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Abstract

This paper deals with the control of a catalytic reverse flow reactor. The aim of this process is to reduce, by
catalytic reaction, the amount of volatile organic compounds (VOCs) released in the atmosphere. The peculiarity of
this process is that the gas flow inside the reactor is periodically reversed in order to trap the heat released during the
reaction inside the process. This allows use of the reactor in heat saving mode. The goal of this work is to provide
a model predictive control (MPC) framework to significantly enhance the poor overall performance currently obtained
through the actual control strategy. It is directly addressed for the nonlinear parabolic partial differential equations
(PDEs) that describe the catalytic reverse flow reactor. In the context of the application of MPC to this particular
distributed parameter system, we propose a method that aims to reduce the on-line computation time needed by the
control algorithm. The nonlinear model is linearized around a given operating trajectory to obtain the model to be
solved on-line in the approach. MPC strategy combined with internal model control (IMC) structure allows to use less
accurate and less time consuming control algorithm. The efficiency of the method is shown in simulation for this SISO

system.
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I. INTRODUCTION

Problems of environment pollution due to the industrial production are receiving increased atten-
tion. Due to public regulations, VOCs discharge in the atmosphere is strictly limited. Even if the
definition of VOCs is blurred, it includes noxious products which chemical reactivity is likely to influ-
ence atmospheric pollution. For this reason, they are the source of a lot of environmental problems
including: acid rains, woods wasting, greenhouse effect and health troubles. Therefore, the VOCs
emission reduction represents a priority, especially since the problem is connected with a large field of
activities from large-scale factories to small and medium-sized firms like dry cleaners. An experimental
process was build-up in the LGPC 1. It is a reverse flow reactor (RFR) that allows high temperatures
in catalyst bed whereas the inlet and outlet gas stream temperatures are close to ambiant temperature.
This process is useful for experimental validation of solution for issues like: physical phenomena that
influence purification efficiency, optimal size of each elements, process behavior in industrial use and
control.

The aim of this paper is to develop a model-based control strategy for this RFR based on its spatial
description. Both modeling and control aspects are detailed. The paper is structured as follows: first,
the experimental process of the LGPC is presented. The catalytic reaction in the RFR is detailed
through a first-principles model described by a nonlinear distributed parameter system and the re-
lated control problem is stated. Control of the process is addressed using a model-based predictive
control framework with the internal model control structure. Technical aspects of the control strategy

are detailed. Validity of the approach is demonstrated using simulation.

II. DESTRUCTION OF VOCs wiTH THE RFR

The peculiarity of this process is that the gas circulation sense is periodically reversed (Fig. 1). The

operation procedure of this RFR [1] is described below:
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« A semi-cycle begins as follows: the gas flows through the first thermal monolith. It is made up of
cordierite and of nb. canals where the gas flows. The shape of its section is a nest (Fig. 2). The
increase of gas temperature in the canals is due to the heat exchange with the cordierite. No reaction
takes place;

« The gas then passes through the first catalytic monolith. This one is like the first thermal monolith
but with catalytic elements (platinum and other noble metals) layers on the canals surface. With these
elements, the exothermic chemical reaction takes place, inducing the increase of temperature in the
cordierite and a concentration drop for the VOCs;

« The gas flows now in the empty central zone where control of a electrical heat source is provided,
allowing control of the reaction;

« The reaction continues in a second catalytic monolith and finally the gas reaches a second thermal
monolith where no reaction occurs but where the heat of reaction is exchanged from the gas to the
cordierite.

o At the end of this semi-cycle, the flow rate inside the monoliths is reversed by the switch of the four
servovalves. A second semi-cycle, identical to the first one, starts but in the reverse circulation sense;
« Since the circulation sense has changed, the polluted gas passes first through the previous second
thermal monolith. In this zone, the gas temperature increases using the heat previously accumulated
in the monolith during the first semi-cycle: This is the saving mode of the process;

o At the end of this second semi-cycle, the flow rate in the reactor is again reversed thanks to the
servovalves switch and a new complete cycle begins.

