E(θ) τ ( f θ ∞ ∨ f θ * ∞ ) f θ -f θ * 2 .
Thus Assumption 3 is satisfied with the constants κ = 2 and c =

1 √ τ (K)
.

We have the following corollary of Theorem 1.

Corollary 2. Let Assumptions 1, 2 and 4 be satisfied. If M (θ * ) s, then, with probability at least

1 -M -1 -M -K -3M -2K log n log M , we have sup θ∈ Θ E( θ) 4(1 + 2K) 2 τ (K)ζ(s) 2 sr 2 + 2 3 r 2 ,
and

sup θ∈ Θ | θ -θ * | 1 4(1 + 2K) τ (K)ζ(s) 2 sr + K 3(1 + 2K) r.
4 Sup-norm convergence rate for the regression model with the Huber loss

In this section, we derive the sup-norm convergence rate of the Dantzig estimators to the target vector θ * in the linear regression model under a mutual coherence assumption on the dictionary and Huber's loss. The proof relies on the fact that the Hessian matrix of the risk also satisfies the mutual coherence condition for this particular model. Unfortunately, we cannot proceed similarly in the general case because the Hessian matrix of the risk at point θ * does not necessarily satisfy the mutual coherence condition even if the Gram matrix of the dictionary does. Note that for Huber's loss the Dantzig minimization problem ( 2) is computable feasible. The constraints in (2) are indeed linear, so that ( 2) is a linear programming problem. Denote by Ψ(θ) the Hessian matrix of the risk R evaluated at θ. With our assumptions on the dictionary D and on the function γ, for any θ ∈ R M we have Ψ(θ)

△ = ∇ 2 R(θ) = E ∂ 2 u γ(Y, f θ (X))f j (X)f k (X) 1 j,k M .
Note that for the quadratic loss we have Ψ(•) ≡ 2G where G is the Gram matrix of the design. For Lipschtiz loss functions the Hessian matrix Ψ varies with θ.

We consider the linear regression model [START_REF] Tibshirani | Regression shrinkage and selection via the Lasso[END_REF]. For any functions g, h : X → R, denote by < g, h > the scalar product E(g(X)h(X)). Define the Gram matrix

G by G = (< f j , f k >) 1 j,k M .
From now on, we assume that G satisfies a mutual coherence condition.

Assumption 5. The Gram matrix G = (< f j , f k >) 1 j,k M satisfies G j,j = 1, ∀1 j M,
and max

j =k |G j,k | 1 3βs
,

where s 1 is an integer and β > 1 is a constant.

This assumption is stronger than Assumption 1. We have indeed the following Lemma (cf. Lemma 2 in [START_REF] Lounici | Sup norm convergence and sign concentration property of the Lasso and Dantzig estimators[END_REF]). Lemma 6. Let Assumption 5 be satisfied. Then

ζ(s) △ = min J⊂{1,••• ,M},|J| s min ∆ =0:|∆ J c |1 |∆J |1 f ∆ |∆ J | 2 1 - 1 β > 0.
Note that Assumption 5 the vector θ * satisfying ( 20) such that M (θ * ) s is unique. Consider indeed two vectors θ 1 and θ 2 satisfying (20) such that M (θ 1 ) s and M (θ 2 ) s. Denote θ = θ 1θ 2 and J = J(θ 1 ) ∪ J(θ 2 ). Clearly we have f θ (X) = 0 a.s. and M (θ) 2s. Assume that θ 1 and θ 2 are distinct. Then,

f θ 2 2 |θ| 2 2 = 1 + θ T (G -I M )θ |θ| 2 2 1 - 1 3βs M i,j=1 |θ i ||θ j | |θ| 2 2 1 - 1 3β > 0,
where we have used the Cauchy-Schwarz inequality. This contradicts the fact that f θ (X) = 0 a.s.

