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sum rule with 6-jS symbols from intrinsic

operator techniques: an open problem
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33120 Arcachon, France

November 13, 2008

Abstract

Efficiency of intrinsic operator techniques (using only products and
ranks of tensor operators) is first evidenced by condensed proofs of al-
ready known ▽-triangle sum rules of su(2)/suq(2). A new compact
suq(2)-expression is found, using a q-series Φ, with Φ(n)|q=1 = 1. This
success comes from an ultimate identification process over monomi-
als like (c0)

p. For osp(1|2), analogous principles of calculation are
transposed, involving a second parameter d0. Ultimate identification

process then must be done over binomials like (c0 + d0
2)

Ω−m (
d0

2
)m

.
Unknown polynomials P are introduced as well as their expansion
coefficients, x, over the binomials. It is clearly shown that a hypo-
thetical super-triangle sum rule requires super-triangles △S , instead
of ▽ for su(2)/suq(2). Coefficients x are integers (conjecture 1). Mas-
sive unknown advances are done for intermediate steps of calculation.
Among other, are proved two theorems on tensor operators, “zero” by
construction. However, the ultimate identification seems to lead to a
dead end, due to analytical apparent complexities. Up today, except
for a few of coefficients x, no general formula is really available.

PACS: 02.20.Sv - Lie algebras of Lie groups.
PACS: 02.20.Uw - Quantum groups.
PACS: 11.30.Pb - Supersymmetry.
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1 Introduction

The well known “triangle sum rule”, or ▽-sum rule, was first evidenced
in 1971[1]. In our intrinsic approach, this identity between generic 6-j
symbols results simply from an application of so-called “coupling laws” to
special tensor operators, S

κ, iterated from a basic one with a rank 1
2
. Our

method never need the heavy use of 3-j symbols, but only 6-j symbols with
one spin 1

2
. Efficiency of this point of view is easily ascertained for su(2)

and suq(2), but for osp(1|2), the method lets crop up unexpected difficulties
regarding non-standard polynomial calculations, analyzed in the main
part of this paper.
It is organized in the following way:

Section 2 introduces, for su(2), iterated tensor operators S
κ(c0)

depending on a real parameter c0, built from a fundamental one, namely

S
1
2 (c0) of rank 1

2
. A closure relation for tensor products like

[Sa × S
b]c ∝ S

c is established in terms of ▽-triangle, ▽(abc).
The short section 3 uses customary su(2)-coupling laws for quickly

deriving the well known triangle sum rule for su(2).
Section 4, devoted to suq(2), follows a similar way for obtaining a (new)

compact expression for the q-triangle sum rule.
Section 5 consists in reminders related to the definitions of an

osp(1|2)-supertriangle △S and specific coupling laws for osp(1|2) tensor
products.

In Section 6, we show that, instead of only one parameter like for su(2)
or suq(2), two independent real variables c0 and d0 are necessary for
defining iterated tensor operators S

κ(c0, d0). Analytical calculation of two
relevant coefficients, ακ(d0) and γκ(c0 + d0

2, d0
2), occuring in closure

relations for osp(1|2) tensor products, is successfully carried out.
Section 7 contains an overview of the calculation method followed for

obtaining at least seven explicit closure relations for tensor products of
highest ranks. Theorem 1 is proved, regarding a “zero tensor product”.

Section 8 lets appear a first general closure relation for tensor operators,
naturally, in terms of unavoidable polynomials Pπ(λ, κ), properly defined,
and depending on d0, c0 + d0

2. Actually these polynomials constitute the
major trouble inherent in our theoretical approach because of the weak
hope of finding a general formula for expansion coefficients x(λ, κ) over the
powers of d0, c0 + d0

2. Coefficients x are integers (conjecture 1).
Sections 9-10 lead to similar results for tensor products of lowest ranks,

depending in addition on the coefficients γκ. Instead of Pπ(λ, κ), other
Qπ(λ, κ) polynomials are introduced, with Qπ(λ, κ) = Pπ(λ, κ − λ + π)
(conjecture 2). A Theorem 2 is proved, regarding another “zero product”.

Section 11 outlines a single unified form of closure relation valid ∀ rank.
In Section 12, one reproduces exactly the same steps of calculation as

those successfully used for su(2) or suq(2). That matches the penultimate
stage using triple tensor products before the final identification over the
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specific osp(1|2)-parameters d0 and c0 + d0
2. The resulting relevant

equations already confront us with an increasing degree of algebraic
complexity in comparison with the analogous situation encountered for
su(2).

Section 13, a very important one, sets precisely all the polynomial
definitions and conditions, which seem necessary for achieving the ultimate
identification process over a lot of binomials. However, in addition with a
paradoxical remark about osp(1|2) (may be false), we give up finding an
analytical solution to our problem, thus declared “open”.

After the conclusion of the present work, three mathematical appendices
are joined to the paper.

Appendix A shows that reduced matrix elements of osp(1|2) tensor

operators, like S
1
2 and S

1, can be perfectly expressed by means of the
coefficients ακ and γκ.

Appendix B contains a very detailed review of recursion relations
regarding Pω polynomials and their expansion coefficients (x) over

binomials like
(

c0 + d0
2
)[ω]−m

(d0
2)m. Even, a few exact analytical

expressions of some expansion coefficients have been listed.
In terms of parity-independent 6-jS symbols, Appendix C re-actualizes a

20-old-year proposition expounded for a peculiar osp(1|2)-triangle sum rule.

2 Definition of iterated tensor operators S
κ,

from S
1
2 , for su(2)

For convenience, let us remind here the coupling laws for su(2) tensor
operators, which will be indispensable for our approach:

Left-recoupling:

[Xj1 × [Y j2 × Z
j3]j23 ]j123 = (−1)j1+j2+j3+j123(2j23 + 1)

1
2

×
∑

j12

(2j12 + 1)
1
2

{

j2 j3 j23

j123 j1 j12

}

[[X j1 × Y
j2 ]j12 × Z

j3]j123 . (2.1)

Right-recoupling:

[[Xj1 × Y
j2]j12 × Z

j3 ]j123 = (−1)j1+j2+j3+j123(2j12 + 1)
1
2

×
∑

j23

(2j23 + 1)
1
2

{

j1 j2 j12

j3 j123 j23

}

[X j1 × [Y j2 × Z
j3 ]j23]j123 . (2.2)

Also it’s assumed the knowledge of tables for 6-j symbols with one
argument equal to 0 or 1

2
[2], the only ones to be used in our analysis.

Now we can proceed to the definition of S
κ.

Only two defining equations are necessary, namely

[S
1
2 × S

1
2 ]0 = c0, and [S

1
2 × S

κ]κ+ 1
2 = S

κ+ 1
2 . (2.3)
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In the present work, c0 will be assumed to be a real number, i.e. neither a
pure imaginary nor a complex.
Thanks to recoupling equations and tables aforementioned, it follows that:

[S
1
2 × S

κ]κ+ 1
2 = [Sκ × S

1
2 ]κ+ 1

2 = S
κ+ 1

2 and S
0 = 10. (2.4)

A reasoning by recursion allows one that the following property holds:

[S
1
2 × S

κ]κ−
1
2 = [Sκ × S

1
2 ]κ−

1
2 = γκS

κ− 1
2 . (2.5)

2.1 Detailed calculation of γκ

Consider first the following equation:

[S
1
2 × [S

1
2 × S

1
2 ]0]

1
2 = [S

1
2 × c01

0]
1
2 = c0S

1
2 . (2.6)

Left-recoupling and use of the value of 6-j symbols with one argument 0
lead to the value of γ1. The same result holds if one works with eq. (2.6)
easily written in an alternative way and a right-recoupling. That yields:

[S
1
2 × S

1]
1
2 = [S1 × S

1
2 ]

1
2 = c0

√
3S

1
2 = γ1S

1
2 . (2.7)

The same method using a reasoning by recursion according to eq. (2.5) may
be applied in considering the product

[S
1
2 × S

κ+ 1
2 ]κ = γκ+ 1

2
S

κ+ 1
2 = [S

1
2 × [Sκ × S

1
2 ]κ+ 1

2 ]κ and a left-recoupling.

Use of expressions of the 6-j symbols with one argument 1
2

leads finally to
the general formula of γκ:

γκ = c0

[

(2κ + 1)2κ

2

]
1
2

. (2.8)

We have now at our’s disposal complete analytical expressions for tensor

products involving one S
1
2 at least. This is sufficient for deducing by a

recursive analysis that the following important property holds:

[Sκ × S
κ′

]κ
′′

= [Sκ′ × S
κ]κ

′′

. (2.9)

2.2 General formula for [Sλ × S
κ]λ+κ−1

Once easily checked that

[Sλ × S
κ]λ+κ = S

λ+κ, (2.10)

one starts for instance with the following expression:

[Sλ × S
κ]λ+κ−1 = [[Sλ− 1

2 × S
1
2 ]λ × S

κ]λ+κ−1. (2.11)

Left-recoupling, use of values for 6-j symbols involved and eq. (2.8) lead to

[Sλ × S
κ]λ+κ−1 = c0

[

2λ · 2κ(2κ + 2λ)

2

]
1
2

S
λ+κ−1. (2.12)
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2.3 Recursion relation for [Sλ × S
κ]λ+κ−p

From the preceding results, for example a right-recoupling on

[Sλ × S
κ]λ+κ−p = [[Sλ− 1

2 × S
1
2 ]λ × S

κ]λ+κ−p yields:

[

(2λ)!(2κ−p)!
(2λ−p)!(2κ)!

]
1
2 [Sλ × S

κ]λ+κ−p =
(

c0√
2

)

[

p(2λ+2κ−p+1)(2λ−1)!(2κ−p)!
(2λ−p)!(2κ−1)!

]
1
2 [Sλ− 1

2 × S
κ− 1

2 ](λ−
1
2
)+(κ− 1

2
)−(p−1)

+
[

(2λ−1)!(2κ−p+1)!
(2λ−p−1)!(2κ+1)!

]
1
2 [Sλ− 1

2 × S
κ+ 1

2 ]λ+κ−p.

(2.13)

By introducing a coefficient β (to be determined) with the following
equation:

1√
p!

(√
2

c0

)p
[

(2κ+2λ−2p+1)!
(2κ+2λ−p+1)!

]
1
2
[

(2λ)!(2κ−p)!
(2λ−p)!(2κ)!

]
1
2 [Sλ × S

κ]λ+κ−p = β2λ,κ
p S

λ+κ−p,

(2.14)
one deduces that

β2λ,κ
p = β2λ−1,κ

p−1 + β2λ−1,κ
p . (2.15)

Eq. (2.12) gives β2λ,k
1 = 2λ. Then, after noting the symmetry λ ↔ κ, it can

be seen that coefficient β does not depend on κ. Eq. (2.15) becomes simply
a well known recursion relation for binomial coefficients, whence

β2λ
p =

(2λ)!

(2λ − p)!p!
. (2.16)

The final result for [Sλ × S
κ]λ+κ−p then reads:

[Sλ × S
κ]λ+κ−p =

(

c0√
2

)p
[

(2κ)!(2λ)!(2κ+2λ−p+1)!
p!(2κ−p)!(2λ−p)!(2κ+2λ−2p+1)!

] 1
2 S

λ+κ−p. (2.17)

After a variables change λ → a, κ → b, λ + κ − p → c, the preceding
equation can be rewritten as a closure relation:

[Sa × S
b]c =

(

c0√
2

)a+b−c [
(2a)!(2b)!

