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Abstract – Visual servoing is a key technique to automate microassem-
bly tasks since videomicroscope is widely use to recovery informations
about the scene. The parts as well as the gripper should be tracked
in the images which do not deliver a complete focused view of the ob-
jects because of the weakness of the depth-of-field. The paper investi-
gates the problem of computing the 3D orientation of a rigid body by
analysing the focus data extracted from the images of a videomicro-
scope. The solution is based on the shape-from-focus approach. But
the modelling stage is simplified, instead of performing a 3D mod-
elling, a 1D modelling is achieved which enables the estimation of the
3D orientation of the object. The concept is applied with success to
the tips (70µm width and 1500µm length) of a gripper imaged by a
10× videomicroscope.

Keywords – Shape-from-focus, model construction, orientation esti-
mation, visual tracking, microscopy, microassembly

I. INTRODUCTION

Visual servoing appears to be an incontrovertible control
approach for the performing of microassembly tasks since
the image is the main information source of microassembly
scenes. Furthermore visual servo is precise and robust to
the errors of modelling of the robotic system as well as the
imaging system. Those images usually come from high
magnification videomicroscopes characterized by a weak
depth-of-field ([20]). Microassembly by means of visual servo
requires fast (real-time if possible) tracking of the objects
(sub-millimeter or micrometric parts) in the images. Tracking
is a typical purpose of machine vision, it corresponds to the
repeated locations of instances of a particular object, or class
of objets, in successive frames of a video sequence ([2]). The
information delivered can be the main motion in the image
(a geometrical transformation of the type affine, euclidean or
projective, ...) as well as the pose (2D or 3D) of the target
in a reference frame. The use of some knowledge about the
target, usually its description or model, can notably improve
the process.

The plentiful approaches of visual tracking can be clas-
sified as exposed below ([2], [12]). The first class includes
the approaches where no model of the target is used : optic
flow or spatio-temporal approaches. The seeking result
is obtained from the computation of spatial and temporal
derivatives of images ([24]). The second class concerns the
approaches where an implicit model of the target is considered
: feature-based approaches. Indeed, knowledge is not absent,
it is implicit since the presence of features (points, segments
of line, ...) is the preliminary condition. The core of that class
is the matching of above features between at least two images
([11], [7]). The third class contains the approaches where a
2D photometric model (or template of the type region) is used
: appearance based approaches. That template is matched
onto the current image of the sequence in order to minimize
a correlation criterium ([2], [8], [1]). The fourth class also
includes approaches where a 2D model of the target is used,
but the latter is of the type geometric : active (or deformable)
contours approaches ([2]). The fifth and last class concerns
the approaches using a 3D model (of the type geometric) :
3D (CAD) model-based approaches. Images of the scene are
compared to that derived from the model ([17], [6], [4], [21],
[10], [5]). That class is very suitable for industrial applica-
tions where a CADmodel of the handled part is often available.

Methods have been developed for images from the standard
lens imaging system (standard camera, indoor or outdoor
scenes), however, some of them are applicable to the mi-
croscope imaging (video microscope for indoor scenes like
microassembly scenes) as shown by Yesin and Nelson ([21])
where the work of Cippola and Drummond is extended ([6]).
For the videomicroscope, some specific tracking approaches
have been developed. Zhang et al. ([23]), Sandoz et al. ([16],
[15]), Brufau et al. ([3]), Kim et al. ([9]) process fringe
patterns to recovery the pose with very high accuracy (the
position or motion is derived from phase shift of the fringes).

This paper investigates the tracking of rigid bodies in the
images delivered by a high magnification videomicroscope,



more precisely a solution is proposed for the estimation of
the 3D orientation of a two-finger microgripper. Because of
the high optical magnification, the depth-of-fied of the used
videomicroscope becomes very weak, then it is not possible to
get a complete focused image of any 3D object, and then to use
above tracking approaches. Some stack images of the scene
are acquired (by scanning the scene), but instead of achieving
a 3D modelling (reconstruction) of objects ([13], [14], [19],
[22]) only the medium lines (1D modelling) are computed en-
abling the estimation of the orientation in the videomicroscope
frame.
Section 2 states the modelling of an object from the analysis
of focus in the images, section 3 presents the computation of
the orientation and section 4 presents the results with a 10×
videomicroscope and a two-finger microgripper.