For the linear regression model, the Hessian matrix Ψ at point θ is

Ψ(θ) = E(1I |f θ * -θ (X)+W | 2K+α f j (X)f k (X)) 1 j,k M . We observe that Ψ(θ * ) = P(|W | 2K + α)G.
Thus Ψ(θ * ) satisfies a condition similar to Assumption 4 but with a different constant if

P(|W | 2K + α) > 0. The empirical Hessian matrix Ψ at point θ ∈ R M is defined by Ψj,k (θ) = 1 n n i=1 1I |f θ * -θ (Xi)+Wi| 2K+α f j (X i )f k (X i ), 1 j, k M.
We will prove that the empirical Hessian matrix Ψ(θ) satisfies a mutual coherence condition for any θ in a small neighborhood of θ * under some additional assumptions given below.

First, we need an additional mild assumption on the noise. Assumption 6. There c.d.f. F W of W is Lipschitz continuous.

This assumption is satisfied, e.g., if W admits a bounded density so we allow heavy tailed distributions such as the Cauchy. In the sequel we assume w.l.o.g. that the Lipschitz constant of F W equals 1.

We impose a restriction on the sparsity s.

Assumption 7. The sparsity s satisfies s

1 √ r .
This implies that we can recover the sparse vectors with at most O (n/ log M )

1/4 nonzero components. Define V η = {θ ∈ Θ : |θ -θ * | 1 η} where η = C 1 rs and C 1 = 8(1 + 2K)β P(|W | α)(β -1) + 1 6 . ( 25 
)
Consider the event

E = sup 1 j,k M,θ∈Vη Ψj,k (θ) -Ψ j,k (θ) 8L 3 η + 4Lr + C 2 √ ns 2 , (26) 
where

C 2 = 2 1 + (1 + L 2 ) 8C 1 L 3 + 4L s + 1 + L 2 3 .
We have the following intermediate result.

Lemma 7. Let Assumptions 2-6 be satisfied. Then P(E) 1exp(-√ log M ).

Proof. Define the variable

Z = sup 1 j,k M, θ∈Vη Ψj,k (θ) -Ψ j,k (θ) .
Applying the Bousquet concentration inequality (cf. Theorem 4 in Section 6) with the constants c = (1 + L 2 )/n, σ 2 = 2/n 2 and x = √ n s 2 yields that, with probability at least 1e -x ,

Z E (Z) + 2 √ ns 1 + (1 + L 2 )E (Z) + 1 + L 2 3 √ ns 2 . ( 27 
)
We study now the quantity E(Z). A standard symmetrization and contraction argument yields

E(Z) 2E sup 1 j,k M, θ∈Vη 1 n n i=1 ǫ i 1I |f θ * -θ (Xi)+Wi| 2K+α f j (X i )f k (X i ) 2E 1 n n i=1 ǫ i 1I |Wi| 2K+α f j (X i )f k (X i ) + 2E sup 1 j,k M, θ∈Vη 1 n n i=1 ǫ i (1I |f θ * -θ (Xi)+Wi| 2K+α -1I |Wi| 2K+α )f j (X i )f k (X i ) . (28) 
Denote by (I) and (II) respectively the first term and the second term on the right hand side of the above expression. The contraction principle yields (I) 4E max

1 j,k M 1 n n i=1 ǫ i f j (X i )f k (X i ) . (29) 
Then, similarly as in the proof of Lemma 2 we get

E max 1 j,k M 1 n n i=1 ǫ i f j (X i )f k (X i ) Lr.
Thus, for (II) we have

(II) 2L 2 E sup θ∈Vη 1 n n i=1 |1I |f∆(Xi)+Wi| 2K+α -1I |Wi| 2K+α | 2L 2 P (2K + α -Lη |W | 2K + α + Lη) 8L 3 η. ( 30 
)
Assumptions 4 and 7 yield that s

n log M 1/4
. Combining ( 27)-(30) yields the result.

We need an additional technical assumption.

Assumption 8. We have

12L 3 η + Lr + C2 √ ns 2 P(|W | 2K+α) 2
. This is a mild assumption. It is indeed satisfied for n large enough if we assume that P(|W | 2K + α) > 0 since Assumption 6 implies that r → 0 as n → ∞.

We have the following result on the empirical Hessian matrix.