(2c + 1)!

]
1
2

▽ (abc)Sc, (2.18)

where the “triangle coefficient” ▽ is given by the inverse of the well known
△ triangle [2], namely

▽ (abc) =

[

(a + b + c + 1)!

(a + b − c)!(a − b + c)!(−a + b + c)!

]1/2

. (2.19)

3 Triangle sum rule for su(2)

Consider the triple product [[Sa × S
b]c × S

d]e.
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3.1 A first expression of the triple product

From the closure relation (2.18), it can be obtained a first expression:

[[Sa × S
b]c × S

d]e =

(

c0√
2

)a+b+d−e

×
[

(2a)!(2b)!

(2c + 1)!
· (2c)!(2d)!

(2e + 1)!

]
1
2

▽ (abc) ▽ (cde)Se. (3.1)

3.2 A second expression from tensorial recoupling law

One carries out a right-recoupling over the triple product according to
eq. (2.2), then one uses again the closure property (2.18), that gives:

[[Sa × S
b]c × S

d]e = (−1)a+b+d+e

(

c0√
2

)a+b+d−e

×
√

(2c + 1)

[

(2b)!(2d)!(2a)!

(2e + 1)!

] 1
2 ∑

f

{

a b c
d e f

}

▽ (bdf) ▽ (afe)Se.(3.2)

3.3 Identification of both expressions

Identification of eq. (3.1) and eq. (3.2) over S
e furnishes the expected result:

▽ (abc)▽ (cde) = (−1)a+b+d+e(2c+1)
∑

f

▽(bdf)▽ (afe)

{

a b c
d e f

}

. (3.3)

This is exactly the triangle sum rule for su(2).
Remark:

The standard generator for su(2), i.e. the angular momentum itself J
1,

satisfies the following commutation relations:

[J1 × J
1]1 = − 1√

2
J

1. (3.4)

Looking at eq. (2.12), it can be seen that only one tensor operator of rank
1, namely S

1, actually depending on c0, satisfies commutation relations
such as given by eq. (3.4) if we set c0 = −1

4
. Therefore S

1
|c0=− 1

4
is another

generator for su(2), in this instance, according to the terminology of ref. [1],
the “symplectic” generator for su(2).

4 q-Triangle sum rule for suq(2)

In a recent paper [3, pp. 375-376], we have properly defined
q-irreducible tensor operators and their tensorial products. From that, it
can be deduced that q-coupling laws for q-irreducible tensor operators are
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formally identical to those of su(2) (apart from the occurrence of q and the
change of usual numbers into q-numbers)). The formulas are written down
below.

q-Left-recoupling:

[Xj1 × [Y j2 × Z
j3]j23 ]j123 = (−1)j1+j2+j3+j123

√

[2j23 + 1] (4.1)

×
∑

j12

√

[2j12 + 1]

{

j2 j3 j23

j123 j1 j12

}

q

[[X j1 × Y
j2 ]j12 × Z

j3]j123 .

q-Right-recoupling:

[[Xj1 × Y
j2]j12 × Z

j3 ]j123 = (−1)j1+j2+j3+j123
√

[2j12 + 1]

×
∑

j23

√

[2j23 + 1]

{

j1 j2 j12

j3 j123 j23

}

q

[X j1 × [Y j2 × Z
j3 ]j23]j123 . (4.2)

Definitions/property of q-iterated tensor operators S
κ are exactly the same

as those expressed by eqs. (2.3)-(2.5). On the other hand eq. (2.6)
transforms into

[S
1
2 × S

1]
1
2 = [S1 × S

1
2 ]

1
2 = c0

(1 + [2])
√

[3]
S

1
2 ≡ c0

√

[3]

([2] − 1)
S

1
2 , (4.3)

whence, for suq(2),

γ1 = c0

√

[3]

([2] − 1)
. (4.4)

Recursion relation for γκ is found to be

γκ+ 1
2
([2κ + 1] − 1) =

√

[2κ + 2][2κ]γκ, (4.5)

with the following solution:

γκ =

√

[2κ + 1][2κ]

[2]

[2κ − 1]!

([2κ] − 1) · · · ([2] − 1)
c0. (4.6)

Coefficients γκ can be expressed as a function of the series F (n) studied in
the paper of Nomura and Biedenharn [4].

F (n) = [1] + [2] + · · ·+ [n], (4.7)

having the following recursive property:

F (n) =
[n + 1]

[n] − 1
F (n − 1). (4.8)

Thus γκ may be rewritten under the form

γκ =

√

[2κ + 1][2κ]

[2]

[2]F (2κ)

[2κ + 1][2κ]
c0. (4.9)
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However, for obvious reasons regarding easy comparisons with the su(2)
case with q = 1, we shall use the following definition of a series Φ(n):

Φ(n) =
[2]F (2κ)

[2κ + 1][2κ]
(defining equation of series Φ). (4.10)

Clearly we have
Φ(n)|q=1 = 1. (4.11)

Thus γκ has the form:

γκ = c0

√

[2κ + 1][2κ]

[2]
Φ(2κ). (4.12)

Analogy with eq. (2.8) thus is immediate.
Like in ref. [4], we can define a factorial of Φ by

Φ(n)! = Φ(n)Φ(n − 1) · · ·Φ(1). (4.13)

By using eq. (2.11) like for su(2), and noting that this chosen form implies
that λ = inf(λ, κ) - a fact of importance allowing the iterations to come -,
one sees that the recoupling process leads to a basic recursion relation:

[Sλ × S
κ]λ+κ−p =

√

[2κ + 2λ − p + 1][p]

[2κ + 1][2λ]
γκ[S

λ− 1
2 × S

κ− 1
2 ](λ−

1
2
)+(κ− 1

2
)−(p−1)

+

√

[2λ − p][2κ − p + 1]

[2κ + 1][2λ]
[Sλ− 1

2 × S
κ+ 1

2 ]λ+κ−p. (4.14)

If p = 1, thanks to eq. (2.10), this latter equation is easily solved by
iterating with λ → λ − 1

2
, κ → κ + 1

2
and so on. One finds:

√

[2λ]

[2κ]
[Sλ × S

κ]λ+κ−1 =

√

[2κ + 2λ]

[2]

(

n=2λ−1
∑

n=0

Φ(2κ + n)

)

S
λ+κ−1. (4.15)

Note that a fully symmetrical formula in λ, κ can be written simply by the
following replacement λ → inf(λ, κ), κ → sup(λ, κ).

Let us adopt the simplest expression possible for the q-analog of the
triangle coefficient, i.e.:

▽q (abc) =

[

[a + b + c + 1]!

[a + b − c]![a − b + c]![−a + b + c]!

]1/2

. (4.16)

Analogously to the su(2) closure relation (2.18), we define a coefficient

ω, symmetrical in (a, b) by means of the following equation:

[Sa × S
b]c = ωa,b

a+b−c

(

c0
√

[2]

)a+b−c
[

[2a]![2b]!

[2c + 1]!

]
1
2

▽q (abc)Sc. (4.17)
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According to eq. (2.10), obviously valid for suq(2), we have:

ωa,b
0 = 1. (4.18)

It remains now to determine a precise analytical expression of ω. This can
be done from the recursion relation (4.14). As a function of ω, it becomes:





2λ
p



ωλ,κ
p = Φ(2κ)





2λ − 1
p − 1



ω
λ− 1

2
,κ− 1

2
p−1 +





2λ − 1
p



ω
λ− 1

2
,κ+ 1

2
p . (4.19)

Note that this equation can be viewed as a poised formula of the suq(2)
identity between q-binomial coefficients, namely

[

2λ
p

]

=

[

2λ − 1
p − 1

]

+

[

2λ − 1
p

]

. (4.20)

The su(2) case with q = 1 corresponds to:

ωλ,κ
p |q=1

= 1. (4.21)

A first interesting step is to examine eq. (4.19) when p = 2λ, because, in

this case,

[

2λ − 1
p

]

= 0.

The result is:

ωλ,κ
2λ =

Φ(2κ)!

Φ(2κ − 2λ)!
. (4.22)

The symmetrical form in λ, κ is given by:

ωλ,κ
2 inf(λ,κ) =

Φ(2 sup(λ, κ)!

Φ(2|κ − λ|)! . (4.23)

This shows that factorial definitions such as Φ(n)! (or F (n)!) are strongly
related to q-scalar products like [Sλ × S

λ]0.
By iterating the recursion relation (4.19) with λ → λ − 1

2
, κ → κ + 1

2
, one

finds:





2λ
p



ωλ,κ
p =

m=2λ−p
∑

m=0

Φ(2κ + m)





2λ − (m + 1)
p − 1



ω
λ−

(m+1)
2

,κ+
(m−1)

2
p−1 . (4.24)

In terms of coefficients ω, eq. (4.15) may be rewritten as follows:





2λ
1



ωλ,κ
1 =

m=2λ−1
∑

m=0

Φ(2κ + m). (4.25)

In contrast to the method followed by Nomura and Biedenharn for
obtaining their impressive formula, see eqs. (7.17)-( 7.18), p. 3645 in
ref. [4], we choose to carry out iterations on eq. (4.24) from the top of the
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ranks λ + κ − p, related to tensor products [Sλ × S
κ]λ+κ−p, with

p = 1, 2, · · · , 2λ, instead of the bottom starting from p = 2λ.
Our result is specially simple:





2λ
p



ωλ,κ
p =

p−1
∏

l=0

2λ−p
∑

ml+1=ml

Φ(2κ + ml+1 − l), (4.26)

valid ∀ p ǫ [1, 2λ], and with the convention m0 = 0.
It can be noticed that, if p = 2λ then ml = 0 ∀ l (always in the case
λ = inf(λ, κ)), one retrieves eq. (4.22).
Fully symmetrical formula in a, b for ω thus is given by:





a + b − |a − b|
a + b − c



ωa,b
a+b−c =

a+b−c−1
∏

l=0

c−|a−b|
∑

ml+1=ml

Φ(a+b+|a−b|+ml+1−l), (4.27)

valid ∀ (a + b − c) ≥ 1, and with the convention m0 = 0.
An ultimate step is to “transcript” our recoupling method described in
sect. 3, then the final expression for the ▽q-triangle sum rule may be
written as follows:

ωa,b
a+b−c ωc,d

c+d−e ▽q (abc) ▽q (cde)

= (−1)a+b+d+e[2c + 1]
∑

f

ωb,d
b+d−f ωa,f

a+f−e ▽q (bdf) ▽q (afe)

{

a b c
d e f

}

q

.

(4.28)

5 Generalization to osp(1|2)

Expression of coupling laws and table of primitive 6-jS symbols with
arguments 0 or 1

2
can be found in our recent paper [5]. For convenience we

transcript below the formulas for tensor products which show the use of
integral parts, denoted by [· · ·] 1 .

5.1 Reminders of some properties of osp(1|2)
First we give the osp(1|2) analog of ▽, which is called ▽S [5]:

▽S (abc) =

[

[a + b + c + 1
2
]!

[a + b − c]![a − b + c]![−a + b + c]!

]

1
2

. (5.1)

It is useful also to transcript our definition of the supertriangle △S [5],
because, unexpectedly, it will be an essential parameter of our present

1Although of common use, this notation, unfortunately similar to the one used for
q-numbers, should not lead to any confusions in the sequel of the present paper.

10



study:

△S (abc) =

[

[a + b − c]![a − b + c]![−a + b + c]!