II. MODELLING BY SHAPE FROM FOCUS

In microscopy, because of the limitation of the depth-of-
field, it is not often possible to completely perceive a 3D object.
The focus must be continuously adjusted to view the region of
interest (ROI). To compensate this drawback, the depth-from-
focus method can be used to get a full 3D representation of the
object. That method consists in computing the focused area
of every image of the scene image sequence. Each image is
acquired at a different focus (corresponding to a depth), from
the same point of view. It can be noticed that a videomicro-
scope with a motorized focus enables obtaining equidistant fo-
cal planes. Next, the focused areas are stacked up according to
their position to give the 3D reconstruction of the scene. The
different stages of the approach are exposed below.

A. Specification of a binary mask

The first stage of the shape-from-focus is to identify, in the
set of images, the object surfaces to be reconstructed. A mask
must be accurately found to eliminate all the pixels that do not
correspond to the object. This mask is generated automatically
by thresholding all the set of images with a common threshold.
In a first time, this common threshold is defined manually. To
eliminate the false detections because of the blur on the edges
of the object, the areas of interest of all the images are blended
and only the pixels which are present in all the thresholded
images are kept to define the mask.

B. Maximization of the variance

The computation of the focus of an image corresponds to
the measure of the sharpness of that image. A lot of focus esti-
mators can be found in the literature ([18]) : based on variance,
standard deviation, gradient, Haar wavelets, .... The variance
based estimator establishes a trade-off between rapidity and ac-
curacy, and then is used in that paper.

In the shape-from-focus, the variance based estimator is used
as followed. For the same pixel (i,j) of each image (N) of the
sequence, the local variance in a n×n neighborhood is com-
puted (Fig.1):

V(x,y) (N) =
1

n2

x+k∑
i=x−k

y+k∑
j=y−k

(
I(i,j) − I(x,y)

)2 (1)

with:
• V(x,y)(N) : the value of the variance at the pixel (x,y) of the image N,
with N ={0,1,..,Number of Images}

• n : the size of the filter
• k : depends on the neighborhood, equals to (n-1)/2
• I(i,j) : gray value of the pixel (i,j)
• I(x, y) : mean gray value in the n×n neighborhood of the pixel (x,y)

The depth of each 3D point (X,Y,Z) is computed by maxi-
mizing the variance. X and Y correspond to the coordinates of
the pixel (i,j). Z is equal to the value of the focus for the image
N* with the highest variance V(x,y)(N*). With a motorized-
controlled focus, the focus value can be obtained directly and
accurately. So, a sequence of 3D points (X,Y,Z) can be com-
puted representing the 3D reconstruction of the scene. As the
value of Z is calculated by the sharpness in a neighborhood,
to improve the robustness of the algorithm, the object to be
reconstructed must be textured.

Fig.1 Variance at the same pixel(x,y) in a sequence of images

C. Filtering of points

The result of the shape-from-focus is a set of 3D points that
is a 3D representation of the object. But some errors coming
from the quality of the image, the accuracy of the mask and the
calculation of the variance, cause false detections. Moreover,
the size of the acquisition step also influences point detection.
A high step leads to sharp distinct regions, but a weak step
leads to common sharp regions on several images. So, to avoid
that case, the step must be higher than the depth-of-field of the
videomicroscope. Finally, to get relevant informations, some
filters are applied on the sequence of points. Due to the limited



depth of field, the outliers are mainly positioned at the bound-
ary of the point cloud, where the blur is more important. The
point cloud defines the sharpness area. In this area, the result of
maximun variance is well-defined. According to the accurancy
at the boundary of the binary mask, some pixel are exploited
but do not belong to the object. The idea of the spatial filtering
is to take off the points far from the mean distribution.
Firstly a factor analysis is performed onto each stack of points
in order to extract the two main axes (axis 1 orthogonal to axis
2) of the data (Fig.2). They are defined respectively by the first
and second eigenvectors of the covariance matrix of the data.
Those axes associated with the barycentre become the frame
for the spatial distribution filtering.