According to the operating conditions, various problematic behaviors can take place:

« Unsufficiently polluted gas causes, by its low heat release during the reaction, the extinction of the
reactor if no external heat is supplied;

« With a strongly polluted gas, the release of heat due to the reaction can deteriorate the monolith.

To overcome extinction and overheating, several technical solutions have been proposed [2]:



« Extinction: fuel addition in the gas or energy addition in the central zone.

« Overheating: use of a bypass to redirect some amount of the gas or injection of cold gas in the central
zone.

In this paper, we consider a SISO problem for the extinction problem where the technological solution

adopted is a electric power supply in the central zone.

III. MODELING

VOCs combustion in a RFR has been studied in packed bed or monolith by various authors (see [1]
for a general review). Models are based on standard heat and mass balances and most often deal with
an adiabatic RFR at stationnary periodic state [3], [4], [5]. They assume the analogy with a counter
current reactor for the RFR at high frequency, which allows to estimate simple RFR characteristics.
In [6], authors study the effects of an external electrical heater supply for very lean mixture. The
dynamic aspects of the RFR have been less examined. In the LGPC, a simple linear dynamic model
accounting for heat losses and dilution has been developed [7]. Budman et al. [8] have developed a
nonlinear dynamic model. Quiet similar to this one, in our approach, one assumes that the adiabatic
RFR has dynamic behavior, that gas velocity is constant and that there is no pressure loss. The heat
and mass balances are described along the independent space variable z following the flow sense. Due
to high thermal capacity and short residence time in the reactor, the phenomena in the canals are
assumed instantaneous. In the solid parts, it is also assumed that the dynamic of the concentration
is negligible with respect to the dynamic of the temperature. The following physical quantities are
considered in each of the five zones (Fig. 3) of the reverse flow reactor (two thermal monoliths, two
catalytic monoliths and the central part):

o The concentration Cy(z,t) and the temperature Ty(z,t) of the gas inside the canals;

« The concentration C,(z,t) and the temperature Ts(z,t) in the cordierite along the solid parts.



Description and value of the model parameters are given in table 2, geometric data of the RFR are

given in table 3.

Remark I11.1: All the model parameters are constant except the gas characterics at the process inlet:

the concentration and the temperature.

To account for the periodic sense inversion, the model is written in four steps over a complete cycle

T =|1, T+ Tpyee] where 7 = nT,yqe, (n is an integer).

1/ during the first semi-cycle (¢t €], 7+ %[)
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e in the second catalytic zone (for z € Qpo0):
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2/ At the end of the semi-cycle (t = 7 + %), the change of the circulation sense leads to a state

permutation (L is the total length of the reactor):

e

T (Z 7_+ cycle) Tg(Ltot Z 7_+ cycle )
C (Z 7_+ cycle) Cg(Ltot Z 7_+ cycle )

Ts(za T+ TCQCIE) = Ts(Ltot —z,T + TCQCIE_)

C (Z T+ cycle) Cs(Ltot Z 7—+ cycle )

3/ During the second semi-cycle (¢ €7 + EQ&IE, T + Toyele| ), equations (1) to (11) are again valid.

4/ At the end of the cycle (¢t = 7+ T,yqe), another state permutation takes place and a new complete

cycle begins:

Ty(2, ™+ Teyate) = Ty(Lyot — 2,7+ T, ycle)

Cg(za T+ Tcycle) = Cg(Ltot Z, T+ Tycle)

TS(Z, T+ Tcycle) =T (LtOt 2, T+ Tycle)

Cs (Z7 T+ Tcycle) = Cs(Ltot 2z, T+ T

\ ycle)

The output is the mean output concentration calculated over a past time window 7:

1

t
Cg.outlet(t) = T/t Tcg(ZMTZ; T)dT (14)

The model clearly exhibits a nonlinear behavior due to catalytic reaction. For more details about
the modeling, reader is referred to [7], [9]. Therefore, we consider the class of SISO one dimensional

nonlinear parabolic PDEs with scalar control:

(

2l — Fy(a(z,t),ut),t) ¥ z2€Q, >0

Fy(z(z,t),t) =0 Vz€ 09, t>0
(Snt) 4 (15)
z(2,0) =z, V2zeQUOIN

ym(t) = C(t)z(z,t) YV 2€ 00, t >0



where z is the independent space variable, €2 is the spatial domain and 02 its boundary, ¢ is the
independent time variable. z is the state vector in a Hilbert Space, u is the control or manipulated
variable (MV) in IR, y,, is the model output in IR. F,; and F} are nonlinear operator [10]. C'is a linear
operator [11].

Assumption 1: There exists u(t) = wuo(t) leading to the particular representation (Sp) of (Sny)
described by the triplet {u(t) = uo(t), z(z,t) = z4(2,t), ym(t) = yo(t)}.

Variations around (S;) are given by:

/

u(t) = uo(t) + Au(t)
Y z(t) = z,(t) + Az(t) (16)

Ym (t) =% (t) + AYm (t)

\

where sufficiently small variations are described by the time-varying linearized model (Srry) obtained

about (Sp):

982 _ A3 (1) Ag(z,t) + AL(Hu(t) Y zeQ, t>0

Ap(t)Az(z,t) =0 Vze€00Q, t>0
(Serv) < (17)
Az(z,0)=0 VzeQUIN

\ Ay, (t) = C(t)Az(z,t) VzeQUI, t>0

where the time-varying linear operators A%(t), A%4(t) and A,(t) are obtained from the linearization of

(Sn1) about the behavior described by (Sp).

IV. CONTROL PROBLEM STATEMENT

Few papers are devoted to RFR control: [2] deals with this problem with ignition and extinction
phenomena, whereas [12] gives some guidelines for the control of such process accounting for autother-
mal and overheating phenomena. Until now, the most complete control study has been written by
Budman et al. [8] where a first-principles pseudo-homogeneous one-dimensional model is provided. A

parametric study of the reactor is given that allows to characterize the working mode of the reactor



with respect to the two manipulated variables: the coolant flowrate and the cycle time. Moreover,
Budman et al. developed two SISO control approaches (coolant flowrate is the MV) in the case where
temperature and concentration at the reactor inlet where assumed constant. First, a PID controller,
based on a local linear model is tuned, is given. Secondly, a feedforward controller is given but it is
not usable during transient conditions and it is not robust with respect to modeling errors.

Compared with Budman et al.’s work, in our approach, the cycle time can not be chosen as a manipu-
lated variable: indeed, the residence time of the gas inside the reactor has to be small (a few seconds) in
order to trap the heat inside the reactor (for a complete discussion of the parametric study, the reader
is refered to [7]). Cycle time is therefore constant and tuned to 20s. Moreover, simulation results
cover here more realistic cases since gas concentration at the reactor inlet, i.e the input disturbance,
is time-varying (which is not the case in Budman et al.’s work). The control problem for the RFR
relates to the statutory maximum amount of VOC that can be released into the atmosphere at the
process outlet. This is stated as a constraint: one has to ensure that the concentration of pollutant at

the process outlet is lower than a maximum level fixed by public regulations:

Cg(ZMTQ,t) S C’g.maux (18)

From a practical point of view, it is replaced by a constraint on the mean output concentration

calculated over a past time window 7" given Eq. (14):

Cg.outlet(t) S Cg.max (19)

Such a formulation permits possible VOCs overshoots. The existing control strategy deals with regu-
lation of the temperature in the control zone €1z at 360°C. Indeed, according to practical analysis,
this temperature setpoint allows to fulfill constraint (18) and therefore (19) is always checked. The
drawback in this simple and easy to tune control strategy is that an overconsumption of electrical
power fed in the central zone is imposed although it could be avoided. In our approach, we propose

to formulate a better control objective in order to improve process use. Reminder of this paper is



devoted to the description of a model-based control strategy that leads to optimize the compromise
between constraint (19) checking and a low consumption of electrical energy. Presence of constraints

makes MPC well suited to solve this control problem.