[a + b + c + 1
2
]!

] 1
2

. (5.2)

Recoupling laws for tensor products of tensor operators are the following:
Left-recoupling:

[XJ1 × [Y J2 × Z
J3]J23 ]J123 = (−1)[J2+J3+J23]+[J1+J23+J123]+2J23

×
∑

J12

{

J2 J3 J23

J123 J1 J12

}

S

[[XJ1 × Y
J2 ]J12 × Z

J3]J123 . (5.3)

Right-recoupling:

[[XJ1 × Y
J2]J12 × Z

J3 ]J123 = (−1)[J1+J2+J12]+[J12+J3+J123]+2J12

×
∑

J23

{

J1 J2 J12

J3 J123 J23

}

S

[XJ1 × [Y J2 × Z
J3 ]J23]J123 . (5.4)

For osp(1|2) we remind that the “perimeter” J1 + J2 + J12, related to a
triangle, {J1J2J12} for example, may be integral or half-integral. Thus,
summation indices, like J12 or J23, implicitly run by step of 1

2
. (For su(2),

the “perimeters” are integral).

6 Definition of iterated tensor operators S
κ,

from S
1
2 , for osp(1|2)

Three defining equations are necessary, namely

[S
1
2×S

1
2 ]0 = c01

0, [S
1
2×S

1
2 ]

1
2 = d0

√
2S

1
2 and [S

1
2×S

κ]κ+ 1
2 = S

κ+ 1
2 . (6.1)

Here also, it is assumed that numbers c0, d0 ǫ R.
As for su(2), it can be established that:

[S
1
2 × S

κ]κ+ 1
2 = [Sκ × S

1
2 ]κ+ 1

2 = S
κ+ 1

2 and S
0 = 10, (6.2)

[S
1
2 × S

κ]κ = [Sκ × S
1
2 ]κ = ακS

κ, (6.3)

[S
1
2 × S

κ]κ−
1
2 = [Sκ × S

1
2 ]κ−

1
2 = γκS

κ− 1
2 . (6.4)

Instead of only one coefficient γk for su(2), we have two coefficients ακ and
γκ to be determined afterwards.

In the same way, since [S
1
2 × S

κ]κ
′′

= [Sκ × S
1
2 ]κ

′′

, we deduce the following
property:

[Sκ × S
κ′

]κ
′′

= [Sκ′ × S
κ]κ

′′

. (6.5)
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6.1 Definition of a binary parameter τ

A convenient parameter τ , expressed by means of the integral part of any
spin κ, will be used for defining a “τ -parity” of κ. Our formulation is the
following:

τκ = [κ + 1
2
] − [κ] =

{

0 if κ integral
1 if κ half-integral

. (6.6)

It looks like a kind of creator/annihilator for “boson-fermion” with obvious
properties:

τκ
2 = τκ, τκτκ− 1

2
= 0, 1 − τκ− 1

2
= τκ and τλ+κ = τλ + τκ − 2τλτκ. (6.7)

Also, it can be used for representing any phase factor in the following way:

(−1)2κ = 1 − 2τκ. (6.8)

6.2 Detailed calculation of ακ

Consider the following product:

[S
1
2 × S

κ]κ = [S
1
2 × [Sκ− 1

2 × S
1
2 ]κ]κ. (6.9)

A left-recoupling, use of formulas for 6-jS with one spin 1
2

and definition
(6.3) lead to

(

2κ + (−1)2κ
)

ακ = −ακ− 1
2

√

(2κ + 1)(2κ − 1). (6.10)

Taken into account the initial condition α 1
2

= d0

√
2, the solution is found to

be:

ακ = (−1)2κ+1 (2κ + τκ)
√

2κ(2κ + 1)
d0. (6.11)

Alternative expressions useful for some further calculations are

(

(−1)2κ+1ακ
√

2κ(2κ + 1)

)

=
(2κ + τκ)

2κ(2κ + 1)
d0 =

(

τκ

2κ
⊕

τκ+ 1
2

2κ + 1

)

d0. (6.12)

6.3 Detailed calculation of γκ

We follow the same process as for the calculation of ακ, but in considering
this time the product

[S
1
2 × S

κ]κ−
1
2 = [S

1
2 × [Sκ− 1

2 × S
1
2 ]κ]κ−

1
2 . (6.13)

Then the resulting recursion relation for γκ is given by

γκ

(

1 − 1

2κ

)

= γκ− 1
2

+
(−1)2κ

2κ
ακ− 1

2

2, (6.14)
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whose the solution is

γκ =
(

2κ + (−1)2κ
)

ακ
2 + 2κc0. (6.15)

From expression (6.11) the final form for γ may be written as:

γκ = 2κ(c0 + d0
2) − τκ

2κ
d0

2, (6.16)

or, under an alternative form, which separates c0 from d0:

γκ = 2κc0 +
(2κ + τκ)(2κ − τκ)

2κ
d0

2. (6.17)

Another interesting relationships between α and γ may be found also in
Appendix A, related to a study of special reduced matrix elements. First
values of γ are the following:

γ0 = 0, γ 1
2

= c0 and γ1 = 2
(

c0 + d0
2
)

. (6.18)

Now, given λ and κ, the tensor products to be studied have ranks which
vary by step of 1

2
from λ + κ (the highest) to |κ − λ| (the lowest). For the

needs of our method of calculation, they must be organized in two sets A
and B as follows:

Set A: [Sλ × S
κ]λ+κ · · · · · · [Sλ × S

κ]sup(λ,κ)

≡
{

[Sλ × S
κ]λ+κ−π ; π ǫ [0, inf(λ, κ)]

}

, (6.19)

and

Set B: [Sλ × S
κ]sup(λ,κ)− 1

2 · · · · · · [Sλ × S
κ]|κ−λ|

≡
{

[Sλ × S
κ]|λ−κ|+π ; π ǫ [0, inf(λ, κ) − 1

2
]; inf(λ, κ) ≥ 1

2

}

. (6.20)

For the set A, successive formulas will be obtained by starting from the
highest rank λ + κ (case π = 0). For B one will start from the lowest rank
|κ − λ| (case π = 0).

7 Results for tensor products of highest

ranks

The way to derive the formulas for each of the tensor operators studied
below is invariable. It leads always to a recursion relation (to be solved)
depending on the τ -parities of λ and κ.
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7.1 Presentation of the methods used for the
calculation

The sequences are the following:
(i) Right-recoupling:

[Sλ × S
κ]λ+κ−π = [[Sλ− 1

2 × S
1
2 ]λ × S

κ]λ+κ−π = (−1)2λ+2κ−2π+[π]

×
∑

J23

{

λ − 1
2

1
2

λ
κ λ + κ − π J23

}

S

[Sλ− 1
2 × [S

1
2 × S

κ]J23 ]λ+κ−π. (7.1)

Except for the cases π = 0 or π = 1
2
, J23 takes three values, namely

κ − 1
2
, κ, κ + 1

2
. Evaluation of 6-jS symbols thanks to the tables which can

be found in ref. [5], as well as the use of eqs. (6.3)-(6.4) result in a recursion
relation like

[Sλ × S
κ]λ+κ−π = (· · ·)γκ[S

λ− 1
2 × S

κ− 1
2 ]λ+κ−π

+(· · ·)ακ[S
λ− 1

2 × S
κ]λ+κ−π + (· · ·)[Sλ− 1

2 × S
κ+ 1

2 ]λ+κ−π, (7.2)

where here we have considered κ = sup(λ, κ).
The analytical form taken by this recursion relation is different according to
the τ -parity of π, which can be integral or half-integral. This comes from
the involved 6-jS symbols and their analytical formulas.

(ii) Extraction of all coefficients in square roots as frontal common
factors.

(iii) Writing of four equations according to the τ -parities of λ, κ:
We define four parity cases, denoted (a), (b), (c), (d), according to the
following table:

λ κ notation
integral integral (a)

half-integral half-integral (b)
half-integral integral (c)

integral half-integral (d)

(7.3)

(iv) Summation of four finite series:
This can be done by using each time two of the four preceding equations
and also results previously obtained for π − 1

2
and π − 1. Thus, the

expected closure relation for the set A, written as

[Sλ × S
κ]λ+κ−π = (· · ·)Sλ+κ−π, (7.4)

shows four different analytical coefficients (· · ·) depending on the cases (a),
(b), (c), (d).

(v) Final result as a fully symmetrical expression in λ, κ:
Symmetry (λ ↔ κ) in formulas should be apparent, as a consequence of the
general property (6.5). However, this last step is perhaps the most difficult,
because it’s more or less heuristic. The task consists in finding a single
formula unifying the four cases.
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Let us illustrate the matter with the case where π = 1
2
. At the end of

step (iv) and with the result of finite series summations, we are faced with

four different terms we denote F 1
2 (λ, κ), not apparently symmetrical in λ, κ.

One finds:

(a) (b) (c) (d)

F 1
2 (λ, κ) 0 2λ + 2κ 2κ 2λ

The simplest way found for unifying these four terms is the following
expression:

F 1
2 (λ, κ) = 2λτκ + 2κτλ, (7.5)

where binary factor τ has been defined in sect. 6.1. It should be clear that
the difficulties quickly increase for the cases π ≥ 1 for obtaining fully
symmetrical expressions in λ, κ.
Let us now list the first formulas we have been able to obtain under the
desired form.

[Sλ × S
κ]λ+κ = S

λ+κ. (7.6)

[Sλ × S
κ]λ+κ− 1

2 = (−1)2λ+2κ (2λτκ + 2κτλ)d0
√

(2λ)(2κ)(2λ + 2κ)
S

λ+κ− 1
2 . (7.7)

This result implies the existence of a non trivial set of zero tensor
operators.

Theorem 1: From iterated tensor operators S
k of integral ranks, it can

be built a zero tensor operator by the following product:

[Sk × S
k′

]k+k′− 1
2 = 0, ∀k, k′ integral. (7.7.1)

[Sλ × S
κ]λ+κ−1 =

2λ · 2κ · (2λ + 2κ − 1)(c0 + d0
2) − τλτκd0

2

√

(2λ)(2κ)(2λ + 2κ − 1)
S

λ+κ−1. (7.8)

[Sλ × S
κ]λ+κ− 3

2 = (−1)2λ+2κd0(c0 + d0
2)

× (2λ−τλ)(2κ−τκ)(2λ+2κ−2+τλ+τκ)(2λτκ+2κτλ−1−τλ−τκ+τλτκ)
√

2λ(2λ − 1)2κ(2κ − 1)(2λ + 2κ − 1)(2λ + 2κ − 2)
S

λ+κ− 3
2 . (7.9)

[Sλ × S
κ]λ+κ−2 =

1

2
(2λ−τλ)(2κ−τκ)(2λ+2κ−2−τλ−τκ+2τλτκ)(c0 + d0

2)

× (2λ−1+τλ)(2κ−1+τκ)(2λ+2κ−3+τλ+τκ−2τλτκ)(c0 + d0
2)−(1+2τλτκ)d0

2

√

2λ(2λ−1)2κ(2κ−1)(2λ+2κ−2)(2λ+2κ−3)
2

S
λ+κ−2.

