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Estimating the 3D orientation of a microgripper by processing the focus data from the images delivered by a videomicroscope
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Visual servoing is a key technique to automate microassembly tasks since videomicroscope is widely use to recovery informations about the scene. The parts as well as the gripper should be tracked in the images which do not deliver a complete focused view of the objects because of the weakness of the depth-of-field. The paper investigates the problem of computing the 3D orientation of a rigid body by analysing the focus data extracted from the images of a videomicroscope. The solution is based on the shape-from-focus approach. But the modelling stage is simplified, instead of performing a 3D modelling, a 1D modelling is achieved which enables the estimation of the 3D orientation of the object. The concept is applied with success to the tips (70µm width and 1500µm length) of a gripper imaged by a 10× videomicroscope.

I. INTRODUCTION

Visual servoing appears to be an incontrovertible control approach for the performing of microassembly tasks since the image is the main information source of microassembly scenes. Furthermore visual servo is precise and robust to the errors of modelling of the robotic system as well as the imaging system. Those images usually come from high magnification videomicroscopes characterized by a weak depth-of-field ( [START_REF] Yang | Optomechatronic design of microassembly systems for manufacturing hybrid microsystems[END_REF]). Microassembly by means of visual servo requires fast (real-time if possible) tracking of the objects (sub-millimeter or micrometric parts) in the images. Tracking is a typical purpose of machine vision, it corresponds to the repeated locations of instances of a particular object, or class of objets, in successive frames of a video sequence ( [START_REF] Blake | Visual tracking : a very short research roadmap[END_REF]). The information delivered can be the main motion in the image (a geometrical transformation of the type affine, euclidean or projective, ...) as well as the pose (2D or 3D) of the target in a reference frame. The use of some knowledge about the target, usually its description or model, can notably improve the process.

The plentiful approaches of visual tracking can be classified as exposed below ( [START_REF] Blake | Visual tracking : a very short research roadmap[END_REF], [START_REF] Marchand | Feature tracking for visual servoing purposes[END_REF]). The first class includes the approaches where no model of the target is used : optic flow or spatio-temporal approaches. The seeking result is obtained from the computation of spatial and temporal derivatives of images ( [START_REF] Zhou | Visual tracking and recognition using appearance-adaptive models in particle filters[END_REF]). The second class concerns the approaches where an implicit model of the target is considered : feature-based approaches. Indeed, knowledge is not absent, it is implicit since the presence of features (points, segments of line, ...) is the preliminary condition. The core of that class is the matching of above features between at least two images ( [START_REF] Malis | 2 1/2 visual servoing with respect to unknown objects through a new estimation scheme of camera displacement[END_REF], [START_REF] Hartley | Multiple view geometry in computer vision[END_REF]). The third class contains the approaches where a 2D photometric model (or template of the type region) is used : appearance based approaches. That template is matched onto the current image of the sequence in order to minimize a correlation criterium ( [START_REF] Blake | Visual tracking : a very short research roadmap[END_REF], [START_REF] Huang | Visual tracking in cluttered environments using the visual probabilistic data association filter[END_REF], [START_REF] Benhimane | Homography-based 2d visual tracking and servoing[END_REF]). The fourth class also includes approaches where a 2D model of the target is used, but the latter is of the type geometric : active (or deformable) contours approaches ( [START_REF] Blake | Visual tracking : a very short research roadmap[END_REF]). The fifth and last class concerns the approaches using a 3D model (of the type geometric) : 3D (CAD) model-based approaches. Images of the scene are compared to that derived from the model ( [START_REF] Stavnitzky | Multiple camera model-based 3d visual servo[END_REF], [START_REF] Drummond | Real-time visual tracking of complex structures[END_REF], [START_REF] Fabrizio Caccavale | Real-time tracking of 3d objects, ch[END_REF], [START_REF] Kemal | A cad model based tracking system for visually guided microassembly[END_REF], [START_REF] Lippiello | Real-time visual tracking based on bsp-tree representations of object boundary[END_REF], [START_REF] Comport | Real-time markerless tracking for augmented reality: The virtual visual servoing framework[END_REF]). That class is very suitable for industrial applications where a CAD model of the handled part is often available.