V. MoODEL PREDICTIVE CONTROL FORMULATION

MPC or receding horizon control refers to a class of control algorithms in which a dynamic process
model is used to predict and optimize process performance. The idea is to solve, at each sample time,
an open-loop optimization problem over a finite prediction horizon in order to find the value of the
manipulated variable that has to be implemented. The procedure is reiterated at the next sample time
with the update of process measurements. Today, MPC has become a control strategy widely used in
industry. Indeed, MPC is well suited for high performance control since constraints can be explicitly
incorporated into the formulation of the control problem. More details and references on MPC can
be found in [13], [14], [15], [16]. From a practical point of view, one of the drawbacks of MPC is
the computational time aspect, especially when the model becomes more complex and more accurate.
Indeed, the model is intended to predict the future dynamic behavior of the process output over a
finite prediction horizon and has to be solved during the on-line constrained optimization problem

resolution. Reduction of this computational time is tackled in this section.

A. Discrete time MPC' formulation

One of the advantages of MPC formulation as a constrained optimization problem is that a large
number of control problems can be stated. It covers trajectory tracking for controlled variables (CVs),
minimization of any economic function, minimization of energy supply under technical specifications,
etc. Therefore, one can consider the following general task of minimizing, under some constraints, the
cost function J (also named performance index):

min J(@) =) g(yp(f),ui —1)) Vi€ 7" ={k+1, sk + Ny} (20)

J



where k is the actual discrete time index, j is the discrete time index, N, is the receding horizon, va ’
is the future discrete time window, y, is the process CV and % is the sought optimal sequence of the

future MV u of the process that is classically tuned as follows:
d=[..u(g) ..17" vieJrt={k, ...k+ N, —1} (21)
where NV, is the control horizon and where:
u(j) = ulk+N.—1)Vj € ' = {k+ N, ...k + N, — 1} (22)

This optimization problem has also to account for:

« constraints on the magnitude and velocity of the MV:

Umin < U(J) < Umax  VJj € Jév”_l ={k, ..,k+N,—1}

(23)
Atimin < u(f) —u(j — 1) < Atmax Vi € Jo7
« n general output constraints for the CV:
ci(yp(7),u(j —1)) <0 Vie " Viel'={1, ..,n} (24)

In the performance index given in Eq. (20), one needs, at the current discrete time k, the value of
the future measurements ¥, over the prediction horizon N,. This impossibility can be handled using
the internal model control structure [17] in the MPC structure where the MV is applied to both the
process and the model (Fig. 4). In our approach, the difference e(j) = y,(j) — ym(Jj) between process
and model CV and the model CV y,,(j) are fedback into the controller. The latter feedback loop aims
to correct modeling errors introduced in the model-based on-line optimizer [18].

Assumption 2: At each sample time k, the error e(j) between the process output and the model

output remains the same over the prediction horizon N,. The error value is updated at each time k.



This assumption is classical [19], [17] and allows us to introduce the model (Syy) into the constrained

optimization problem and the feedback term e(k) as well:

(

min J(@) = Y g(ym(j),u(j — 1), e(k))
b 2k

i=[u(j) . |7 VjeJr!

u(j) =u(k+N.—1) VjeJy

Umin < U(J) < Umax VG € Jp7 (25)

Atumin < u(j) —u(j — 1) < Aumax Vj € Jé\’p—l

ci(ym (i), u(j — 1),e(k)) <0 Vj € 7, Vi€ I}

\ and subject to the resolution of the model (Snr.).

Remark V.1: y,(j) is the sampled value obtained from the resolution of the continuous model (Sy7,).