(7.10)
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[Sλ × S
κ]λ+κ− 5

2 = (−1)2λ+2κd0(c0 + d0
2)

×1

2
(2λ−τλ)(2κ−τκ)(2λ+2κ−2−τλ−τκ)(2λτκ+2κτλ−2)

×







(

(2λ−2−τκ+τλτκ)(2κ−2−τλ+τλτκ)(2λ+2κ−4+2τλ+2τκ−τλτκ)

+4(τλ+τκ−τλτκ)

)

(c0 + d0
2)

−(τλ+τκ−τλτκ)d0
2







× 1
√

2λ(2λ−1)(2λ−2)2κ(2κ−1)(2κ−2)(2λ+2κ−2)(2λ+2κ−3)(2λ+2κ−4)
2

S
λ+κ− 5

2 .

(7.11)

[Sλ × S
κ]λ+κ−3 = (c0 + d0

2)
1

6
(2λ−τλ)(2κ−τκ)(2λ+2κ−4−τλ−τκ+2τλτκ)

×













(

(2λ−1+τλ)(2κ−1+τκ)(2λ−2)(2κ−2)((2λ+2κ−3)

×(2λ+2κ−5+τλ+τκ−2τλτκ)

)

(

c0 + d0
2
)2

−3((2λ−2)(2κ−2)(2λ+2κ−3)+2τλτκ)
(

d0
2
) (

c0 + d0
2
)

+3τλτκ

(

d0
2
)2













× 1
√

2λ(2λ−1)(2λ−2)2κ(2κ−1)(2κ−2)(2λ+2κ−3)(2λ+2κ−4)(2λ+2κ−5)
3·2

S
λ+κ−3.

(7.12)

8 Closure relation for the set A
As it follows from the formulas derived in sect. 7, we can assert that:

[Sλ × S
κ]λ+κ−π =

(−1)4π(λ+κ) Pπ(λ, κ)

E(λ, κ; λ + κ − π) ▽S (λ κ λ + κ − π)
S

λ+κ−π, (8.1)

where the normalization factor E (in square root) is the analog of the one
found in the closure relation for su(2), see eq. (2.18), with a slight difference
in the denominator, i.e.

E(a, b; c) =

[

(2a)!(2b)!

(2c)!

]
1
2

. (8.2)

Pπ(λ, κ) is a polynomial symmetrical in λ, κ, namely

Pπ(λ, κ) = Pπ(κ, λ), (8.3)
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Polynomials Pπ satisfy (functional) recursion relations derived from
eq. (7.2). Their thorough study is reported in Appendix B. They have the
following expansion:

P π(λ, κ) = (d0)
τπ

m=[π]
∑

m=0

xπ
m(λ, κ)

(

c0 + d0
2
)[π]−m

(d0
2)m, (8.4)

with the same symmetry property in λ, κ for the coefficients x, namely

xπ
m(λ, κ) = xπ

m(κ, λ). (8.5)

Conjecture 1: Coefficients xπ
m(λ, κ) are integral numbers.

This is a reasonable and weak conjecture agreeing with the results obtained
for the lowest values of π.
Having in mind that, of course, any tensor operator S

κ depends implicitly
on c0, d0, we may write generally:

[Sa × S
b]c =

(−1)4(a+b)(a+b+c) Pa+b−c(a, b)

E(a, b; c) ▽S (a b c)
S

c, ∀ c ǫ [sup(a, b), a + b].(8.6)

9 Results for tensor products of lowest

ranks

In this section, examples will be given by assuming κ = sup(λ, κ).
The methods used for deriving formulas for [Sλ × S

κ]κ−λ+π are similar to
those followed in sect. 7, with obvious slight changes. For instance step (i)
becomes

[Sλ × S
κ]κ−λ+π = [[Sλ− 1

2 × S
1
2 ]λ × S

κ]κ−λ+π = (−1)2κ+[π]

×
∑

J23

{

λ − 1
2

1
2

λ
κ κ − λ + π J23

}

S

[Sλ− 1
2 × [S

1
2 × S

κ]J23 ]κ−λ+π, (9.1)

and the recursion relation between tensor operators reads now:

[Sλ × S
κ]κ−λ+π = (· · ·)γκ[S

λ− 1
2 × S

κ− 1
2 ]κ−λ+π

+(· · ·)ακ[S
λ− 1

2 × S
κ]κ−λ+π + (· · ·)[Sλ− 1

2 × S
κ+ 1

2 ]κ−λ+π. (9.2)

Steps (ii), (iii) and (iv) remain formally identical. However step (v) cannot
include a symmetry such as λ ↔ κ, but this very important point will
become clearer below, exhibiting a fundamental variable change like
(λ → λ, κ → |κ − λ| + π), involving in addition a product of γ coefficients.
• Let us start with the simplest case where π = 0.

[Sλ × S
κ]κ−λ = (γκ · · · γκ−λ+ 1

2
)Sκ−λ. (9.3)
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An alternative expression of (9.3) may be written with familiar
normalization factors like those occuring in denominator of eq. (8.6),
however with a change in the order of spins in E, and this gives an idea for
the future hypothesis to come:

[Sλ × S
κ]κ−λ =

(γκ · · · γκ−λ+ 1
2
)

E(λ, κ − λ; κ) ▽S (λ κ κ − λ)
S

κ−λ. (9.4)

A particular case is the scalar product 2 , namely

[Sκ × S
κ]0 = (γκ · · · γ 1

2
)S0 ≡

(γκ · · · γ 1
2
)

E(κ, 0; κ) ▽S (κ κ 0)
S

0, ∀κ ≥ 1

2
. (9.5)

• Our result for the next case, π = 1
2
, is the following:

[Sλ × S
κ]κ−λ+ 1

2 = (−1)2κ+1 (γκ · · · γκ−λ+1)

×

(

2λτκ−λ+ 1
2

+ 2(κ − λ + 1
2
)τλ

)

d0

E(λ, κ − λ + 1
2
; κ) ▽S (λ κ κ − λ + 1

2
)
S

κ−λ+ 1
2 . (9.6)

One recognizes the polynomial P 1
2 encountered first in eq. (7.7) and

generally defined by eq. (8.1) with the following change of variables
λ → λ, κ → κ − λ + 1

2
. Therefore

[Sλ × S
κ]κ−λ+ 1

2 = (−1)2κ+1 (γκ · · · γκ−λ+1)

× P 1
2 (λ, κ − λ + 1

2
)

E(λ, κ − λ + 1
2
; κ) ▽S (λ κ κ − λ + 1

2
)
S

κ−λ+ 1
2 . (9.7)

Exactly as for Theorem 1 this result implies the existence of a non trivial
set of zero tensor operators.

Theorem 2: From iterated tensor operators S
k with k integral and S

κ

with κ half-integral, it can be built zero tensor operators by the following
product:

[Sk × S
κ]|k−κ|+ 1

2 = 0, ∀k integer , and ∀κ half-integer. (9.7.1)

As an example one can write:

[Sλ × S
λ+ 1

2
+p]p+1 = 0, ∀λ integer or half-integer, and ∀p integer. (9.8)

10 Closure relation for the set B
As it can be guessed from the preceding short study, one can assert the

following formulation (κ ≥ λ is adopted for convenience):

[Sλ × S
κ]κ−λ+π = (−1)4π(κ+π)(γκ · · · γκ−λ+π+ 1

2
)

× Qπ(λ; κ)

E(λ, κ − λ + π; κ) ▽S (λ κ κ − λ + π)
S

κ−λ+π, (10.1)

2The trivial case [S0 × S
0]0 = S

0 is found in the set A with λ = κ = π = 0.
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where Qπ(λ; κ) is a polynomial in λ, κ. Like polynomials Pπ, Qπ satisfy
recursion relations issued from eq. (9.2). They can be found listed in
Appendix B.
A glance at their respective recursion relations does not exhibit immediate
similarities between these polynomials, though there is a special one of
importance.
However, thanks to a lengthy study we have carried out for obtaining
explicit analytical formulas for tensor operators (sets A and B are
included), involving the four parity cases (a), (b), (c), (d), from

[S
1
2 × S

κ]κ+ 1
2 −→ [S

1
2 × S

κ]κ −→ [S
1
2 × S

κ]κ−
1
2 ,

up to

[S
7
2 × S

κ]κ+ 7
2 · · · −→ [S

7
2 × S

κ]κ · · · −→ [S
7
2 × S

κ]κ−
7
2 ,

we can conjecture that the following property holds:
Conjecture 2: The relation between Qπ and Pπ polynomials is given by

Qπ(λ; κ) = Pπ(λ, κ − λ + π). (10.2)

From this property, after some variable changes, it follows that a closure
relation can be explicitely written for the set B:

[Sa × S
b]c =

(−1)4(inf(a,b)+c)(a+b+c) Pc−|b−a| (inf(a, b), c)

E (inf(a, b), c; sup(a, b)) ▽S (a b c)
γ sup(a,b) · · · γc+ 1

2
S

c,

∀ c ǫ[|b − a|, sup(a, b) − 1
2
], and inf(a, b) ≥ 1

2
.

(10.3)

11 Unified form of the closure relation for

tensor operators S
κ

In the preceding studies on sets A and B, some interesting features can be
noticed.

sup(a, b, c) = c and inf(sup(a, b), c) = sup(a, b), for A. (11.1)

sup(a, b, c) = sup(a, b) and inf(sup(a, b), c) = c, for B. (11.2)

We choose to adopt the following convention regarding the notation with
dots for the ordered product of γ coefficients, enclosed inside brackets like
(· · ·):

(γc>
· · ·γc<

) = 1 if c< > c> (convention). (11.3)

For instance:
(γc · · · γc+ 1

2
) = 1. (11.4)
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Thus a single form of eqs. (8.6), (10.3) can be written as a general closure
relation:

[Sa × S
b]c = (−1)τa+b+c+2 sup(a,b,c)τa+b+c(γ sup(a,b,c) · · · γc+ 1

2
)

×Pπ(a,b,c)(inf(a, b), inf(sup(a, b), c)) △S (a b c)Sc

E(inf(a, b), inf(sup(a, b), c); sup(a, b, c))
, (11.5)

where pseudo-degree π initially defined by

π(a, b, c) = inf(a, b) + inf(sup(a, b), c) − sup(a, b, c), (11.6)

has a form fully symmetrical in a, b, c given by

π(a, b, c) = a + b + c − 2 sup(a, b, c). (11.7)

12 Quasi-final demonstration for a △S-sum

rule related to osp(1|2)

This is an analog of the one developed for su(2) in sect. 3.
Consider the triple product [[Sa × S

b]c × S
d]e. Eq. (11.5) used twice leads

to:

[[Sa × S
b]c × S

d]e = (γ sup(a,b,c) · · · γc+ 1
2
)(γ sup(c,d,e) · · ·γe+ 1

2
)

×(−1)τa+b+d+e(−1)2 sup(a,b,c)τa+b+c+2 sup(c,d,e)τc+d+e

× Pπ(a,b,c)(inf(a, b), inf(sup(a, b), c))

E(inf(a, b), inf(sup(a, b), c); sup(a, b, c))

× Pπ(c,d,e)(inf(c, d), inf(sup(c, d), e))

E(inf(c, d), inf(sup(c, d), e); sup(c, d, e))

×△S (a b c) △S (c d e)Se. (12.1)

Next, a right-recoupling is carried out and yields

[[Sa × S
b]c × S

d]e = (−1)[a+b+c]+[c+d+e]+2c

×
∑

f

{

a b c
d e f

}

S

[Sa × [Sb × S
d]f ]e. (12.2)

Closure relation (11.5) then is used for [Sb × S
d]f and [Sa × S

f ]e.
Thus an alternative expression for [[Sa × S

b]c × S
d]e is obtained, namely

[[Sa × S
b]c × S

d]e = (−1)[a+b+c]+[c+d+e]+2c
∑

f

{

a b c
d e f

}

S

×(−1)2(a+b+d+e)(−1)2 sup(b,d,f)τb+d+f +2 sup(a,f,e)τa+f+e

20



×(γ sup(b,d,f) · · · γf+ 1
2
)

Pπ(b,d,f)(inf(b, d), inf(sup(b, d), f))

E(inf(b, d), inf(sup(b, d), f); sup(b, d, f))

×(γ sup(a,f,e) · · · γe+ 1
2
)

Pπ(a,f,e)(inf(a, f), inf(sup(a, f), e))

E(inf(a, f), inf(sup(a, f), e); sup(a, f, e))

×△S (b d f) △S (a f e)Se. (12.3)

Coefficients E occuring in eqs. (12.1), (12.3) may be written differently. For
instance:

E(inf(a, b), inf(sup(a, b), c); sup(a, b, c)) =

√

(2a)!(2b)!(2c)!