Methods have been developed for images from the standard lens imaging system (standard camera, indoor or outdoor scenes), however, some of them are applicable to the microscope imaging (video microscope for indoor scenes like microassembly scenes) as shown by Yesin and Nelson ( [START_REF] Kemal | A cad model based tracking system for visually guided microassembly[END_REF]) where the work of Cippola and Drummond is extended ( [START_REF] Drummond | Real-time visual tracking of complex structures[END_REF]). For the videomicroscope, some specific tracking approaches have been developed. Zhang et al. ([23]), Sandoz et al. ([16], [START_REF] Sandoz | High accuracy position and orientation measurement of extended two-dimensional sur-faces by phase sensitive vision method[END_REF]), Brufau et al. ([3]), Kim et al. ([9]) process fringe patterns to recovery the pose with very high accuracy (the position or motion is derived from phase shift of the fringes). This paper investigates the tracking of rigid bodies in the images delivered by a high magnification videomicroscope, more precisely a solution is proposed for the estimation of the 3D orientation of a two-finger microgripper. Because of the high optical magnification, the depth-of-fied of the used videomicroscope becomes very weak, then it is not possible to get a complete focused image of any 3D object, and then to use above tracking approaches. Some stack images of the scene are acquired (by scanning the scene), but instead of achieving a 3D modelling (reconstruction) of objects ( [START_REF] Shree | Shape from focus[END_REF], [START_REF] Niederost | Automatic 3d reconstruction and visualization of microscopic objects from a monoscopic multifocus image sequence[END_REF], [START_REF] Wedekind | Focus set based reconstruction of micro-objects[END_REF], [START_REF] Zamofing | Multiresolution reliability scheme for range image filtering[END_REF]) only the medium lines (1D modelling) are computed enabling the estimation of the orientation in the videomicroscope frame. Section 2 states the modelling of an object from the analysis of focus in the images, section 3 presents the computation of the orientation and section 4 presents the results with a 10× videomicroscope and a two-finger microgripper.

II. MODELLING BY SHAPE FROM FOCUS

In microscopy, because of the limitation of the depth-offield, it is not often possible to completely perceive a 3D object. The focus must be continuously adjusted to view the region of interest (ROI). To compensate this drawback, the depth-fromfocus method can be used to get a full 3D representation of the object. That method consists in computing the focused area of every image of the scene image sequence. Each image is acquired at a different focus (corresponding to a depth), from the same point of view. It can be noticed that a videomicroscope with a motorized focus enables obtaining equidistant focal planes. Next, the focused areas are stacked up according to their position to give the 3D reconstruction of the scene. The different stages of the approach are exposed below.

A. Specification of a binary mask

The first stage of the shape-from-focus is to identify, in the set of images, the object surfaces to be reconstructed. A mask must be accurately found to eliminate all the pixels that do not correspond to the object. This mask is generated automatically by thresholding all the set of images with a common threshold. In a first time, this common threshold is defined manually. To eliminate the false detections because of the blur on the edges of the object, the areas of interest of all the images are blended and only the pixels which are present in all the thresholded images are kept to define the mask.

B. Maximization of the variance

The computation of the focus of an image corresponds to the measure of the sharpness of that image. A lot of focus estimators can be found in the literature ( [START_REF] Sun | Autofocusing algorith selection in computer microscopy[END_REF]) : based on variance, standard deviation, gradient, Haar wavelets, .... The variance based estimator establishes a trade-off between rapidity and accuracy, and then is used in that paper.

