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Model Predictive Control of a Catalytic
Reverse Flow Reactor

Pascal Dufour, Francoise Couenne, and Youssoufi Touré

Abstract—This paper deals with the control of a catalytic reverse
flow reactor. The aim of this process is to reduce, by catalytic re-
action, the amount of volatile organic compounds (VOCs) released
in the atmosphere. The peculiarity of this process is that the gas
flow inside the reactor is periodically reversed in order to trap the
heat released during the reaction. This allows use of the reactor in
heat saving mode. The goal of this work is to provide a model pre-
dictive control (MPC) framework to significantly enhance the poor
overall performance currently obtained through the actual control
strategy. It is directly addressed for the nonlinear parabolic par-
tial differential equations (PDEs) that describe the catalytic reverse
flow reactor. In the context of the application of MPC to this partic-
ular distributed parameter system, we propose a method that aims
to reduce the online computation time needed by the control algo-
rithm. The nonlinear model is linearized around a given operating
trajectory to obtain the model to be solved on-line in the approach.
MPC strategy combined with internal model control (IMC) struc-
ture allows using less accurate and less time-consuming control
algorithm. Method efficiency is illustrated in simulation for this
single-input–single-output system.

Index Terms—Catalytic reverse flow reactor, internal model
control, modeling, nonlinear distributed parameter systems, pre-
dictive control, volatile organic compounds (VOCs) combustion.

I. INTRODUCTION

PROBLEMS of environment pollution due to the industrial
production are receiving increased attention. Due to public

regulations, volatile organic compounds (VOCs) discharge in
the atmosphere is strictly limited. Even if the definition of
VOCs is blurred, it includes noxious products which chemical
reactivity is likely to influence atmospheric pollution. For this
reason, they are the source of a lot of environmental problems
including: acid rains, woods wasting, greenhouse effect, and
health troubles. Therefore, the VOCs emission reduction
represents a priority, especially since the problem is connected
with a large field of activities from large-scale factories to small
and medium-sized firms like dry cleaners. An experimental
process was built up in Laboratoire de Génie des Procédés
Catalytiques (LGPC) Lyon, France. It is a reverse flow reactor
(RFR) that allows high temperatures in catalyst bed whereas the
inlet and outlet gas stream temperatures are close to ambient
temperature. This process is useful for experimental validation
of solution for issues like physical phenomena that influence
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Fig. 1. Principle scheme for the catalytic reverse flow reactor.

Fig. 2. Monolith section.

purification efficiency, optimal size of each elements, and
process behavior in industrial use and control.

The aim of this paper is to develop a model-based control
strategy for this RFR based on its spatial description. Both mod-
eling and control aspects are detailed. The paper is structured
as follows: first, the experimental process of the LGPC is pre-
sented. The catalytic reaction in the RFR is detailed through a
first-principle model described by a nonlinear distributed pa-
rameter system and the related control problem is stated. Control
of the process is addressed using a model-based predictive con-
trol framework with the internal model control structure. Tech-
nical aspects of the control strategy are detailed. Validity of the
approach is demonstrated using simulation.

II. DESTRUCTION OF VOCs WITH THE RFR

The peculiarity of this process is that the gas circulation sense
is periodically reversed (Fig. 1). The operation procedure of this
RFR [1] is as follows.

• A semi-cycle begins as follows: the gas flows through the
first thermal monolith. It is made up of cordierite and of

canals where the gas flows. The shape of its section
is a nest (Fig. 2). The increase of gas temperature in the

1063-6536/03$17.00 © 2003 IEEE
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canals is due to the heat exchange with the cordierite. No
reaction takes place.

• The gas then passes through the first catalytic monolith.
This one is like the first thermal monolith but with cat-
alytic elements (platinum and other noble metals) layers
on the canals surface. With these elements, the exothermic
chemical reaction takes place, inducing the increase of
temperature in the cordierite and a concentration drop for
the VOCs.