Fig.2 The two factorial axis of set of points

Secondly, the spatial distribution along every factorial axis
is smoothed by an appropriate filter (for example, a locally
weighted scatter plot smooth using linear least squares fitting
and a second-degree polynomial). Thirdly, the standard devi-
ation (sigma) and the maximum of points (max) along axis 1
(respectively along axis 2) of the smoothed data are computed.
The points of the following interval are kept (Fig. 3) :

max ± i ∗ sigma (2)

with i the width of the filter.

Fig. 3 Filtering interval of a spatial distribution

Fourthly, the filtered points are reprojected in the original
frame.

III. ESTIMATION OF OBJECT ORIENTATION

In the classical shape-from-focus approach, the filtered
planes are stacked up to achieve the 3D modelling of the ob-
jet. But, in the case of orientation estimation that process is
simplified, a 1D modelling of the object is performed. Each
plane is replaced by the barycentre of the points, and finally
the medium line of those points is calculated by a regression
method.
Let A(XA, YA, ZA) and B(XB , YB , ZB) be respectively the
first and last points of the segment of line, the elevation (El)
and azimuth (Az) angles of that segment are computed as fol-
lowed (Fig. 4) :

El = arctan

(
z ∗ FocusStep√

x2 + y2

)
(3)

Az = arccos

(
x√

x2 + y2

)
(4)

with :
• x = XB − XA

• y = YB − YA

• z = ZB − ZA

Fig.4 Representation of Azimuth and Elevation angles of a line

The medium line represents the 1D modelling of the object
considered and the elevation and azimuth angles represent the
orientation of the object in the reference frame. Actually the
videomicroscope is supposed positioned perpendicularly to the
microassembly scene and then XY plane is parallel to the im-
age plane.

IV. EXPERIMENTS

Above concepts have been applied to an active two-finger
microgripper imaged by a videomicroscope. The whole set-
up (Fig.5) including a robotic system, a gripping system (the
gripper) and an imaging system (the videomicroscope), is po-
sitioned in a clean-room enabling the control of the temper-
ature and humidity. That set-up allows the robotic assembly



of micrometric parts (40 µm×40 µm×10 µm) to get 3D com-
pound products. Those tasks require the tracking of the fingers
in order to control the gripper (for the aligning of fingers and
their closing) and the robot (for the displacement of the part).
Because of the small size of the part, the non-aligning of the
fingers cause most of the time the failure of gripping.

Fig.5 Experimental micromanipulation station

A. Robotic System

The robotic system includes actuators, sensors and con-
trol units mechanically grouped to ensure teleoperated and
partially-automated manipulation. The motions of the micro-
manipulation substrate, which supports the microparts, are ob-
tained by two linear stages (xy) and one rotating stage (θ). The
active gripper is mounted on an arm actuated by a linear stage
for the vertical motion (z) and two rotating stages for pitch (β)
and roll (γ) rotations.

B. Imaging System

In micromanipulation, micro objects are viewed through at
least one videomicroscope which is a combination of a high
resolution objective with a camera. The lens focuses pho-
tons onto the image sensor of the camera. The system used in
the experiments includes an inversed microscope LEICA DM
IRBE, the magnification is 10× leading to a depth-of-field of
about 7 µm. The CDD sensor is a LEICA DFC 320 with a
frame rate of about 11 fps for a resolution of 1044×772 pixels,
that provides a field-of-view of about 968×716 µm2.