In the shape-from-focus, the variance based estimator is used as followed. For the same pixel (i,j) of each image (N) of the sequence, the local variance in a n×n neighborhood is computed (Fig. 1):

V (x,y) (N ) = 1 n 2 x+k i=x-k y+k j=y-k I (i,j) -I (x,y) 2 (1) 
with:

• V(x,y)(N) : the value of the variance at the pixel (x,y) of the image N, with N ={0,1,..,Number of Images} • n : the size of the filter • k : depends on the neighborhood, equals to (n-1)/2 • I(i,j) : gray value of the pixel (i,j) • I(x, y) : mean gray value in the n×n neighborhood of the pixel (x,y)

The depth of each 3D point (X,Y,Z) is computed by maximizing the variance. X and Y correspond to the coordinates of the pixel (i,j). Z is equal to the value of the focus for the image N* with the highest variance V(x,y)(N*). With a motorizedcontrolled focus, the focus value can be obtained directly and accurately. So, a sequence of 3D points (X,Y,Z) can be computed representing the 3D reconstruction of the scene. As the value of Z is calculated by the sharpness in a neighborhood, to improve the robustness of the algorithm, the object to be reconstructed must be textured. 

C. Filtering of points

The result of the shape-from-focus is a set of 3D points that is a 3D representation of the object. But some errors coming from the quality of the image, the accuracy of the mask and the calculation of the variance, cause false detections. Moreover, the size of the acquisition step also influences point detection. A high step leads to sharp distinct regions, but a weak step leads to common sharp regions on several images. So, to avoid that case, the step must be higher than the depth-of-field of the videomicroscope. Finally, to get relevant informations, some filters are applied on the sequence of points. Due to the limited depth of field, the outliers are mainly positioned at the boundary of the point cloud, where the blur is more important. The point cloud defines the sharpness area. In this area, the result of maximun variance is well-defined. According to the accurancy at the boundary of the binary mask, some pixel are exploited but do not belong to the object. The idea of the spatial filtering is to take off the points far from the mean distribution. Firstly a factor analysis is performed onto each stack of points in order to extract the two main axes (axis 1 orthogonal to axis 2) of the data (Fig. 2). They are defined respectively by the first and second eigenvectors of the covariance matrix of the data. Those axes associated with the barycentre become the frame for the spatial distribution filtering.

Fig. 2 The two factorial axis of set of points Secondly, the spatial distribution along every factorial axis is smoothed by an appropriate filter (for example, a locally weighted scatter plot smooth using linear least squares fitting and a second-degree polynomial). Thirdly, the standard deviation (sigma) and the maximum of points (max) along axis 1 (respectively along axis 2) of the smoothed data are computed. The points of the following are kept (Fig. 3) :

max ± i * sigma (2) 
with i the width of the filter. 

III. ESTIMATION OF OBJECT ORIENTATION

In the classical shape-from-focus approach, the filtered planes are stacked up to achieve the 3D modelling of the objet. But, in the case of orientation estimation that process is simplified, a 1D modelling of the object is performed. Each plane is replaced by the barycentre of the points, and finally the medium line of those points is calculated by a regression method. Let A(X A , Y A , Z A ) and B(X B , Y B , Z B ) be respectively the first and last points of the segment of line, the elevation (El) and azimuth (Az) angles of that segment are computed as followed (Fig. 4) :

El = arctan z * F ocusStep x 2 + y 2 (3) Az = arccos x x 2 + y 2 (4) 
with : The medium line represents the 1D modelling of the object considered and the elevation and azimuth angles represent the orientation of the object in the reference frame. Actually the videomicroscope is supposed positioned perpendicularly to the microassembly scene and then XY plane is parallel to the image plane.

• x = X B -X A • y = Y B -Y A • z = Z B -Z A

IV. EXPERIMENTS

Above concepts have been applied to an active two-finger microgripper imaged by a videomicroscope. The whole setup (Fig. 5) including a robotic system, a gripping system (the gripper) and an imaging system (the videomicroscope), is positioned in a clean-room enabling the control of the temperature and humidity. That set-up allows the robotic assembly of micrometric parts (40 µm×40 µm×10 µm) to get 3D compound products. Those tasks require the tracking of the fingers in order to control the gripper (for the aligning of fingers and their closing) and the robot (for the displacement of the part). Because of the small size of the part, the non-aligning of the fingers cause most of the time the failure of gripping. 