• The gas flows now in the empty central zone where control
of a electrical heat source is provided, allowing control of
the reaction.

• The reaction continues in a second catalytic monolith and
finally the gas reaches a second thermal monolith where
no reaction occurs but where the heat of reaction is ex-
changed from the gas to the cordierite.

• At the end of this semicycle, the flow rate inside the mono-
liths is reversed by the switch of the four servo valves. A
second semi-cycle, identical to the first one, starts but in
the reverse circulation sense.

• Since the circulation sense has changed, the polluted gas
passes first through the previous second thermal monolith.
In this zone, the gas temperature increases using the heat
previously accumulated in the monolith during the first
semicycle. This is the saving mode of the process.

• At the end of this second semicycle, the flow rate in the
reactor is again reversed thanks to the servo valves switch
and a new complete cycle begins.

According to the operating conditions, various problematic be-
haviors can take place.

• Insufficiently polluted gas causes, by its low heat release
during the reaction, the extinction of the reactor if no ex-
ternal heat is supplied.

• With a strongly polluted gas, the release of heat due to the
reaction can deteriorate the monolith.

To overcome extinction and overheating, several technical solu-
tions have been proposed [2].

• Extinction: fuel addition in the gas or energy addition in
the central zone.

• Overheating: use of a bypass to redirect some amount of
the gas or injection of cold gas in the central zone.

In this paper, we consider a single-input–single-output (SISO)
problem for the extinction problem where the technological so-
lution adopted is a electric power supply in the central zone.

III. MODELING

VOCs combustion in a RFR has been studied in packed bed
or monolith by various authors (see [1] for a general review).
Models are based on standard heat and mass balances and
most often deal with an adiabatic RFR at stationary periodic
state [3]–[5]. They assume the analogy with a counter current
reactor for the RFR at high frequency, which allows to estimate
simple RFR characteristics. In [6], authors study the effects
of an external electrical heater supply for very lean mixture.
The dynamic aspects of the RFR have been less examined.

In the LGPC, a simple linear dynamic model accounting for
heat losses and dilution has been developed [7]. Budman et al.
[8] have developed a nonlinear dynamic model. Quiet similar
to this one, in our approach, one assumes that the adiabatic
RFR has dynamic behavior, that gas velocity is constant and
that there is no pressure loss. The heat and mass balances are
described along the independent space variable following the
flow sense. Due to high thermal capacity and short residence
time in the reactor, the phenomena in the canals are assumed
instantaneous. In the solid parts, it is also assumed that the
dynamic of the concentration is negligible with respect to the
dynamic of the temperature. The following physical quantities
are considered in each of the five zones (Fig. 3) of the reverse
flow reactor (two thermal monoliths, two catalytic monoliths,
and the central part):

• The concentration and the temperature
of the gas inside the canals;

• The concentration and the temperature in
the cordierite along the solid parts.

Description and value of the model parameters are given in
Table II, geometric data of the RFR are given in Table III.

Remark 3.1: All the model parameters are constant except
the gas characteristics at the process inlet: the concentration and
the temperature. To account for the periodic sense inversion,
the model is written in four steps over a complete cycle

where ( is an integer).

1) During the first semi-cycle
• At the inlet :

(1)

• In the first thermal zone (for )

(2)

• At the boundary between the first thermal zone and
the first catalytic zone

(3)

• In the first catalytic zone

(4)
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Fig. 3. Spatial discretization in the reactor.

TABLE I
LIST OF TABLES

AND FIGURES—AUTHOR, PLEASE PROVIDE TEXT CITATIONS FOR
TABLE I AND TABLE II—

• At the outlet of the first catalytic zone

(5)

TABLE II
PARAMETERS VALUE FOR THE CORDIERITE AND THE GAS

TABLE III
GEOMETRIC DATA FOR THE REACTOR

• In the central zone (for ), the manipulated
variable is accounted for

(6)

• At the central zone outlet

(7)

• In the second catalytic zone (for )

(8)

• At the boundary between the second catalytic zone
and the second thermal zone

(9)
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• In the second thermal zone (for )

(10)

• At the process outlet

(11)

2) At the end of the semicycle , the change
of the circulation sense leads to a state permutation (
is the total length of the reactor)

(12)

3) During the second semicycle
, (1)–(11) are again valid.