(2 sup(a, b, c))!
. (12.4)

Then, an identification of both aforementioned equations over S
e shows

that coefficients in square root like
√

(2a)!(2b)!(2d)!(2e)! vanish.
Thus a preliminary form of the △S-sum rule may be presented as

follows:

(−1)2 sup(a,b,c)τa+b+c+2sup(c,d,e)τc+d+e

×(γ sup(a,b,c) · · ·γc+ 1
2
)Pπ(a,b,c)(inf(a, b), inf(sup(a, b), c))

×(γ sup(c,d,e) · · · γe+ 1
2
)Pπ(c,d,e)(inf(c, d), inf(sup(c, d), e))

× (2 sup(a,b,c))!(2 sup(c,d,e))!
(2c)! △S (a b c) △S (c d e)

= (−1)[a+b+c]+[c+d+e]+2c
∑

f

{

a b c
d e f

}

S

×(−1)2 sup(b,d,f)τb+d+f +2 sup(a,f,e)τa+f+e

×(γ sup(b,d,f) · · · γf+ 1
2
)Pπ(b,d,f)(inf(b, d), inf(sup(b, d), f))

×(γ sup(a,f,e) · · · γe+ 1
2
)Pπ(a,f,e)(inf(a, f), inf(sup(a, f), e))

× (2 sup(b,d,f))!(2 sup(a,f,e))!
(2f)! △S (b d f) △S (a f e). (12.5)

12.1 Invariance check with respect to the 6-jS

orthogonality relation

Consider the pseudo-orthogonality relation between 6-jS symbols [5]:

∑

x

(−1)[a+b+x]+[d+e+x]+2x

{

a b x
d e f

}

S
{

a b x
d e f ′

}

S

= (−1)[a+e+f ]+[b+d+f ]+2fδf,f ′ . (12.6)

By operating both left/right hand-sides of eq. (12.5) by
∑

c

{

a b c
d e f ′

}

S

, it

can be checked that one retrieves the same analytical form of the △S-sum
rule.
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13 Ultimate identification process over

(c0 + d0
2), d0

2

Short warning about osp(1|2)-specific troubles to come:

For su(2) or suq(2), the identification process over tensor operators S
e

was very simple and leads straightforwardly to the final desired result,
because a single parameter, c0, vanishes after simplification by
(

c0/
√

2
)a+b+d−e

or
(

c0/
√

[2]
)a+b+d−e

.

On the other hand, for osp(1|2), the situation becomes much more
complex. Indeed, we deal with two independent parameters, namely
(c0 + d0

2) and d0
2, or equivalently c0 and d0

2. Furthermore, we will need to
carry out a countable set of identifications with some x(a, b, c, d, e; f)
coefficients of binomials like (c0 + d0

2)Ω−m(d0
2)m, related to homogeneous

polynomials of degree Ω.
As it will be seen in the sequel, regarding summation indices (integral

or half-integral), a priori it seems that we should expect only two kinds of
osp(1|2) △S-sum rule for which our aim is to find an unified form. This
could be reasonably accepted.

However this fact implies that deeply hidden identities between x
coefficients should exist. If this property does not hold (or cannot be
proved), then we should also imagine an “infinity” of △S-sum rule, which
would force us to re-consider independence properties of the symbols 6-jS as
well as the status of osp(1|2) itself, a thinking rather inconceivable.

All that summarizes our present state of problems which still need
some enlightenment. Let us now give an idea of the detailed calculations to
be carried out.
Details on the polynomial analysis:

Consider the product of two polynomials P. From eq. (B.3) we obtain:

P ω(inf(a, b), inf(sup(a, b), c))P ω′

(inf(c, d), inf(sup(c, d), e))

= d0
τa+b+c+τc+d+eRΩ(a, b; c|c, d, e), (13.1)

where RΩ is an homogeneous polynomial in (c0 + d0
2), d0

2, of degree
Ω = [ω] + [ω′]:

RΩ(a, b; c|c, d; e)) =

m=Ω
∑

m=0

yω,ω′

m (a, b; c|c, d; e)(c0 + d0
2)

Ω−m (
d0

2
)m

. (13.2)

Coefficients yω,ω′

m are given as function of coefficients x defined in eq. (B.3):

yω,ω′

m (a, b; c|c, d; e) =
n=inf(m,[ω])
∑

n=sup(0,[ω′])

xω
m(inf(a, b), inf(sup(a, b), c))xω′

m−n(inf(c, d), inf(sup(c, d), e)),

(13.3)
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with

ω = a + b + c − 2 sup(a, b, c) and ω′ = c + d + e − 2 sup(c, d, e). (13.4)

Thus, degree Ω is given by:

Ω = [a + b + c] + [c + d + e] − 2 sup(a, b, c) − 2 sup(c, d, e). (13.5)

Product P ωf (inf(b, d), inf(sup(b, d), f))P ω′

f (inf(a, f), inf(sup(a, f), e)) may
be expressed by means of formulas similar to (13.1)-(13.3), with
Ωf = [ωf ] + [ω′

f ], and

ωf = b + d + f − 2 sup(b, d, f) and ω′
f = a + e + f − 2 sup(a, e, f). (13.6)

Thus, for any f , degree Ωf is given by:

Ωf = [b + d + f ] + [a + e + f ] − 2 sup(b, d, f) − 2 sup(a, e, f). (13.7)

13.1 Special case with d0 as frontal factor

Looking at eq. (12.5), we first must check its coherence when d0 factorizes
the left-hand side. This case arises only if the “perimeters” (a + b + c) and
(c + d + e) have different τ -parities, i.e. one perimeter integral and the
other one half-integral, which leads to

τa+b+c + τc+d+e = 0 + 1 = 1 + 0 = 1. (13.8)

This implies that b + d and a + e have also different τ -parities. Therefore,
∀f , integral or half-integral, on the right-hand side of eq. (12.5), we have
also

τb+d+f + τa+e+f = 1. (13.9)

Consequently d0 can be canceled on both sides. Then eq. (12.5) here
becomes

(−1)2 sup(a,b,c)τa+b+c+2 sup(c,d,e)τc+d+e (2 sup(a,b,c))!(2 sup(c,d,e))!
(2c)!

×(γ sup(a,b,c) · · · γc+ 1
2
)(γ sup(c,d,e) · · · γe+ 1

2
)RΩ(a, b; c|c, d; e) △S (a b c) △S (c d e)

= (−1)[a+b+d+e]
∑

f

(−1)2 sup(b,d,f)τb+d+f +2 sup(a,f,e)τa+f+e

{

a b c
d e f

}

S

× (2 sup(b,d,f))!(2 sup(a,f,e))!
(2f)! (γ sup(b,d,f) · · · γf+ 1

2
)(γ sup(a,f,e) · · ·γe+ 1

2
)

×△S (b d f) △S (a f e)RΩf (b, d; f |a, f ; e).

(13.10)

In the present case, the degrees Ω and Ωf are the following:

Ω = [a + b + d + e] + 2c − 2 sup(a, b, c) − 2 sup(c, d, e)
Ωf = [a + b + d + e] + 2f − 2 sup(b, d, f) − 2 sup(a, f, e)

. (13.11)
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13.2 The other cases

They are in number of two for the left-hand side of eq. (12.5). Either
a + b + c and c + d + e are integral, or a + b + c and c + d + e are
half-integral. This implies that a + b and d + e have the same τ -parity, i.e.
integral or half-integral.
For convenience, let us now define a general phase factor ϕ as follows:

(−1)ϕ(a+b+d+e;c) = (−1)[a+b+d+e]−τa+b+cτc+d+e

= (−1)[a+b+d+e]+τc(1−τa+b+d+e). (13.12)

In these cases eq. (12.5) takes the form:

(2 sup(a,b,c))!(2 sup(c,d,e))!
(2c)! (γ sup(a,b,c) · · ·γc+ 1

2
)(γ sup(c,d,e) · · · γe+ 1

2
)

×△S (a b c) △S (c d e)

×























RΩ(a, b; c|c, d; e)
if c and (a + b, d + e) have identical τ -parities

case where (a+b+c,c+d+e) integral

d0
2 RΩ(a, b; c|c, d; e)

if c and (a + b, d + e) have different τ -parities

case where (a+b+c,c+d+e) half-integral

= (−1)ϕ(a+b+d+e;c)
∑

f

(−1)2 sup(b,d,f)τb+d+f +2 sup(a,f,e)τa+f+e

{

a b c
d e f

}

S

× (2 sup(b,d,f))!(2 sup(a,f,e))!
(2f)! (γ sup(b,d,f) · · · γf+ 1

2
)(γ sup(a,f,e) · · · γe+ 1

2
)

×△S (b d f) △S (a f e)

×















RΩf (b, d; f |a, f ; e)
if f and (b + d, a + e) have identical τ -parities

case where (b+d+f,a+e+f) integral

d0
2 RΩf (b, d; f |a, f ; e)

if f and (b + d, a + e) have different τ -parities

case where (b+d+f,a+e+f) half-integral

(13.13)

The relevant degrees are the following:

Ω = [a + b + d + e] + 2c − 2 sup(a, b, c) − 2 sup(c, d, e) − τc(1 − τa+b+d+e),
(13.14)

and

Ωf = [a + b + d + e] + 2f − 2 sup(b, d, f)− 2 sup(a, f, e)− τf (1− τa+b+d+e).
(13.15)

Remarks: Note that, for a, b, d, e given, the summation over f by step 1
2

changes the τ -parity of f , which becomes integral or half-integral, half the
time etc, then factor d0

2 appears, or doesn’t appear as frontal factor of
polynomials R, whose the degrees Ωf simultaneously follow the associated
variations.
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Special notations and definitions: In order to continue the mathematical
analysis in progress, we need to define some simple notations which specify
explicitly if the step of running indices involved in summations is 1

2
, and if

these indices can be integral and half-integral, or only integral or only
half-integral. Namely:

∑

1

2

f

stands for: step=1
2
, and (of course here) f integral and half-integral.

∑

f

stands for: step=1 and f integral,
∑

f

stands for: step=1 and f

half-integral.
In other words, let {f} be the set of the values taken by f , then it can be
partitioned in the following direct sum:

{f} = {f} ⊕ {f}. (13.16)

Thus a standard summation for osp(1|2) can be separated as follows:

∑

1

2

f

=
∑

f

+
∑

f

. (13.17)

Otherwise no specification is necessary for customary formulas regarding
su(2).

