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Abstract— Non additive binary quantum codes are con-
structed by using classicalZ4-linear binary codes.

I. I NTRODUCTION

The first quantum codes, the so called stabilizer codes
were constructed by using linear quaternary codes [3].
Non additive quantum codes were constructed later in
[2], [10] by using union of linear codes or permutation
group action [9]. In the present work, we construct
binary non additive quantum codes from binaryZ4-
linear codes. The argument is based on a description of
quantum codes in terms of orthogonal arrays combined
with Delsarte celebrated theorem on the equivalence of
unrestricted (viz not necessarily linear) codes with given
dual distance and orthogonal arrays of given strength
[5].

II. CONSTRUCTION

The following characterization of quantum codes was
given in [7]:

Theorem II.1. There exists a quantum((n, K, d))q-
code withK ≥ 2 if and only if there existK nonzero
mappingsφi : Fn

q → C (1 ≤ i ≤ K) satisfying the
following condition:

for each partition{1, 2, . . . , n} = A∪B with
|A| = d − 1 and |B| = n − d + 1, and any
cA, c′A ∈ Fd−1

q , 1 ≤ i, j ≤ n,∑
cB∈Fn−d+1

q

φi(cA, cB)φj(c′A, cB) = δi,jf

wheref is independent ofi and depends only
on cA and c′A and δ is Kronecker’s symbol.

Instead of [7, Lemma 2.3, Proposition 2.4 and Corol-
lary 2.5], in order to useZ4-linear codes for our
construction, we use the following analogous results:

Lemma II.2. Let C be a linear Z4-code of lengthn
and type4k12k2 , such that the minimum Lee distance

d(C⊥) of the dual code is at leastd. Then for each
partition {1, 2, . . . , 2n} = A∪B with |A| = d− 1 and
|B| = 2n − d + 1, and anycA ∈ Fd−1

2 and v ∈ F2n
2 ,

one has

#{cB ∈ F2n−d+1
2 : (cA, cB) ∈ v+C} = 22k1+k2−d+1.

Proof. The Gray image ofC is a binary code (not
necessarily linear) of length2n and size22k1+k2 , whose
formal dual distance isd(C⊥). By the equivalence
between codes and orthogonal arrays [5], any translate
of this Gray image is an orthogonal array of level 2 and
strengthd− 1. 2

Proposition II.3. Let C be a linearZ4-code of length
n and V = {vi}K

i=1 be a set ofK distinct vectors in
Zn

4 . Put

dv := min{wL(vi−vj+c) : 1 ≤ i 6= j ≤ K and c ∈ C}

and d = min{dv, d(C⊥)}, wherewL denotes the Lee
weight. Ifd > 0, then the Gray image of

⋃K
i=1(vi +C)

is a binary ((n, K, d))-quantum code.

Proof. For each1 ≤ i ≤ K, define a mappingφi :
F2n

2 → C given by

u 7→
{

1 if u ∈ φ(vi + C)
0 if u 6∈ φ(vi + C).

It is necessary to verify that the condition in Theorem
II.1 is satisfied. For each partition{1, 2, . . . , 2n} = A∪
B with |A| = d − 1 and |B| = 2n − d + 1, and any
cA, c′A ∈ Fd−1

2 ,

φi(cA, cB)φi(c′A, cB) 6= 0

if and only if

φi(cA, cB) = φi(c′A, cB) = 1,

i.e., (cA, cB), (c′A, cB) ∈ φ(vi +C). This is equivalent
to

φ−1(cA, cB), φ−1(c′A, cB) ∈ vi + C, (II.1)



which is in turn equivalent to

φ−1(cA, cB) ∈ vi + C
and
φ−1(cA, cB)− φ−1(c′A, cB)
= φ−1(cA,0)− φ−1(c′A,0) ∈ C.

(II.2)

By Lemma II.2 and (II.2), it follows that∑
cB∈F2n−d+1

2
φi(cA, cB)φi(c′A, cB)

=
{

0 if φ−1(cA,0)− φ−1(c′A,0) 6∈ C
22k1+k2−d+1 if φ−1(cA,0)− φ−1(c′A,0) ∈ C.