Lemma 8. Let Assumptions 2-8 be satisfied. Then, with probability at least 1exp(-√ log M ), for any θ ∈ V η , we have min

1 j M | Ψj,j (θ)| P(|W | 2K + α) 2 , max j =k | Ψj,k (θ)| C 3 s , ( 31 
)
where

C 3 = 1 3β + 12L 3 C 1 + C2 √ ns .
Proof. For any θ in V η and any j, k in {1, . . . , M } we have

Ψ j,k (θ) -Ψ j,k (θ * ) = E (1I |f∆(X)+W | 2K+α -1I |W | 2K+α )f j (X)f k (X) , where ∆ = θ -θ * . Then |Ψ j,k (θ) -Ψ j,k (θ * )| L 2 E |1I |f∆(X)+W | 2K+α -1I |W | 2K+α | L 2 P (|W | 2K + α , |f ∆ (X) + W | > 2K + α) + L 2 P (|W | > 2K + α , |f ∆ (X) + W | 2K + α) . Recall that |f ∆ (X)| Lη. Then |Ψ j,k (θ) -Ψ j,k (θ * )| L 2 P (2K + α -Lη |W | 2K + α + Lη) 2L 2 P (2K + α -Lη W 2K + α + Lη) 4L 3 η, (32) 
where we have used the fact that the distribution of W is symmetric w.r.t. 0 in the second line and Assumption 6 in the last line. Lemma 7 and (32) yield that, on the event E, for any θ ∈ V η , min

1 j M Ψj,j (θ) P(|W | 2K + α) -12L 3 η - C 2 √ ns 2 ,
and max

j =k |Ψ j,k (θ)| C 3 s .
Now we can derive the optimal sup-norm convergence rate of the Dantzig estimators.

Theorem 2. Let Assumptions 2-8 be satisfied. If M (θ * ) s, then, on an event of probability at least

1 -M -1 -M -K -exp(- √ log M ) -3M -2K log n log M , we have sup θ∈ Θ | θ -θ * | ∞ C 4 r, where r is defined in Theorem 1, C 4 = 4 + 2C 1 C 3 P(|W | 2K + α) ,
with C 1 and C 3 defined respectively in [START_REF] Wainwright | Sharp thresholds for noisy and high-dimensional recovery of sparsity using l 1 -constrained quadratic programming[END_REF] and Lemma 8.

Proof. For any θ in Θ we have

∇R n ( θ) -∇R n (θ * ) = 1 0 Ψ(θ * + t∆)dt ∆,
where ∆ = θθ * . The definition of our estimator, Lemma 3 and Corollary 1 yield that, on an event A 1 of probability at least 1 -M -1exp(-√ log M ) -3M -2K log n log M , we have that θ ∈ V η and

1 0 Ψ(θ * + t∆)dt ∆ ∞ 2r.
Lemma 8 yields that, on the event A 1 ∩ E,

P(|W | 2K + α) 2 |∆| ∞ 2r + C 3 s |∆| 1 , so that |∆| ∞ C 4 r.
Note that Theorem 2 holds true for the Lasso estimators (2) with exactly the same proof, provided that a result similar to Theorem 1 is valid for the Lasso estimators. This is in fact the case (cf. [START_REF] Van Der Geer | High dimensional generalized linear models and the Lasso[END_REF][START_REF] Koltchinskii | Dantzig selector and sparsity oracle inequalities[END_REF]).

Sign concentration property

Now we study the sign concentration property of the Dantzig estimators. We need an additional assumption on the magnitude of the nonzero components of θ * . Assumption 9. We have

ρ ∆ = min j∈J(θ * ) |θ * j | > 2C 4 r,
where r is defined in Theorem 1 and C 4 is defined in Theorem 2.

We can find similar assumptions on ρ in the work on sign consistency of the Lasso estimator mentioned above. More precisely, the lower bound on ρ is of the order (s(log M )/n) 1/4 in [START_REF] Meinshausen | Lasso-type recovery of sparse representations for high-dimensional data[END_REF], n -δ/2 with 0 < δ < 1 in [START_REF] Wainwright | Sharp thresholds for noisy and high-dimensional recovery of sparsity using l 1 -constrained quadratic programming[END_REF][START_REF] Zhao | On model selection consistency of Lasso[END_REF], (log M n)/n in [START_REF] Bunea | Consistent selection via the Lasso for high-dimensional approximating regression models[END_REF], s(log M )/n in [START_REF] Zhang | The sparsity and biais of the Lasso selection in high-dimensional linear regression[END_REF] and r in [START_REF] Lounici | Sup norm convergence and sign concentration property of the Lasso and Dantzig estimators[END_REF].