B. Off-line and on-line IMC-MPC structures

On-line computational time is dealing with the resolution of the optimization problem that includes
the model resolution. Discretization of the PDE model can lead to a large amount of algebraic
differential equations that increases the computational burden, especially in the nonlinear case. In
order to reduce the on-line computational time, the IMC-MPC structure is used off-line for the system
(Snr). As previously described, given small input variation Au, small state variations Az and small
output variation Ay, about (Sy) can be represented through the time-varying linearized model (Sp7v ).
Finally, the nominal nonlinear behavior (Sy) obtained off-line and the on-line time-varying linearized
model (Sr7v) replace the initial nonlinear model (Sy;,) in the IMC-MPC structure as depicted in Fig.
5. The control objective is then to find the variation Awu of the manipulated variable u about a chosen
trajectory ug that improves at each sample time the on-line optimization result.

The next step developed is concerned with methods to handle constraints which aim to reduce the

on-line optimization problem resolution time.



C. Constraints handling

Two different kinds of constraints are to be accounted for: constraints acting only on MV and

constraints acting on CV.

C.1 Input constraints handling

Transformation method for variables allows to translate explicit constraints on the optimization
argument u (and only the optimization argument) as new equations for a new unconstrained argument
p. Here, we propose to enlarge this method to cover magnitude constraints and velocity constraints as

well (acceleration rate constraints may also be accounted for). This leads to a transformation equation:

u(§) = F(p(j)) = fneon + Frogntanh (2=t ) vy e et

(26)
p(j) €R Vje Jpe!
with the time-varying coefficients frean and fmagn updated at each time k:
(
fmean — fmax‘;fmin
fmagn — fmaxffmin
2 (27)

fmin = Imnax (U'Inina U(] - 1) + AU’Inin) VJ € JéV071

\ frnax = MiN (Umar, U(§ — 1) + Atay) V5 € JO!
C.2 Output constraints handling

In order to take account for output constraints, we adopt the exterior penalty method [20] used in
nonlinear programming where a positive defined weighted penalty term is added to the initial cost
function J:

Jtot =J+ Jezt

(28)
Jor = > ( > w; max2(0,ci))

]‘EJ{VP ZEI{”
where w; is an adaptive positive defined weight. The penalty method transforms the problem into an

unconstrained problem by substituting a penalty function for the constraint. Solution of the resulting

sequence of unconstrained problem tends to a constrained minimum.



D. Final penalized optimization problem

Finally, combining the transformation method for the constraints on the MV and the exterior penalty
method for the constraints on the CV, the final penalized optimization problem to be solved on-line

is the following one:

f

77%1577» Jtot(Aﬁ) = Z g(Aym(j)a Ap(] - 1),6(k‘))+

z;v (iZ{Lwi maz?(0, ¢;(Aym(4), Ap(j — 1), e(k)))
Ap = [... F7H(Au())) ... 1" V)€ et
X (29)

Ap(j) = Ap(k+ N, — 1) Vj € Ty~
Au(j) = u(j) = uo(i) = F(po(d) + Bp(7)) — S (pa(i)) Vs € Jg*"

po(j) = fH(uo () Vj € J* !

and subject to the resolution of the model (Srrv).
\

This penalized problem can now be solved by any unconstrained optimization algorithm.

E. Control algorithm

Widely known for its robustness and convergence properties, we use of the well-known Levenberg-
Marquardt’s algorithm , where the argument Ap is determined at each sample instant £ by the iteration
procedure:

APt = AP = (V2L + AT v I, (30)
where 7J7, and 72 J%, are the criteria gradient and the criteria hessian with respect to Ap" at the

0

n

iteration n. 7Jj, is explicitly provided into the control algorithm and the classical Gauss’s approxi-

mation for y2Jp, as well.



VI. SIMULATION RESULTS

In the current MPC framework, the initial control problem (Eqgs. (20) to (24)) for the RFR is

therefore stated as follows:

(

min J(Pres) - Z [Pres(j)]2

Pres jes

where the input sequence in the future is:

Pres = [Pres(k) .. Pres(k + Ne —1)]"

with constraints for the magnitude and rate of change manipulated variable:
Presmin < Pres(j) < Pres.maa (31)

APres.min S Pres(j) - Pres(j - ]-) S APres.mum
with the process output constraint:

C!](ZMT27j + 1) S Cg.max

\ with the input-output relation given through the relations (1) to (13).
From this formulation, the previous IMC-MPC strategy is developed to obtain the final penalized
optimization problem (29). The use of this MPC strategy in different regimes is simulated according

to three different levels of pollution at the inlet (Table 4).