If 1 ≤ i 6= j ≤ K, since wL(φ−1(cA,0) −
φ−1(c′A,0)) = wH(cA−c′A,0) ≤ d−1 < d ≤ wL(vi−
vj + C), it follows that φ−1(cA,0) − φ−1(c′A,0) 6∈
vi − vj + C. Hence,φi(cA, cB)φj(c′A, cB) = 0 for all
cB , which therefore implies∑

cB∈F2n−d+1
2

φi(cA, cB)φj(c′A, cB) = 0.

2

Corollary II.4. SupposeC,C ′ are two linearZ4-codes
of lengthn such thatC ⊆ C ′, with |C| = 4k12k2 and
|C ′| = 4k′12k′2 . Then there exists a binary((2n, K, d))-
quantum code withK = 22k1+k2−2k′1−k′2 and d =
min{d(C ′ \ C), d(C⊥)}.

Proof. With notation as in Proposition II.3, takeV to
be a set of coset representatives of theK distinct cosets
of C in C ′. This corollary then follows immediately
from Proposition II.3. 2

III. E XAMPLES

In this section, we illustrate the above construction
with several well-known linearZ4-codes.

Example III.1. Let C be the linearZ4-code of length
2m, size 4m+1 and minimum Lee distance2m −
2

m−1
2 (m odd) whose binary Gray image is a Ker-

dock code. The dual codeC⊥ has size42m−m−1 and
minimum Lee distance 6, and its Gray image is a
binary Preparata-like code. It is well known thatC ⊂
C⊥. By Corollary II.4, we obtain a family of binary
((2m+1, 22m+1−4m−4, 6))-quantum codes, form odd.
The parameters of this family are slightly inferior to
the quantum codes of parameters((2m, 22m−3m−2, 6))
in [1].

Example III.2. Let C be the linearZ4-code of length
2m, size 4m+12rm and minimum Lee distance2m −
2r+ m−1

2 (m odd and 1 ≤ r ≤ m − 1/2) whose
binary Gray image is a Delsarte-Goethals code. The
dual codeC⊥ has size22m+1−2m−2−rm and minimum
Lee distance 8 whenr ≥ 3, and its Gray image is a bi-
nary Goethals-Delsarte code. SinceC ⊆ QRM(2,m),
whereQRM(2,m) is the quaternary Reed-Muller code

which is known to be self-orthogonal, it follows that
C ⊆ C⊥. By Corollary II.4, we obtain a family of
binary ((2m+1, 22m+1−4m−2rm−4, 8))-quantum codes,
for m odd. Whenr = 3, the parameters of some of the
first examples obtained are: form = 7, ((256, 2182, 8));
for m = 9, ((1024, 2930, 8)).

Example III.3. Taking in Corollary II.4 in the notation
of [4], C = D⊥

4 and for C ′ the Calderbank McGuire
code in length32 overZ4 yields a((64, 210, 12)), which
is as good as the best-known quantum binary code [8].

REFERENCES

[1] J. Bierbrauer and Y. Edel, Quantum twisted codes, J. Comb.
Des., vol. 8, no. 3, 174 – 188 (2000)

[2] M. Grassl and Thomas Beth, A Note on Non-Additive Quantum
Codes,1997, preprintquant-ph/9703016v1

[3] A. R. Calderbank, E. M. Rains, P. W. Shor and N. J. A. Sloane,
Quantum error correction via codes overGF(4).IEEE Trans.
Information Theory, 44 (1998), pp. 1369-1387.

[4] Calderbank, A. R.; McGuire, Gary M. Construction of a
(64, 237, 12) code via Galois rings. Des. Codes Cryptogr. 10
(1997), no. 2, 157–165.

[5] Delsarte, Philippe, Four fundamental parameters of a code and
their combinatorial significance. Information and Control 23
(1973), 407–438.

[6] Hammons, A. Roger, Jr.; Kumar, P. Vijay; Calderbank, A. R.;
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