4) At the end of the cycle , another state
permutation takes place and a new complete cycle begins

(13)

The output is the mean output concentration calculated over
a past time window

(14)

The model clearly exhibits a nonlinear behavior due to cat-
alytic reaction. For more details about the modeling, reader is
referred to [7], [9]. Therefore, we consider the class of SISO
one-dimensional nonlinear parabolic partial differential equa-
tion (PDE) system with scalar control

(15)

where is the independent space variable, is the spatial do-
main and its boundary, and is the independent time vari-
able. is the state vector in a Hilbert space, is the control or
manipulated variable (MV) in , is the model output in .

and are nonlinear operator [10]. is a linear operator
[11].

Assumption 1: There exists leading to the par-
ticular representation of described by the triplet

.

Variations around are given by

(16)

where sufficiently small variations about are described by
the time-varying linearized model :

(17)
where the time-varying linear operators , and
are obtained from the linearization of about the behavior
described by .

IV. CONTROL PROBLEM STATEMENT

Few papers are devoted to RFR control: [2] deals with this
problem with ignition and extinction phenomena, whereas
[12] gives some guidelines for the control of such process
accounting for autothermal and overheating phenomena. Until
now, the most complete control study has been written by
Budman et al. [8] where a first-principle pseudohomogeneous
one-dimensional model is provided. A parametric study of the
reactor is given that allows to characterize the working mode
of the reactor with respect to the two manipulated variables:
the coolant flowrate and the cycle time. Moreover, Budman et
al. developed two SISO control approaches (coolant flowrate
is the MV) in the case where temperature and concentration at
the reactor inlet where assumed constant. First, a proportional
integral derivative (PID) controller, based on a local linear
model is tuned, is given. Second, a feedforward controller is
given but it is not usable during transient conditions and it is
not robust with respect to modeling errors.

Compared with Budman et al. ’s work, in our approach, the
cycle time can not be chosen as a manipulated variable: indeed,
the residence time of the gas inside the reactor has to be small
(a few seconds) in order to trap the heat inside the reactor (for
a complete discussion of the parametric study, the reader is re-
ferred to [7]). Cycle time is therefore constant and tuned to 20
s. Moreover, simulation results cover here more realistic cases
since gas concentration at the reactor inlet, i.e., the input distur-
bance, is time-varying (which is not the case in Budman et al. ’s
work). The control problem for the RFR relates to the statutory
maximum amount of VOC that can be released into the atmos-
phere at the process outlet. This is stated as a constraint: one has
to ensure that the concentration of pollutant at the process outlet
is lower than a maximum level fixed by public regulations:

(18)

From a practical point of view, it is replaced by a constraint
on the mean output concentration calculated over a past time
window given (14)

(19)
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Such a formulation permits possible VOC overshoots. The ex-
isting control strategy deals with regulation of the temperature
in the control zone at 360 C. Indeed, according to prac-
tical analysis, this temperature set point allows to fulfill con-
straint (18) and, therefore, (19) is always checked. The draw-
back in this simple and easy to tune control strategy is that an
overconsumption of electrical power fed in the central zone is
imposed although it could be avoided. In our approach, we pro-
pose to formulate a better control objective in order to improve
process use. The remainder of this paper is devoted to the de-
scription of a model-based control strategy that leads to opti-
mize the compromise between constraints (19) checking and
a low consumption of electrical energy. The presence of con-
straints makes model predictive control (MPC) well suited to
solve this control problem.