13.3 Form of polynomials in (c0 + d0
2), d0

2 coming from
the γ’s products

Let us define a polynomial homogeneous in variables (c0 + d0
2), d0

2, of
degree ΩΓ, with coefficients depending on two parameters κ> and κ<,
satisfying κ< ≤ κ>, as follows:

ZΩΓ(κ>; κ<) =

l=[κ>− 1
2
]

∏

l=[κ<]

(

(2l + 1)2(c0 + d0
2) − d0

2
)

. (13.18)

According to an obvious convention, the finite product
∏

equals 1 and
ΩΓ = 0 if [κ<] > [κ> − 1

2
], for instance if [κ<] = [κ> − 1

2
] + 1, this case

arising only if κ< = κ> are integral. If l reduces to the single value l = 0,
case where [κ<] = [κ> − 1

2
] = 0, then ΩΓ = 1 and Z1(κ>; κ<) = c0 = γ 1

2
.

Thus polynomials Z have the following degree:

ΩΓ = [κ> + 1
2
] − [κ<]. (13.19)

Thanks to these definitions, it can checked that the product (γκ>
· · · γκ<

)
may be represented by an analytical expression involving double factorials
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such as:

(γκ>
· · · γκ<

) =

(2[κ>])!!(2[κ<] − 1)!!

(2[κ< − 1
2
])!!(2[κ> + 1

2
] − 1)!!

(c0 + d0
2)[κ>]−[κ<− 1

2
] ZΩΓ(κ>; κ<).

(13.20)

This important section (with Appendix B as its very valuable
companion) is the last of our paper. That sets precisely the problem to
solve, thanks to a lot of definitions, notations, equations or tools necessary
for an identification process concerning various polynomials, unknown in
scientific literature. However the complexity of the task remaining to
achieve, as well as the paradoxical “warning” stressed at the begining of the
section, force us to close here our analysis and to present our work as an
“open problem”.

14 Conclusion

After noting that a theoretical attempt was made twenty years ago by
Zeng [6], which suggested a kind of osp(1|2)-sum rule by means of the
▽-triangles of su(2), the developments found in the present paper let
appear that we do not know how his proposition could be assessed, see our
analysis in Appendix C.

Let us now summarize the main features of our work.
Analytical expressions for the cases su(2) and suq(2) have been obtained
with easiness. Regarding osp(1|2), the ultimate identification process over
two independent parameters, namely c0 + d0

2 and d0
2, also should lead to a

specific triangle sum rule. Unfortunately, it seems to come out onto an
analytical dead end.
The best should be to try doing hand-calculations for low values of spins
occuring in 6-jS symbols (up to 20 for example). However, that involves the
availability of 6-jS tables, listed in terms of prime numbers, as usual for
classical su(2) 6-j symbols. These tables have neither been programmed nor
published up today. For any interested and motivated searcher /
programmer, this task could be rapidly carried out from our general
formulas given in ref. [5]. That could furnish an invaluable help not only for
the problem under study but certainly also in other areas of the physics.
At least, that could allow ones to anticipate what kind of identities can
occur between expansion coefficients x whose analytical expression seems so
difficult to obtain.
May be, that can lead to a failure. Taken into account that all our
equations are rigorous, one can wonder if it is really “licit” to do
identifications over tensor operators like S

c. Indeed there are a few number
of them which are “zero” by construction, as proved by two theorems inside
this paper. Certainly this is not the most important aspect.
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On the other hand, we have restricted to c0 and d0 to be real numbers in
our study. May be an extension to imaginary numbers must be taken into
account?
Whatsoever the final solution, the yet simple hypothesis of a triangle sum
rule for osp(1|2) involves a lot of problems, including rigorous proof of weak
conjectures, like the fact that x coefficients are integral numbers (see sect. 8)
and functional relations between polynomials P ω and Qω (see sect. 10).
That displays a rather vast and promising work remaining to achieve.

Appendix A

Study on S
1
2 and S

1: reduced matrix elements

and some properties

This study is interesting because it is found that coefficients α and γ
introduced by necessity (see sect. 6) for our tensorial iterative process (see
sect. 7) occur also in another field. They appear simply and

straightforwardly when looking at the primitive spinor S
1
2 , and S

1, which is
an alternative generator of osp(1|2) (under conditions related to c0 + d0

2).
General analytical formulas for any (j‖ ‖j′) reduced matrix elements of
tensor products may be found clearly explicited in our recent paper [5].
Spin j refers to a standard representation basis |jm > issued from the

super-angular momentum J 1. Tensor operators such as S
1
2 or S

1 of course
are irreducible with respect to J 1.
First we have:

(j‖S0‖j′) = δj,j′. (A.1)

A.1 Reduced matrix elements of S
1

2

Evaluation of the reduced matrix elements of the product

[S
1
2 × S

1
2 ]0 = c0S

0 yields

c0 =

(j‖S 1
2‖j−1

2
)(j−1

2
)‖S 1

2‖j)−(j‖S 1
2‖j)

2
−(j‖S 1

2‖j+1
2
)(j+1

2
)‖S 1

2‖j).(A.2)

After that, the evaluation of the reduced matrix elements of

[S
1
2 × S

1
2 ]

1
2 = d0

√
2S

1
2 furnishes only two relevant equations:

2d0 =
(−1)2j

2j

(

√

2j(2j − 1)(j−1
2
‖S 1

2‖j−1
2
)−
√

(2j + 1)2j(j‖S 1
2‖j)

)

, (A.3)

and

2d0 = (−1)2j 1
√

2j(2j + 1)
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×











(2j+1)(j‖S 1
2‖j−1

2
)(j−1

2
‖S 1

2‖j)
−(4j+1)(j‖S 1

2‖j)
2

−2j(j‖S 1
2‖j+1

2
)(j+1

2
‖S 1

2‖j).
(A.4)

Solution of eq. (A.3) is obtained by following a recursive method, thus
we find

(j‖S 1
2‖j) = (−1)2j+1 (2j + τj)

√

2j(2j + 1)
d0, (A.5)

which is just our α coefficient introduced previously in eq. (6.3).
Consequently we have

(j‖S 1
2‖j) = αj. (A.6)

Solution of eq. (A.4) may be derived from the preceding result and
eq. (A.2):

(j‖S 1
2‖j−1

2
)(j−1

2
‖S 1

2‖j) = −







2j(c0 + d0
2) (j integral)

2j(c0 + d0
2) − d0

2

2j
(j half-integral)

. (A.7)

We recognize our γ coefficient introduced previously in eq. (6.4). Therefore
we have

(j‖S 1
2‖j−1

2
)(j−1

2
‖S 1

2‖j) = −γj . (A.8)

It can be noticed also that eq. (A.2) now may be rewritten as a recursion
relation for γ:

c0 + αj
2 = γj+ 1

2
− γj. (A.9)

A.2 Reduced matrix elements of S
1

Calculations necessary for S
1 don’t offer particular difficulties. Let us list

below all relevant results. They are derived from the defining expression

S
1 = [S

1
2 × S

1
2 ]1.

(j‖S1‖j−1) = (j‖S 1
2‖j−1

2
)(j−1

2
‖S 1

2‖j−1), (A.10)

(j−1‖S1‖j) = (j−1‖S 1
2‖j−1

2
)(j−1

2
‖S 1

2‖j). (A.11)

Both next formulas are interesting because they involve the factor τ
previously defined by eq. (6.6):

(j‖S1‖j−1
2
) = − (j‖S 1

2‖j−1
2
)

d0

√
2

√

(2j − 1)(2j + 1)
τj− 1

2
, (A.12)

(j−1
2
‖S1‖j) = − (j−1

2
‖S 1

2‖j)
d0

√
2

√

(2j − 1)(2j + 1)
τj− 1

2
. (A.13)

28



Factor τ occurs in the calculation when we need to evaluate the following
expression involving two different α’s:

αj− 1
2

√

2j + 1

2j
+ αj

√

2j − 1

2j
=

2d0
√

(2j − 1)(2j + 1)
τj− 1

2
. (A.14)

Eqs. (A.12)-(A.13) imply a rather unexpected result, namely:

(j‖S1‖j−1
2
) = (j−1

2
‖S1‖j) = 0, ∀ j half-integral. (A.15)

All calculations done, the last relevant reduced matrix element has the
form:

(j‖S1‖j) = −
√

2
√

2j(2j + 1)
(

c0 + d0
2
)

. (A.16)

Here again this results from an expression involving α and γ whose
computation was necessary, namely:

(2j + 1)γj + αj
2 + 2jγj+ 1

2
= 4j(2j + 1)

(

c0 + d0
2
)

. (A.17)

A.3 Some remarks about the phases

As it has been seen, the cases (j‖S 1
2‖j) and (j‖S1‖j) being considered as

special, none of all the other reduced matrix elements, non j-diagonal, like

(j‖S 1
2‖j′) or (j‖S1‖j′), with j 6= j′, has been written as a general explicit

function of γ. Indeed, even if we assume reasonably that

|(j‖S 1
2‖j′)| = |(j′‖S 1

2‖j)|, (A.18)

and examine the case where (j‖S 1
2‖j′) is a real number, a problem of

phases is encountered, which depends on the relative positions of c0 and
d0

2. Two classes may be defined, with a binary variable ǫ (with value 0 or
1) as follows:

(j‖S 1
2‖j−1

2
) = (−1)ǫr |(j‖S 1

2‖j−1
2
)| , (A.19)

(j−1
2
‖S 1

2‖j) = (−1)ǫl |(j−1
2
‖S 1

2‖j)| . (A.20)

Let us proceed to briefly analyze two elementary examples. First, suppose
that c0 > 0. Then γj > 0 ∀ j and from eq. (A.8) we derive (−1)ǫr+ǫl = −1.
Thus, in this case

(j‖S 1
2‖j−1

2
) = ±√

γj and (j−1
2
‖S 1

2‖j) = ∓√
γj . (A.21)

Secondly, if c0 + d0
2 < 0, then γj < 0 ∀ j, (−1)ǫr+ǫl = +1, whence

(j‖S 1
2‖j−1

2
) = ±

√

−γj and (j−1
2
‖S 1

2‖j) = ±
√

−γj . (A.22)

There are other examples not so simple, but out of the scope of this paper.
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A.4 S
1 as another generator for osp(1|2)

The standard generator of osp(1|2), i.e. the super-angular momentum J 1

itself , satisfies intrinsic commutation relations [5]:

[J 1 × J 1]1 = −1

2

√

3

2
J 1. (A.23)

From eq. (7.8) with λ = 1 and κ = 1 we have

[S1 × S
1]1 = 2

√
3
(

c0 + d0
2
)

S
1. (A.24)

Then, in order to be a generator of osp(1|2), S
1, actually depending on

c0, d0, must satisfy conditions such as given by eq. (A.23), which leads to
the following equation:

(

c0 + d0
2
)

= −1

4

√

1

2
. (A.25)

In conclusion of the present topic, S
1
|
c0+d0

2=−
1
4

√
1
2

is another valid generator

for osp(1|2).

Appendix B

Polynomials P ω and Qω: some properties and

recursion relations

Notations used: p for indicating that ω = p is integral, ω = π half-integral.

B.1 Polynomials P ω and general relations

The detailed forms of eq. (7.2) are found to be:

(2κ − p)!

(2κ)!
P p(λ, κ) =

(2κ − p)!