A. Robotic System

The robotic system includes actuators, sensors and control units mechanically grouped to ensure teleoperated and partially-automated manipulation. The motions of the micromanipulation substrate, which supports the microparts, are obtained by two linear stages (xy) and one rotating stage (θ). The active gripper is mounted on an arm actuated by a linear stage for the vertical motion (z) and two rotating stages for pitch (β) and roll (γ) rotations.

B. Imaging System

In micromanipulation, micro objects are viewed through at least one videomicroscope which is a combination of a high resolution objective with a camera. The lens focuses photons onto the image sensor of the camera. The system used in the experiments includes an inversed microscope LEICA DM IRBE, the magnification is 10× leading to a depth-of-field of about 7 µm. The CDD sensor is a LEICA DFC 320 with a frame rate of about 11 fps for a resolution of 1044×772 pixels, that provides a field-of-view of about 968×716 µm 2 .

C. Gripping System

The concept is tested on a gripper in order to get its two fingers orientations. A special manufacturing process was defined and performed, enabling the achievement of textured fingers compatible with the shape-from-focus. The silicon finger-tips glued on the piezoelectric fingers are made in SOI (Silicon On Insulator) wafers. Two silicon layers of 12 and 400 µm thickness are separated by a thin buried oxide layer of 1 µm thickness. The tips are etched by DRIE (Deep Reaction Ion Etching) process and then the oxide layer remains on their back side. An incomplete RIE (Reaction Ion Etching) process is used to etch 500 nm of this oxide layer. After these chemical and mechanical attacks, this surface is enough textured to ensure a clear delimitation of focused areas. The size of each tip is 70µm width and 1500µm length (Fig. 5).

D. A sequence of images of the gripper

The videomicroscope observes the gripper through a transparent sample-holder fixed on the xyθ table. A multifocus image sequence is acquired with a step of 10 µm (which is higher than the depth-of-field) of the arm (Fig. 6). Each tip of the gripper is considered separately that gives two sequences of points. The result of the overall filtering is showned in Fig. 10 indicating the relevance of the adopted approach. 

F. Model and orientation of the gripper

Fig. 11 shows the reconstruction of the surface of the tips of the silicon gripper using the previously described algorithm with a 5×5 patch for the variance. It looks like a staircase as expected, the size of each stair corresponds to the focus step. 

V. CONCLUSION

The paper investigates the problem of localizing a rigid body in the images of a videomicroscope. More precisely the orientation of an active gripper in a microassembly scene is achieved. (The solution developed is based on the shape-fromfocus approach. Instead of constructing the 3D model from the data, the 1D model is achieved.) The stages involve the calibrated acquisition of some stack images of the scene, the computation of the focused points by the variance based focus measurement, filtering of the data (binary mask, smoothing, spatial distribution filtering).

The concept is applied to an active microgripper (the silicon tip size is 70 µm x 1500 µm ) imaged by a 10× videomicroscope positioned vertically to the scene in that way the image plane is practically parallel to the scene. The accurate vertical motions of the gripper are obtained by a robotic arm. Revelant modelling and orientation of the two tips have been obtained.

The future work will concern the deeply evaluation of the approach in terms of accuracy and robustness. The real-time aspect also will be considered, by limiting for example the number of stack images. Later, the approach will be used to perform the visual control of the gripper as well as the robot, to achieve the assembly of 3D compound products. The size of every part is 40 µm x 40 µm x 10 µm. In those tasks because of the smallest of the part, a non-aligning of the gripper tips can cause the failure of the gripping. The real-time estimation of the tips orientation enables to align them.
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