V. MPC FORMULATION

MPC or receding horizon control refers to a class of control
algorithms in which a dynamic process model is used to predict
and optimize process performance. The idea is to solve, at each
sample time, an open-loop optimization problem over a finite
prediction horizon in order to find the value of the manipulated
variable that has to be implemented. The procedure is reiter-
ated at the next sample time with the update of process mea-
surements. Today, MPC has become a control strategy widely
used in industry. Indeed, MPC is well suited for high perfor-
mance control since constraints can be explicitly incorporated
into the formulation of the control problem. More details and
references on MPC can be found in [13]–[16]. From a practical
point of view, one of the drawbacks of MPC is the computa-
tional time aspect, especially when the model becomes more
complex and more accurate. Indeed, the model is intended to
predict the future dynamic behavior of the process output over a
finite prediction horizon and has to be solved during the online
constrained optimization problem resolution. Reduction of this
computational time is tackled in this section.

A. Discrete-Time MPC Formulation

One of the advantages of MPC formulation as a constrained
optimization problem is that a large number of control prob-
lems can be stated. It covers trajectory tracking for controlled
variables (CVs), minimization of any economic function, min-
imization of energy supply under technical specifications, etc.
Therefore, one can consider the following general task of mini-
mizing, under some constraints, the cost function (also named
performance index):

(20)

where is the actual discrete time index, is the discrete-time
index, is the receding horizon,
is the future discrete-time window, is the process CV and is
the sought optimal sequence of the future MV of the process
that is classically tuned as follows:

(21)

(22)

Fig. 4. General internal model control (IMC)-MPC structure.

where is the control horizon,
and . This optimization
problem has also to account for the following:

• constraints on the magnitude and velocity of the MV

(23)

• general output constraints for the CV

(24)

where , . In
the performance index given in (20), one needs, at the cur-
rent discrete time , the value of the future measurements

over the prediction horizon . This impossibility can
be handled using the internal model control structure [17]
in the MPC structure where the MV is applied to both
the process and the model (Fig. 4). In our approach, the
difference between process and
model CV and the model CV are fed back into the
controller. The latter feedback loop aims to correct mod-
eling errors introduced in the model-based on-line opti-
mizer [18].

Assumption 2: At each sample time , the error between
the process output and the model output remains the same over
the prediction horizon . The error value is updated at each
time .

This assumption is classical [17], [19] and allows us to
introduce the model into the constrained optimization
problem and the feedback term as well

(25)
Remark 5.1: is the sampled value obtained from the

resolution of the continuous model .

B. Offline and Online IMC-MPC Structures

Online computational time is dealing with the resolution of
the optimization problem that includes the model resolution.



IE
EE

Pr
oo

f

6 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 11, NO. 5, SEPTEMBER 2003

Fig. 5. General linearized IMC-MPC structure.

Discretization of the PDE model can lead to a large amount
of algebraic differential equations that increases the computa-
tional burden, especially in the nonlinear case. In order to reduce
the on-line computational time, the IMC-MPC structure is used
off-line for the system . As previously described, given
small input variation , small state variations and small
output variation about can be represented through
the time-varying linearized model . Finally, the nominal
nonlinear behavior obtained offline and the online time
varying linearized model replace the initial nonlinear
model in the IMC-MPC structure as depicted in Fig. 5.
The control objective is then to find the variation of the ma-
nipulated variable about a chosen trajectory that improves
at each sample time the online optimization result.

The next step developed is concerned with methods to
handle constraints, which aim to reduce the on-line optimiza-
tion problem resolution time.

C. Constraints Handling

Two different kinds of constraints are to be accounted for:
constraints acting only on MV and constraints acting on CV.