A. Simulation conditions

The simulations have been realized in the following conditions:
e Concerning the spatial discretization grid for the simulated process, it has been shown to be nomi-
nally represented with 200 elements in each monoliths. It is nominal in the sense that an increase in
the number of elements does not improve results anymore. The simulated process is solved by a finite
volume method.
e Concerning (Sp) and (Sirv), also solved by a finite volume method, a nominal spatial discretization
grid leads to a number of 60 elements in each thermal and catalytic monoliths. From the grid used

for the simulated process, number of elements in the grid has therefore been divided by more than



3. Nevertheless, it does suffice to obtain good control results: it is nominal in the sense that it gives
the best compromise between a good representation for the process performance (i.e. theoretically
with an infinitely small grid) and a small on-line computational burden for the control algorithm (i.e.
with a large grid). This is due to the use of IMC structure in the MPC strategy: like in [21], control
objective are fullfilled, even if relatively large modeling errors due to the model uncertainties and model
resolution are present.

e Simulations are run using a 500 MHz CPU, fortran code and ddaspg subroutine of IMSL library for
the time integration.

e The temperature Ty inet(t) of the gas at the inlet of the reactor as well as its flow rate Q,(t) are

assumed constant and measured:

Tyintet () = 20°C

Q,(t) =100 m3.h~"
and u, is the gas velocity in the canals.
e A preheating period is necessary before using the reactor with polluted gas. During this period, the
catalytic elements temperature increases such that the reaction can be possible. This preheating is

done in the following conditions:

Neyeres = 300 (=)

Pres(t) =520 W

Cyintet(t) = 0 mol.m ™3

\ Ty(z,0) = 20°C (33)
Cy(2,0) = 0 mol.m™3

Ty(z,0) = 20°C

Cy(z,0) = 0 mol.m ™3



e After trial error tests, the model linearization is done around the nonlinear behavior obtained with:

Preso(t) = 500 W

(34)
Cyinter.o(t) = 2 1072 mol.m™3
e Constraints bounds are:
.
P’res.maw = 3000 W
P’res.mm =0W
§ APrsmaw = +1500 W.s™1 (35)

APresmin = —1500 W.s~!

\ Cymax = 4.7 107* mol.m™3

e For the output constraints (19), the length of the time window 7" is 20 min.
e The maximum temperature along the reactor must not exceed 650°C.

e In this initial approach, the sample rate T, value is half of the cycle period (round trip) Tyyee value:

Teyere = 20s

(36)

Te = 0.5 Teoyere
The gas properties are assumed to be measured. Since the gas concentration has a stochastic behavior
and has a strong influence over the prediction of the output behavior and therefore over the control
results, a one step-ahead prediction is employed. In the meantime, this automatically tunes the
control horizon N, to 1. Then, the MPC algorithm aims to minimize the effect of the level of input

concentration over the process output as fast as possible.
Remark VI.1: To see a smooth trend of the electrical power fed into the central zone, the mean
value calculated since the beginning of the run, including the warm-up period, is depicted instead
of the value found at each time. In each case, the mean electrical power fed to the central zone is

time-decreasing since the initial warm-up is done at 520 W and that after that, the value of electrical

power is less important.



Remark VI.2: For all the output concentrations depicted, the discontinuity that occurs at 1200s is

due to the initial memorisation needed to calculate the constraint (19).