(2κ)!

(

(−1)2κ+1ακ
√

2κ(2κ + 1)

)

P p− 1
2 (λ − 1

2
, κ)

+(2λ + 2κ − p)
(2κ − p)!

(2κ)!
γκP p−1(λ − 1

2
, κ − 1

2
)

+
(2κ + 1 − p)!

(2κ + 1)!
P p(λ − 1

2
, κ + 1

2
),

(B.1)

30



and

(2κ − π − 1
2
)!

(2κ)!
P π(λ, κ) =

(2λ + 2κ − π + 1
2
)
(2κ − π + 1

2
)!

(2κ)!

(

(−1)2κ+1ακ
√

2κ(2κ + 1)

)

P π− 1
2 (λ − 1

2
, κ)

−(2λ + 2κ − π + 1
2
)
(2κ − π − 1

2
)!

(2κ)!
γκP π−1(λ − 1

2
, κ − 1

2
)

−(2κ − π + 1
2
)!

(2κ + 1)!
P π(λ − 1

2
, κ + 1

2
).

(B.2)

These formulas, such as they stand, are sufficient for asserting that any
polynomial P ω (where ω is integral or half-integral) can be written under
the most general form as:

P ω(λ, κ) = (d0)
τω

m=[ω]
∑

m=0

xω
m(λ, κ)

(

c0 + d0
2
)[ω]−m

(d0
2)m. (B.3)

This means that P ω(λ, κ) is the product of (d0)
τω by a polynomial of degree

[ω], homogeneous in
(

c0 + d0
2, d0

2
)

. [ω] denotes the integral part of ω.
For instance, from sect. 7, the first xω

m(λ, κ)’s are given by:

x 0
0(λ,κ)=1,

x
1
2
0 (λ,κ)=2λτκ+2κτλ,

x 1
0(λ,κ)=2λ·2κ(2λ+2κ−1), x 1

1(λ,κ)=−τλτκ,

x
3
2
0 (λ,κ)=(2λ−τλ)(2κ−τκ)(2λ+2κ+τλ+τκ−2)(2λτκ+2κτλ−1−τλ−τκ+τλτκ), x

3
2
1 (λ,κ)=0.

(B.4)

Furthermore, from ω > 1, it can be seen that

x ω
[ω](λ, κ) = 0, (B.5)

therefore
(

c0 + d0
2
)

is factorizable, such that one can write:

P ω(λ, κ) = (d0)
τω
(

c0 + d0
2
)

m=[ω]−1
∑

m=0

xω
m(λ, κ)

×
(

c0 + d0
2
)[ω]−1−m

(d0
2)m, ∀ω > 1. (B.6)

• Recursion relations for polynomials P ω(λ, κ):
As can be seen, eqs. (B.1)-(B.2) are not straightforwardly suitable for

finding general formulas. Actually, they are functional relations rather than
really usable recursion relations over the degrees of polynomials P. Then,
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we need to transform them in such a way that recursive methods can really
be operational.
For instance, for eq. (B.1), a first iteration is carried out thanks to the
change λ → λ − 1

2
, κ → κ + 1

2
. One removes the resulting expression into

eq. (B.1). This leads to an equation of order 1. This process is repeated
with changes like λ → λ − 1, κ → κ + 1, and so on, until it stops at a final
order m. osp(1|2)-triangular constraints imply that

[S
p−1
2 × S

λ+κ− p−1
2 ]λ+κ−p = 0, (B.7)

whence
m = 2λ − p. (B.8)

For eq. (B.2) the same method can be applied, and the result will be given
with π = p + 1

2
. Use of explicit expressions of ακ and γκ (cf. subsects. 6.2,

6.3) allows one to present the desired final results as shown below.

(2κ − p)!

(2κ)!
P p(λ, κ) =

n=2λ−p
∑

n=0

(2κ + n − p)!

(2κ + n)!

×
(2κ + n + τκ+ n

2
)

(2κ + n)(2κ + n + 1)
d0 P p− 1

2 (λ − (n+1)
2

, κ + n
2
)

+(2λ + 2κ − p)

n=2λ−p
∑

n=0

(2κ + n − p)!

(2κ + n)!

×
(

(2κ + n)(c0 + d0
2) −

τκ+ n
2

(2κ + n)
d0

2

)

P p−1 (λ − (n+1)
2

, κ + (n−1)
2

).

(B.9)

(2κ − p − 1)!

(2κ)!
P p+ 1

2 (λ, κ) = (2λ + 2κ − p)

n=2λ−p−1
∑

n=0

(−1)n (2κ + n − p)!

(2κ + n)!

×
(2κ + n + τκ+ n

2
)

(2κ + n)(2κ + n + 1)
d0 P p (λ − (n+1)

2
, κ + n

2
)

−(2λ + 2κ − p)

n=2λ−p−1
∑

n=0

(−1)n (2κ + n − p − 1)!

(2κ + n)!

×
(

(2κ + n)(c0 + d0
2) −

τκ+ n
2

(2κ + n)
d0

2

)

P p− 1
2 (λ − (n+1)

2
, κ + (n−1)

2
).

(B.10)

Now, these (functional) relations are “iterable” over p and convenient for a
step analogous to step (iv) of sect. 7.1. This time, calculations are free from
factors in square roots.

• Recursion relations for expansion coefficients xω
m(λ, κ)
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Use of eqs. (B.3), (B.9) allows one to carry out an identification over
(

c0 + d0
2
)p−m

(d0
2)m. This leads to two boundary equations and a general

one.
- Boundary coefficient of

(

c0 + d0
2
)p

:

(2κ − p)!

(2κ)!
x p

0(λ, κ) =

(2λ + 2κ − p)

n=2λ−p
∑

n=0

(2κ + n − p)!

(2κ + n − 1)!
x p−1

0 (λ − (n+1)
2

, κ + (n−1)
2

) .

(B.11)

- Boundary coefficient of (d0
2)

p
:

(2κ − p)!

(2κ)!
x p

p(λ, κ) =

n=2λ−p
∑

n=0

(2κ + n − p)!

(2κ + n)!

(2κ + n + τκ+ n
2
)

(2κ + n)(2κ + n + 1)
x

p− 1
2

p−1 (λ − (n+1)
2

, κ + n
2
)

−(2λ + 2κ − p)

n=2λ−p
∑

n=0

(2κ + n − p)!

(2κ + n)!

τκ+ n
2

(2κ + n)
x p−1

p−1 (λ − (n+1)
2

, κ + (n−1)
2

) .

(B.12)

- General coefficients of
(

c0 + d0
2
)p−m

(d0
2)

m
with 1 ≤ m and p ≥ 1:

(2κ − p)!

(2κ)!
x p

m(λ, κ) =

n=2λ−p
∑

n=0

(2κ + n − p)!

(2κ + n)!

(2κ + n + τκ+ n
2
)

(2κ + n)(2κ + n + 1)
x

p− 1
2

m−1 (λ − (n+1)
2

, κ + n
2
)

+(2λ + 2κ − p)

n=2λ−p
∑

n=0

(2κ + n − p)!

(2κ + n − 1)!
x p−1

m (λ − (n+1)
2

, κ + (n−1)
2

)

−(2λ + 2κ − p)

n=2λ−p
∑

n=0

(2κ + n − p)!

(2κ + n)!

τκ+ n
2

(2κ + n)
x p−1

m−1 (λ − (n+1)
2

, κ + (n−1)
2

) .

(B.13)

The same method of identification is used from eq. (B.10) instead of
eq. (B.9). After a frontal simplification by d0, the respective equations
analogous to eqs. (B.11)-(B.13) are found to be the following:

(2κ − p − 1)!

(2κ)!
x

p+ 1
2

0 (λ, κ) = (2λ + 2κ − p)
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×
n=2λ−p−1
∑

n=0

(−1)n (2κ + n − p)!

(2κ + n)!

(2κ + n + τκ+ n
2
)

(2κ + n)(2κ + n + 1)
x p

0 (λ − (n+1)
2

, κ + n
2
)

−(2λ + 2κ − p)

n=2λ−p−1
∑

n=0

(−1)n (2κ + n − p − 1)!

(2κ + n − 1)!
x

p− 1
2

0 (λ − (n+1)
2

, κ + (n−1)
2

) ,

(B.14)

(2κ − p − 1)!

(2κ)!
x

p+ 1
2

p (λ, κ) = (2λ + 2κ − p)

×
n=2λ−p−1
∑

n=0

(−1)n (2κ + n − p)!

(2κ + n)!

(2κ + n + τκ+ n
2
)

(2κ + n)(2κ + n + 1)
x p

p (λ − (n+1)
2

, κ + n
2
)

+(2λ + 2κ − p)

×
n=2λ−p−1
∑

n=0

(−1)n (2κ + n − p − 1)!

(2κ + n)!

τκ+ n
2

(2κ + n)
x

p− 1
2

p−1 (λ − (n+1)
2

, κ + (n−1)
2

) ,

(B.15)

(2κ − p − 1)!

(2κ)!
x

p+ 1
2

m (λ, κ) = (2λ + 2κ − p)

×
n=2λ−p−1
∑

n=0

(−1)n (2κ + n − p)!

(2κ + n)!

(2κ + n + τκ+ n
2
)

(2κ + n)(2κ + n + 1)
x p

m (λ − (n+1)
2

, κ + n
2
)

−(2λ + 2κ − p)

n=2λ−p−1
∑

n=0

(−1)n (2κ + n − p − 1)!

(2κ + n − 1)!
x

p− 1
2

m (λ − (n+1)
2

), κ + (n−1)
2

)

+(2λ + 2κ − p)

×
n=2λ−p−1
∑

n=0

(−1)n (2κ + n − p − 1)!

(2κ + n)!

τκ+ n
2

(2κ + n)
x

p− 1
2

m−1 (λ − (n+1)
2

, κ + (n−1)
2

) .

(B.16)

Exact general results for some coefficients:

An instructive task should be done here by the reader himself, for
retrieving the set given by eq. (B.4) from some recursion equations among
eqs. (B.11)-(B.16), taken into account the initial value x 0

0(λ, κ) = 1. In
doing that indeed, it will be realized that our so-called “summations of
finite series”, see step (iv), sect. (7.1), actually consists only in canceling
out gradually a lot of terms, until one or two remaining terms lead to a
final result. In addition, it will be noticed that the use of beforehand
symmetrized expressions in (λ, κ) (related to p − 1

2
, p − 1 pseudo-degrees

needed in the recursion process, for instance) does not furnish the result
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under a straightforward symmetrical form in (λ, κ). An ultimate heuristic
task remains to be carried out for achieving the calculation.

Nevertheless, definitive analytical formulas for boundary coefficients
may be summed up, as presented below:
Solution of eq. (B.11) can be found and reads:

x p
0(λ, κ) =

(2λ)!(2κ)!(2λ + 2κ − p)!

p!(2λ − p)!(2κ − p)!(2λ + 2κ − 2p)!
. (B.17)

Thanks to this result, eq. (B.14) may be transformed, and exhibits a
binomial coefficient:

x
p+ 1

2
0 (λ, κ) =

(2κ)!

(2κ − p − 1)!
(2λ + 2κ − p)

×



























(2λ + 2κ − 1 − p)!

(2λ + 2κ − 1 − 2p)!

n=2λ−p−1
∑

n=0

(−1)n

(

2λ − n − 1

p

)

(2κ + n + τκ+ n
2
)

(2κ + n)(2κ + n + 1)

−
n=2λ−p−1
∑

n=0

(−1)n (2κ + n − p − 1)!