Input Constraints Handling: Transformation method for
variables allows to translate explicit constraints on the opti-
mization argument (and only the optimization argument) as
new equations for a new unconstrained argument . Here, we
propose to enlarge this method to cover magnitude constraints
and velocity constraints as well (acceleration rate constraints
may also be accounted for). This leads to a transformation
equation

(26)
with the time-varying coefficients and updated at
each time :

(27)
Output Constraints Handling: In order to take account

for output constraints, we adopt the exterior penalty method

[20] used in nonlinear programming where a positive defined
weighted penalty term is added to the initial cost function :

(28)

where is an adaptive positive defined weight. The penalty
method transforms the problem into an unconstrained problem
by substituting a penalty function for the constraint. Solution
of the resulting sequence of unconstrained problem tends to a
constrained minimum.

D. Final Penalized Optimization Problem

Finally, combining the transformation method for the con-
straints on the MV and the exterior penalty method for the con-
straints on the CV, the final penalized optimization problem to
be solved online is as follows:

and subject to the resolution of the model
(29)

Any unconstrained optimization algorithm can now solve this
penalized problem.

E. Control Algorithm

Widely known for its robustness and convergence properties,
we use of the well-known Levenberg–Marquardt algorithm ,
where the argument is determined at each sample instant

by the iteration procedure

(30)

where and are the criteria gradient and the criteria
hessian with respect to at the iteration . is explicitly
provided into the control algorithm and the classical Gauss’s
approximation for as well.

VI. SIMULATION

In the current MPC framework, the initial control problem
((20) and (24)) for the RFR is, therefore, stated as follows:

where the input sequence in the future is:

with constraints for the magnitude of the MV:

with constraints for rate of change of the MV:

with the process output constraint:

(31)
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TABLE IV
LEVELS OF POLLUTANT AT THE INLET

From this formulation, the previous IMC-MPC strategy is
developed to obtain the final penalized optimization problem
(29). The use of this MPC strategy in different regimes is
simulated according to three different levels of pollution at the
inlet (Table IV).

A. Simulation Conditions

The simulations have been realized in the following condi-
tions.

• Concerning the spatial discretization grid for the simulated
process, it has been shown to be nominally represented
with 200 elements in each monoliths. It is nominal in the
sense that an increase in the number of elements does not
improve results anymore. The simulated process is solved
by a finite volume method.

• Concerning and , also solved by a finite
volume method, a nominal spatial discretization grid
leads to a number of 60 elements in each thermal and
catalytic monoliths. From the grid used for the simulated
process, number of elements in the grid has therefore
been divided by more than three. Nevertheless, it does
suffice to obtain good control results. It is nominal in the
sense that it gives the best compromise between a good
representation for the process performance (i.e., theoret-
ically with an infinitely small grid) and a small online
computational burden for the control algorithm (i.e., with
a large grid). This is due to the use of IMC structure in the
MPC strategy: like in [21], control objective are fulfilled,
even if relatively large modeling errors due to the model
uncertainties and model resolution are present.

• Simulations are run using a 500 MHz CPU, fortran code
and ddaspg subroutine of IMSL library for the time inte-
gration.

• The temperature of the gas at the inlet of the
reactor as well as its flow rate are assumed constant
and measured

C
m h

(32)

and is the gas velocity in the canals.
• A preheating period is necessary before using the reactor

with polluted gas. During this period, the catalytic ele-
ments temperature increases such that the reaction be-

comes possible. This preheating is done in the following
conditions:

mol m
C

m
C

mol m

(33)

• After trial error tests, the model linearization is done
around the nonlinear behavior obtained with

W
mol m

(34)

• Constraints bounds are

W
W

W.s
W.s

mol.m

(35)

• For the output constraints (19), the length of the time
window is 20 .

• The maximum temperature along the reactor must not ex-
ceed 650 .

• In this initial approach, the sample rate value is half of
the cycle period (round trip) value

(36)

The gas properties are assumed to be measured. Since the
gas concentration has a stochastic behavior and has a strong
influence over the prediction of the output behavior and there-
fore over the control results, a one step-ahead prediction is em-
ployed. In the meantime, this automatically tunes the control
horizon to one. Then, the MPC algorithm aims to minimize
the effect of the level of input concentration over the process
output as fast as possible.