C. Gripping System

The concept is tested on a gripper in order to get its two fin-
gers orientations. A special manufacturing process was defined
and performed, enabling the achievement of textured fingers
compatible with the shape-from-focus. The silicon finger-tips
glued on the piezoelectric fingers are made in SOI (Silicon On
Insulator) wafers. Two silicon layers of 12 and 400 µm thick-
ness are separated by a thin buried oxide layer of 1 µm thick-
ness. The tips are etched by DRIE (Deep Reaction Ion Etching)
process and then the oxide layer remains on their back side. An
incomplete RIE (Reaction Ion Etching) process is used to etch
500 nm of this oxide layer. After these chemical and mechan-
ical attacks, this surface is enough textured to ensure a clear

delimitation of focused areas.
The size of each tip is 70µmwidth and 1500µm length (Fig.5).

D. A sequence of images of the gripper

The videomicroscope observes the gripper through a
transparent sample-holder fixed on the xyθ table. A multifocus
image sequence is acquired with a step of 10 µm (which is
higher than the depth-of-field) of the arm (Fig.6). Each tip of
the gripper is considered separately that gives two sequences
of points.

Fig.6 The 2th, 6th, 10th and 17th images of the multifocus set with a 10 µm
step.The viewed length is 130µm

E. Filtering

Fig.7 shows an example of points for one plane before fil-
tering. A wide area of right detections (inliers) and some false
detections (outliers) are present. The filtering enables to keep
only inliers.

Fig.7 A set of detected points before filtering

Fig.8 shows the factorial axes of a set of points.



Fig.8 The factorial axes of the data

Fig.9 shows the spatial distribution of the points represented
in Fig.8 :

• the spatial distribution along x axis (A) and the same dis-
tribution along the first factorial axis (B),

• the spatial distribution along y axis (C) and the same dis-
tribution along the second factorial axis (D),

As expected the data are better distributed and the curves
less noisy in the factorial frame.

Fig.9 Spatial distribution of points

The result of the overall filtering is showned in Fig.10 indi-
cating the relevance of the adopted approach.

Fig.10 The result of the filtering onto the gripper data. The points outside the
rectangles are taken off. The data are in the normal frame (left) and in the

factorial frame (right).

F. Model and orientation of the gripper

Fig.11 shows the 3D reconstruction of the surface of the tips
of the silicon gripper using the previously described algorithm
with a 5×5 patch for the variance. It looks like a staircase as
expected, the size of each stair corresponds to the focus step.

Fig.11 3D model of the gripper tips. The viewed length is 130µm.

Fig.12 shows the lines (1D models) modelling the tips and
the corresponding orientations.

Fig.12 1D model of the gripper tips. The viewed length is 130µm.

V. CONCLUSION

The paper investigates the problem of localizing a rigid
body in the images of a videomicroscope. More precisely the
orientation of an active gripper in a microassembly scene is
achieved. (The solution developed is based on the shape-from-
focus approach. Instead of constructing the 3D model from
the data, the 1D model is achieved.) The stages involve the
calibrated acquisition of some stack images of the scene, the
computation of the focused points by the variance based focus
measurement, filtering of the data (binary mask, smoothing,
spatial distribution filtering).

The concept is applied to an active microgripper (the
silicon tip size is 70 µm x 1500 µm ) imaged by a 10×



videomicroscope positioned vertically to the scene in that
way the image plane is practically parallel to the scene. The
accurate vertical motions of the gripper are obtained by a
robotic arm. Revelant modelling and orientation of the two
tips have been obtained.

The future work will concern the deeply evaluation of the
approach in terms of accuracy and robustness. The real-time
aspect also will be considered, by limiting for example the
number of stack images. Later, the approach will be used to
perform the visual control of the gripper as well as the robot,
to achieve the assembly of 3D compound products. The size of
every part is 40 µm x 40 µm x 10 µm. In those tasks because
of the smallest of the part, a non-aligning of the gripper tips
can cause the failure of the gripping. The real-time estimation
of the tips orientation enables to align them.
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