(2κ + n − 1)!
x

p− 1
2

0 (λ − (n+1)
2

, κ + (n−1)
2

) .

(B.18)

In spite of its appearance, this equation does not mean that x
p+ 1

2
0 (λ, κ) is a

multiple of (2λ + 2κ − p).
Another point regards the announced property (B.5). The clue for a

rigorous proof lies only in the result x 1
1(λ, κ) = −τλτκ. The way consists in

considering eq. (B.12) for p = 2. This leads to x 2
2(λ, κ) = 0. Then, one sets

p = 2 in eq. (B.15), which yields x
5
2
2 (λ, κ) = 0, and so on. Reasoning by

recursion gives the (rather unexpected) result (B.5), namely
x ω

[ω](λ, κ) = 0, ∀ω > 1.

By using the decomposition shown in eq. (6.12), making use of the
standard recursion relation for binomial coefficients and taking into account
the possible various parities of κ and 2λ − p − 1, the first summation in
eq. (B.18) reduces to:

n=2λ−p−1
∑

n=0

(−1)n

(

2λ − n − 1

p

)

(2κ + n + τκ+ n
2
)

(2κ + n)(2κ + n + 1)
=

(

2λ

p

)

τκ

2κ
+ (−1)2κ

(

p

τλ+κ+ p+1
2

)

1

(2λ + 2κ − p − τλ+κ+ p+1
2

)

+(−1)2κ

m=[ 2λ−p−3
2 ]+τκτ

λ+
p+1
2

∑

m=0

(

2λ − 2m − 2 + τk

p − 1

)

1

(2κ + 2m + 1 − τk)
.

(B.19)
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In the same way, the second summation in eq. (B.18) can be re-written as
follows:

n=2λ−p−1
∑

n=0

(−1)n (2κ + n − p − 1)!

(2κ + n − 1)!
x

p− 1
2

0 (λ − (n+1)
2

, κ + (n−1)
2

) =

(2κ − 1 − p)!

(2κ − 1)!
x

p− 1
2

0 (λ − 1
2
, κ − 1

2
)

+

m=[ 2λ−p−3
2 ]

∑

m=0

(2κ + 2m + 1 − p)!

(2κ + 2m + 1)!
x

p− 1
2

0 (λ − m − 3
2
, κ + m + 1

2
)

−
m=[ 2λ−p−3

2 ]+τ
λ+

p+1
2

∑

m=0

(2κ + 2m − p)!

(2κ + 2m)!
x

p− 1
2

0 (λ − m − 1, κ + m) .

(B.20)

Eqs. (B.19)-(B.20) enable us to calculate step by step the analytical

expression for the first x
p+ 1

2
0 coefficients up to p = 3, for instance.

According to the notations defined in table (7.3), this leads to the following
formulas written below.
Analytical expression of the first expressions of x

p+ 1
2

0 (λ, κ)
coefficients:

p = 0 x
1
2
0 (λ, κ)

(a) 0

(b) 2λ+2κ

(c) 2κ

(d) 2λ

p = 1 x
3
2
0 (λ, κ)

(a) −2λ·2κ(2λ+2κ−2)

(b) (2λ−1)(2κ−1)(2λ+2κ)(2λ+2κ−2)

(c) (2λ−1)2κ(2κ−2)(2λ+2κ−1)

(d) 2λ(2λ−2)(2κ−1)(2λ+2κ−1)

p = 2 x
5
2
0 (λ, κ)

(a) −2λ(2λ−2)2κ(2κ−2)(2λ+2κ−2)(2λ+2κ−4)

(b) 1
2
(2λ−1)(2κ−1)(2λ+2κ−2)(2λ+2κ−4)((2λ−2)(2κ−2)(2λ+2κ−1)+4)

(c) 1
2
(2λ−1)(2κ)(2κ−2)(2λ+2κ−3)((2λ−2)(2κ−3)(2λ+2κ−2)+4)

(d) 1
2
(2λ)(2λ−2)(2κ−1)(2λ+2κ−3)((2λ−3)(2κ−2)(2λ+2κ−2)+4)
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p = 3 x
7
2
0 (λ, κ)

(a) − 1
2
(2λ)(2λ−2)2κ(2κ−2)(2λ+2κ−4)(2λ+2κ−6)((2λ−3)(2κ−3)(2λ+2κ−3)+4)

(b)

1
6
(2λ−1)(2λ−3)(2κ−1)(2κ−3)(2λ+2κ−2)(2λ+2κ−4)(2λ+2κ−6)

×((2λ−2)(2κ−2)(2λ+2κ−3)+12)

(c)

1
6
(2λ−1)(2λ−3)2κ(2κ−2)(2κ−4)(2λ+2κ−3)(2λ+2κ−5)

×((2λ−2)(2κ−3)(2λ+2κ−4)+12)

(d)

1
6
(2λ)(2λ−2)(2λ−4)(2κ−1)(2κ−3)(2λ+2κ−3)(2λ+2κ−5)

×((2λ−3)(2κ−2)(2λ+2κ−4)+12)

Remarks: It can be experimented that for p = 3 the calculation becomes
rather laborious, thus discouraging us to go further with the hope of
guessing a general formula for any p. Our calculations show that, in a given
step, relevant sums like

∑

m=0 1/(2κ + m) vanish systematically. This is
welcome because these sums actually are transcendental and could be
expressed as function of Riemann Zeta function ζ(z, q).

B.2 Polynomials Qω

From eq. (9.2) and hypothesis (10.1), primary recursion relations for Q are
found to be:

2κ Q p(λ; κ) = (2κ + p)Q p(λ − 1
2
; κ − 1

2
)

+(−1)2λ (2κ + τκ)

2κ + 1
d0 Q p− 1

2 (λ − 1
2
; κ)

+2κ(2κ − 2λ + p + 1)γκ+ 1
2
Q p−1(λ − 1

2
; κ + 1

2
) , (B.21)

2κ Qπ(λ; κ) = (2κ + π + 1
2
)Qπ(λ − 1

2
; κ − 1

2
)

−(−1)2λ (2κ + π + 1
2
)(2κ − 2λ + π + 1

2
)

(2κ + τκ)

2κ + 1
d0 Qπ− 1

2 (λ − 1
2
; κ)

+ 2κ(2κ − 2λ + π + 1
2
)γκ+ 1

2
Qπ−1(λ − 1

2
; κ + 1

2
) .

(B.22)

Appendix C

Updated analysis of the attempt of Zeng [6]

and his proposition for an osp(1|2)-triangle

sum rule

In order to clearly summarize the reasoning followed by Zeng, we need
to proceed to a transformation of several parameters which were used in his
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paper: notations not in common use (osp(1|2) C-G coefficients), isoscalar
factors (non parity-independent), osp(1|2) Racah coefficients (with eight
different analytical forms) and use of su(2) Racah coefficients. Thus, we
will work with parity-independent scalar factors, 6-jS symbols [5], and
usual su(2) 6-j symbols, as shown below.
• The starting point is the su(2) ▽-sum rule:

∑

L3

▽(l1l2L3) ▽ (L1L2L3)

{

L1 l2 l3
l1 L2 L3

}

=
(−1)L1+l1+L2+l2

(2l3 + 1)
▽ (L1l2l3) ▽ (l1L2l3). (C.1)

- An intermediate step, in our re-formulation, consists in the use of
pseudo-orthogonality relations related to scalar factors with a summation
over l1, l2 to make the most of eq. (8.6) of ref. [5]. This leads to a formula
like that:

∑

J3

(−1)(phases)

(2L3 + 1)

{

J1 j2 j3

j1 J2 J3

}

S
[

J1 J2 J3

L1 L2 L3

] [

j1 j2 J3

l1 l2 L3

]

=

(

∑

l3

)

(−1)(phases)

(2l3 + 1)

{

L1 l2 l3
l1 L2 L3

}[

J1 j2 j3

L1 l2 l3

] [

j1 J2 j3

l1 L2 l3

]

. (C.2)

Actually, there is no summation over l3, that’s why we have written
(
∑

l3

)

with brackets. Indeed, if l1, L1, l2, L2 are fixed, then l3 gets a single value,
namely

l3 = j3 − 1
2
τj3+L1+l2 = j3 − 1

2
τj3+l1+L2 . (C.3)

Definition and properties of τ have been previously given, see eqs. (6.6),
(6.7).
• Next, the principle of Zeng, at this step, is to operate both sides of

eq. (C.2) by
∑

L3

▽ (l1l2L3) ▽ (L1L2L3) in order to make use of the su(2)

▽-sum rule.
- With the aid of our study on phase factors for obtaining explicit

analytical formulas of 6-jS symbols involving functions of scalar factor
moduli, see sect. 8 in ref. [5], one sees that an updated version of his
formulation can be written in the following way:

∑

1

2

J3

(−1)ΨJ3

(2L3 + 1)
(−1)[j1+j2+J3]+[J1+J2+J3]+2J3

{

J1 j2 j3

j1 J2 J3

}

S

×
∣

∣

∣

∣

[

J1 J2 J3

L1 L2 L3

]∣

∣

∣

∣

▽ (L1L2L3)

∣

∣

∣

∣

[

j1 j2 J3

l1 l2 L3

]∣

∣

∣

∣

▽ (l1l2L3) =

(−1)ϕj3

(2l3 + 1)

∣

∣

∣

∣

[

J1 j2 j3

L1 l2 l3

]∣

∣

∣

∣

▽ (L1l2l3)

∣

∣

∣

∣

[

j1 J2 j3

l1 L2 l3

]∣

∣

∣

∣

▽ (l1L2l3). (C.4)
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Here also, given J3, L3 is fixed according to:

L3 = J3 − 1
2 τJ3+l1+l2 = J3 − 1

2 τJ3+L1+L2 . (C.5)

Our phases are given by:

(−1)ΨJ3 = (−1)4(j1J1+j2J2+j3J3)+4(j1+j2+J3)j3

×(−1)8(J1+J2+J3)(J1−L1)(J2−L2)+8(j1+j2+J3)((j1−l1)(j2−l2)+(l1+L2)(l2+L1)),

(C.6)

(−1)ϕj3 = (−1)4(J1+j2+j3)(j1−l1)+4(j1+J2+j3)(j2−l2)

×(−1)8(J1+j2+j3)(j2−l2)(J1−L1)+8(j1+J2+j3)(j1−l1)(J2−L2). (C.7)

• A relation like (C.4), just as it stands, was called by Zeng [6] “the triangle
sum rule of osp(1|2)”.

- The τ -parity of j1 + j2 + J1 + J2, integral or half-integral, is an
important parameter which offers a “free” choice of L1, L2, l1, l2, i.e.
L1 = J1 or L1 = J1 − 1

2
etc. That leads to different aspects of the analytical

form taken by eq. (C.4), thus depending only on J1, J2, J3, j1, j2, j3.
However, even by using our factorization of scalar factors [5], namely

∣

∣

∣

∣

[

j1 j2 j3

l1 l2 l3

]∣

∣

∣

∣

=

{

▽(l1l2l3) △S (j1j2j3) j1 + j2 + j3 integral

△(l1l2l3) ▽S (j1j2j3) j1 + j2 + j3 half-integral
, (C.8)

it can be seen that the result seems somewhat far from the concept of a
veritable triangle sum rule for osp(1|2), such as developed in this paper.
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