Remark 6.1: To see a smooth trend of the electrical power
fed into the central zone, the mean value calculated since the
beginning of the run, including the warm-up period, is depicted
instead of the value found at each time. In each case, the mean
electrical power fed to the central zone is time decreasing since
the initial warmup is done at 520 W and that after that, the value
of electrical power is less important.

Remark 6.2: For all the output concentrations depicted, the
discontinuity that occurs at 1200 s is due to the initial memo-
rization needed to calculate the constraint (19).

B. Simulation Results

Finally, these runs allow to see three different regimes for the
use of the reactor.

• In the low-level case, the heat generated during the
exothermic catalytic reaction of the pollutant is not
enough for an autonomous use of the reactor. Therefore,
an external source of energy is needed and electrical
power is fed into the reactor (Fig. 6) to achieve the
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Fig. 6. Low case: mean electrical power.

Fig. 7. Low case: mean pollutant concentration at the process outlet.

Fig. 8. Medium case: mean electrical power.

purification objective described by the output constraint
(19) (Fig. 7). The control objective is achieved since the
maximum threshold of pollution is never exceeded;

• In the medium-level case, as expected, about 1% of the
full capacity of electrical supply needs to be used (Fig. 8).
In this case, the concentration of pollutant becomes suffi-
ciently high such that the heat generated during the reac-
tion allows to be near a particular regime: the autothermic
regime where no external source of energy is needed to
satisfy the output constraint (Fig. 9);

• In the high-level case, as expected, the autothermic regime
is reached: Fig. 10 shows that no external source of en-
ergy is needed and that the output constraint is amply
checked (Fig. 11). The drawback is that the maximum
temperature in the reactor exceeds the maximum admis-
sible limit (Fig. 12): the catalytic elements are destroyed
and the reactor is no longer efficient. Since this phenom-
enon has to be avoided, this clearly underlines the neces-
sity to add a cooling system in order to operate the reactor
in any of the three proposed different regimes. The related
multi-input–multi-output (MIMO) system control is actu-
ally under study.

In the meantime, one can notice the sensitivity of the output
concentration (Fig. 13) versus the electrical power (Fig. 14)
from two runs in the low-level case with the same inlet gas con-
centration but changing the nominal grid to an alternate grid
for the model. It shows that, by reducing the consumption of
electrical energy by 50 W only, the output concentration in-
creases by 200% whereas the output constraint is still satisfied.
Regarding the range of 3000 W that can be used for the manip-
ulated variable, it indicates that a very tight control is achieved
and it underlines the effect of tuning the number of elements in
the grid needed to solve the model.

VII. CONCLUSION AND PERSPECTIVES

This paper deals with the model predictive control strategy
of a catalytic reverse flow reactor. This process is used to de-
crease noxious VOC amount in gas released in the atmosphere.
The complexity of this process includes distributed aspect, non-
linear dynamic behavior and periodic reversing of the circula-
tion of gas. Until now, even if the initial control problem stated
as a temperature regulation is solved, it gives bad overall perfor-
mance: overconsumption of electrical power must be avoided.
To optimize the control of this reactor, an IMC-MPC framework
has been developed. It is based on the first-principle nonlinear
distributed parameter model obtained from heat and mass bal-
ances detailed in the paper. Regarding numerical issues, even
if a relatively large-scale model needs to be solved in the MPC
strategy with a small sample time of 10 s, the on-line implemen-
tation is possible. Simulations allow to check the efficiency of
this approach and to give some guidelines for current directions
of research. New advances are currently being studied for new
problems: control of the MIMO system that includes the cooling
system and development of a model-based observer to estimate
the inlet concentration that aims to replace a costly sensor.
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Fig. 10. High case: mean electrical power.

Fig. 11. High case: mean pollutant concentration at the process outlet.

Fig. 12. High case: maximum temperature in the process.
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