We introduce the following thresholded version of our estimator. For any θ ∈ Θ the associated thresholded estimator θ ∈ R M is defined by

θj = θj , if | θj | > C 4 r, 0 elsewhere. 
Denote by Θ the set of all such θ. We have first the following non-asymptotic result that we call sign concentration property. Theorem 3 guarantees that the sign vector of every vector θ ∈ Θ coincides with that of θ * with probability close to one. j ) if j ∈ J(θ * ) on the event A. If j ∈ J(θ * ), sign(θ * j ) = 0 and θj = 0 on A, so that sign( θj ) = 0. The same reasoning holds true simultaneously for all θ ∈ Θ on the event A. Thus, we get the result.

Appendix

We recall here some well-known results of the theory of empirical processes.

Theorem 4 (Bousquet's version of Talagrand's concentration inequality [START_REF] Bousquet | A Bennet concentration inequality and its application to suprema of empirical processes[END_REF]). Let X i be independent variables in X distributed according to P , and F be a set of functions from X to R such that E(f (X)) = 0, f ∞ c and f 2 σ 2 for any f ∈ F. Let Z = sup f ∈F n i=1 f (X i ). Then with probability 1e -x , it holds that Z E(Z) + 2x(nσ 2 + 2cE(Z)) + cx 3 .

Theorem 5 (Symmetrization theorem [START_REF] Van Der Vaart | Weak Convergence and Empirical Processes: With Applications to Statistics[END_REF], p. 108). Let X 1 , . . . , X n be independent random variables with values in X , and let ǫ 1 , . . . , ǫ n be a Rademacher sequence independent of X 1 , . . . , X n . Let F ba a class of real-valued functions on X . Then

E sup f ∈F n i=1 (f (X i ) -E(f (X i ))) 2E sup f ∈F n i=1 ǫ i f (X i ) .
Theorem 6 (Contraction theorem [START_REF] Ledoux | Probability in Banach spaces: Isoperimetry and Processes[END_REF], p. 95). . Let x 1 , . . . , x n be nonrandom elements of X , and let F be a class of real-valued functions on X . Consider Lipschitz functions γ i :→ R, that is,

|γ i (s) -γ i (s ′ )| |s -s ′ |, ∀s, s ′ ∈ R.
Let ǫ 1 , . . . , ǫ n be a Rademacher sequence. Then for any function f * : X → R, we have

E sup f ∈F n i=1 ǫ i (γ i (f (x i )) -γ i (f * (x i ))) 2E sup f ∈F n i=1
ǫ i ((f (x i )f * (x i )) .

1 the

 1 complement J c of J. For any integers 1 d, p < ∞ and w = (w 1 , . . . , w d ) ∈ R d , the l p norm of the vector w is denoted by |w| p 1 j d |w j |. Consider a function γ : Y × R → R + such that for any y in Y and u, u ′ in R we have |γ(y, u)γ(y, u ′ )| |uu ′ |.

Theorem 3 .

 3 Let Assumptions 2 and 5-9 be satisfied. If M (θ * ) s, thenP sign( θ) = sign(θ * ), ∀ θ ∈ Θ 1 -M -1 -M -Kexp(log M ) -3M -2K log n log M .

Proof.

  Theorem 2 yields sup θ∈ Θ | θθ * | ∞ C 3 r on an event A of probability at least 1 -6M -1 . Take θ ∈ Θ. For j ∈ J(θ * ) c , we have θ * j = 0, and | θj | c 2 r on A. For j ∈ J(θ * ), we have |θ * j | 2C 3 r and |θ * j | -| θj | |θ * j -θC j | C 3 r on A. Since we assume that ρ > 2C 3 , we have on A that | θj | > c 2 r. Thus on the event A we have: j ∈ J(θ * ) ⇔ | θj | > c 2 r. This yields sign( θj ) = sign( θj ) = sign(θ *
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