B. Simulation results

Finally, these runs allow to see three different regimes for the use of the reactor:
e In the low level case, the heat generated during the exothermic catalytic reaction of the pollutant
is not enough for an autonomous use of the reactor. Therefore, an external source of energy is needed
and electrical power is fed into the reactor (Fig. 6) to achieve the depollution objective described by
the output constraint (19) (Fig. 7). The control objective is achieved since the maximum threshold of
pollution is never exceeded;
e In the medium level case, as expected, about 1% of the full capacity of electrical supply need to be
used (Fig. 8). In this case, the concentration of pollutant becomes sufficiently high such that the heat
generated during the reaction allows to be near a particular regime: the autothermic regime where no
external source of energy is needed to satisfy the output constraint (Fig. 9);
e In the high level case, as expected, the autothermic regime is reached: Fig. 10 shows that no external
source of energy is needed and that the output constraint is amply checked (Fig. 11). The drawback
is that the maximum temperature in the reactor exceeds the maximum admissible limit (Fig. 12): the
catalytic elements are destroyed and the reactor is no longer efficient. Since this phenomenon has to
be avoided, this clearly underlines the necessity to add a cooling system in order to operate the reactor
in any of the three proposed different regimes. The related MIMO system control is actually under
study.
In the meantime, one can notice the sensitivity of the output concentration (Fig. 13) versus the
electrical power (Fig. 14) from two runs in the low level case with the same inlet gas concentration
but changing the nominal grid to an alternate grid for the model. It shows that, by reducing the

consumption of electrical energy by 50 W only, the output concentration increases by 200 % whereas



the output constraint is still satisfied. Regarding the range of 3000 W that can be used for the
manipulated variable, it indicates that a very tight control is achieved and it underlines the effect of

tuning the number of elements in the grid needed to solve the model.

VII. CONCLUSIONS AND PERSPECTIVES

This paper deals with the model predictive control strategy of a catalytic reverse flow reactor. This
process is used to decrease noxious VOC amount in gas released in the atmosphere. The complexity
of this process includes distributed aspect, nonlinear dynamic behavior and periodic reversing of the
circulation of gas. Until now, even if the initial control problem stated as a temperature regulation
is solved, it gives bad overall performance: overconsumption of electrical power must be avoided. To
optimize the control of this reactor, an IMC-MPC framework has been developed. It is based on the
first-principles nonlinear distributed parameter model obtained from heat and mass balances detailed
in the paper. Regarding numerical issues, even if a relatively large-scale model neads to be solved in the
MPC strategy with a small sample time of 10s, the on-line implementation is possible. Simulations
allow to check the efficiency of this approach and to give some guidelines for current directions of
research. New advances are currently being studied for new problems: control of the MIMO system
that includes the cooling system and development of a model-based observer to estimate the inlet

concentration that aims to replace a costly sensor.
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Figure 10 | Mean electrical power for high concentration of pollutant at the inlet
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Figure 14 | Mean electrical power: nominal (solid) and not nominal (dotted) cases

Table 1.



Signification Name | Value Unit
Solid density in the thermic elements Pst 2500 kg.m™3
Solid density in the catalytic elements Psc 4000 kg.m=3
Gas density Pq 1.2 kg.m™3
Thermal capacity for the solid Cpe 850 Jkg t K1
Thermal capacity for the gas Cp, 1030 | Jkg LK !
Thermal conductivity coefficient A 1.5 Wm= L. K~!
Heat transfer coefficient h 32 Wm=2.K~!
Kinetic constant of reaction k> 300 m.s
Mass transfer coefficient kq 0.11 m.s !
Reaction activation energy E, 4.2 10* Jmol™!
Reaction enthalpy (—AH,) | 4.6 10° J.mol™!
Perfect gas constant R 8.314 | Jmol 1. Kt
Table 2.
Signification Name | Value Unit
Empty volume / total volume ratio € 70% (-)
Length of a thermal monolith Lyr 0.375 m
Length of a catalythic monolith Lye | 0.075 m
Central zone length Lzc 0.60 m
Canal diameter dy, 0.00109 m
Number of canals nb, 13225 (—)
Central zone section S 0.0225 m?
Specific surface area per unit volume O 3—2 m2.m™3

Table 3.



Regime

Input concentration (mol.m™3)

Low level

1103 <.<31073

Medium level

410%3<.<610°3

High level

16103 <.< 181073

Thermal monqlith
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